Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 200-212.DOI: 10.11686/cyxb2021089
You-shun JIN(), Fu-jiang HOU()
Received:
2021-03-15
Revised:
2021-05-24
Online:
2022-05-20
Published:
2022-03-30
Contact:
Fu-jiang HOU
You-shun JIN, Fu-jiang HOU. Determination of the nutrient digestibility of herbage consumed by grazing animals[J]. Acta Prataculturae Sinica, 2022, 31(5): 200-212.
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 阿根廷Argentina (36°46′ S; 64°16′ W) | 900 | 20.0 | Pampinta羊Pampinta sheep | 公Male | 40.90 (OMD) | - | - | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 76.70 | 72.90 | 60.90 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 60.70 | 63.30 | 59.70/57.10 | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 58.70 | 49.50 | 39.60 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 56.48 | - | 51.23/53.80 | [ |
FAM | 青海省Qinghai Province (29°46′ N; 94°44′ E) | 350~550 | 0~1.4 | 藏羊×半细毛羊Tibetan sheep×Semifine-wool sheep | 羯羊 Wether | 53.07 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 阉马 Gelding | 42.10 | 54.80 | 43.40 (NDF) | [ |
SBF | 巴西Brazil | 1300 | 200.0 | 马Horse | - | 51.19 | 69.73 | 72.35/68.91 | [ |
TTS | 锡林郭勒XilinGol (41°35′ N; 111°9′ E) | 300 | 1.5 | 萨福克肉羊×蒙古羊Suffolk sheep×Mongolian sheep | - | 69.99 | - | - | [ |
Table 1 Nutrient digestibility of grazed animals measured by total fecal collection method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 阿根廷Argentina (36°46′ S; 64°16′ W) | 900 | 20.0 | Pampinta羊Pampinta sheep | 公Male | 40.90 (OMD) | - | - | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 76.70 | 72.90 | 60.90 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 60.70 | 63.30 | 59.70/57.10 | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 西门塔尔牛Simmental | 公Male | 58.70 | 49.50 | 39.60 (NDF) | [ |
TCG | 临泽县Linze County (39°24′ N; 100°6′ E) | 89 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 56.48 | - | 51.23/53.80 | [ |
FAM | 青海省Qinghai Province (29°46′ N; 94°44′ E) | 350~550 | 0~1.4 | 藏羊×半细毛羊Tibetan sheep×Semifine-wool sheep | 羯羊 Wether | 53.07 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 阉马 Gelding | 42.10 | 54.80 | 43.40 (NDF) | [ |
SBF | 巴西Brazil | 1300 | 200.0 | 马Horse | - | 51.19 | 69.73 | 72.35/68.91 | [ |
TTS | 锡林郭勒XilinGol (41°35′ N; 111°9′ E) | 300 | 1.5 | 萨福克肉羊×蒙古羊Suffolk sheep×Mongolian sheep | - | 69.99 | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 链烷烃 Alkane | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|---|
EBF | 美国America (37°11′ N; 80°35′ W) | 921 | 15.3 | 赫里福德牛 Hereford cattle | - | 65.30 | - | - | C29 | [ |
WTTS | 英国England (43°38′ S; 172°27′ E) | 500~700 | 14.0 | 马鹿Red deer | - | 67.70 | - | 69.90 (ADF) | C32-C36 | [ |
FAM | 西藏Tibet (30°27′ N; 83°4′ E) | 380 | -3.3~-0.9 | 绒山羊 Cashmere goat | 母Female | 49.03 | 50.36 | 45.68/ 33.48 | C32 | [ |
EBF | 圣保罗Sao Paulo (34°51′ N; 138°30′ E) | 1000 | 15.0~28.0 | 内洛尔肉牛 Nellol beef cattle | 阉牛Bullock | 62.55 | - | - | C35 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | 驴Donkey | - | 45.90 | - | - | C31-C33 | [ |
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 800~1000 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 56.80 (OMD) | - | - | C31-C32 | [ |
- | - | 1000 | 17.0 | 荷斯坦奶牛 Holstein cow | 母Female | 56.70 | - | - | C31 | [ |
TTS | 锡林郭勒XilinGol (42°25′ N; 116°2′ E) | 359 | 1.6 | 蒙古羊 Mongolian sheep | 母Female | 71.40 | - | - | C25-C35 | [ |
EBF | 里兹维尔Ritzville (36°24′ N; 79°43′ W) | 125 | 16.5 | 安格斯肉牛 Angus beef cattle | 母Female | 51.70 | - | - | - | [ |
Table 2 Estimation of nutrient digestibility of animals by alkane method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 链烷烃 Alkane | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|---|
EBF | 美国America (37°11′ N; 80°35′ W) | 921 | 15.3 | 赫里福德牛 Hereford cattle | - | 65.30 | - | - | C29 | [ |
WTTS | 英国England (43°38′ S; 172°27′ E) | 500~700 | 14.0 | 马鹿Red deer | - | 67.70 | - | 69.90 (ADF) | C32-C36 | [ |
FAM | 西藏Tibet (30°27′ N; 83°4′ E) | 380 | -3.3~-0.9 | 绒山羊 Cashmere goat | 母Female | 49.03 | 50.36 | 45.68/ 33.48 | C32 | [ |
EBF | 圣保罗Sao Paulo (34°51′ N; 138°30′ E) | 1000 | 15.0~28.0 | 内洛尔肉牛 Nellol beef cattle | 阉牛Bullock | 62.55 | - | - | C35 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | 驴Donkey | - | 45.90 | - | - | C31-C33 | [ |
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 800~1000 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 56.80 (OMD) | - | - | C31-C32 | [ |
- | - | 1000 | 17.0 | 荷斯坦奶牛 Holstein cow | 母Female | 56.70 | - | - | C31 | [ |
TTS | 锡林郭勒XilinGol (42°25′ N; 116°2′ E) | 359 | 1.6 | 蒙古羊 Mongolian sheep | 母Female | 71.40 | - | - | C25-C35 | [ |
EBF | 里兹维尔Ritzville (36°24′ N; 79°43′ W) | 125 | 16.5 | 安格斯肉牛 Angus beef cattle | 母Female | 51.70 | - | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
SBS | 阿尔及利亚Algeria (36°42′ N; 3°15′ E) | 455 | 17.5 | 羊Sheep | 母Female | 64.0 | 66.00 | 47.00 (ADF) | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | - | 45.5 | 56.10 | 45.00 (NDF) | [ |
EBF | 宾夕法尼亚州Pennsylvania (42°52′ N; 74°43′ W) | 1067 | -6.0~20.0 | 荷斯坦奶牛 Holstein cow | 母Female | 67.1 | 65.60 | 54.50/50.00 | [ |
TRF | 巴西巴伊亚Bahia, Brazil (8°6′ S; 37°5′ W) | 1900 | 24.5 | 波尔山羊 Boer goat | - | 67.0 | - | - | [ |
SBS | 法国 France (48°11′ N; 1°71′ W) | 630 | 10.5 | 荷斯坦奶牛 Holstein cow | 母Female | 66.7 | - | - | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | 公Male | 59.7 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 公Male | 60.5 | - | - | [ |
FAM | 东北平原Northeast plain (43°48′ N; 129°10′ E) | 500~600 | 1.0~4.0 | 西门塔尔牛 Simmental | 阉牛Bullock | 43.0 | 52.19 | 44.32/36.65 | [ |
- | - | 1000 | 17.0 | 荷斯坦牛 Holstein cow | 母Female | 58.4 | - | - | [ |
Table 3 Determination of nutrient digestibility of animals by AIA method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
SBS | 阿尔及利亚Algeria (36°42′ N; 3°15′ E) | 455 | 17.5 | 羊Sheep | 母Female | 64.0 | 66.00 | 47.00 (ADF) | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | - | 45.5 | 56.10 | 45.00 (NDF) | [ |
EBF | 宾夕法尼亚州Pennsylvania (42°52′ N; 74°43′ W) | 1067 | -6.0~20.0 | 荷斯坦奶牛 Holstein cow | 母Female | 67.1 | 65.60 | 54.50/50.00 | [ |
TRF | 巴西巴伊亚Bahia, Brazil (8°6′ S; 37°5′ W) | 1900 | 24.5 | 波尔山羊 Boer goat | - | 67.0 | - | - | [ |
SBS | 法国 France (48°11′ N; 1°71′ W) | 630 | 10.5 | 荷斯坦奶牛 Holstein cow | 母Female | 66.7 | - | - | [ |
EBF | 意大利Italy (36°27′ N; 6°38′ E) | 750 | 2.0~26.0 | 马Horse | 公Male | 59.7 | - | - | [ |
EBF | 意大利Italy (36°28′ N; 6°38′ E) | 500~1000 | 2.0~26.0 | 马Horse | 公Male | 60.5 | - | - | [ |
FAM | 东北平原Northeast plain (43°48′ N; 129°10′ E) | 500~600 | 1.0~4.0 | 西门塔尔牛 Simmental | 阉牛Bullock | 43.0 | 52.19 | 44.32/36.65 | [ |
- | - | 1000 | 17.0 | 荷斯坦牛 Holstein cow | 母Female | 58.4 | - | - | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | 指示剂 Indicator | 参考文献 References |
---|---|---|---|---|---|---|---|---|
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 68.8 | Cr2O3 | [ |
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 71.8 | TiO2 | [ |
TTS | 内蒙古Inner Mongolia (43°39′ N; 116°43′ E) | 296 | 1.4 | 蒙古羊Mongolian sheep | 母Female | 56.3 | TiO2 | [ |
SBS | 法国雷恩市Rennes, France (48°11′ N; 1°71′ W) | 630 | 10.0 | 荷斯坦奶牛Holstein cow | 母Female | 72.6 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 83.0 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 81.0 | TiO2 | [ |
SSF | 澳大利亚棉花山Cotton hill, Australia (27°28′ S; 153°2′ E) | 1153 | 20.5 | 美利奴×多塞特Merino×Dorset | 公Male | 68.2 | Cr-EDTA | [ |
EBF | 西班牙萨拉戈萨Zaragoza, Spain (43°21′ N; -6°53′ W) | 300~800 | 10.0~25.0 | 荷斯坦×弗里赛Holstein×Frisai | 公Male | 72.0 | Cr2O3 | [ |
Table 4 Determination of nutrient digestibility of animals by exogenous indicator method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | 指示剂 Indicator | 参考文献 References |
---|---|---|---|---|---|---|---|---|
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 68.8 | Cr2O3 | [ |
EBF | 巴西Brazil (23°32′ S; 46°37′ W) | 1000 | 15.0~28.0 | 荷斯坦奶牛Holstein cow | 母Female | 71.8 | TiO2 | [ |
TTS | 内蒙古Inner Mongolia (43°39′ N; 116°43′ E) | 296 | 1.4 | 蒙古羊Mongolian sheep | 母Female | 56.3 | TiO2 | [ |
SBS | 法国雷恩市Rennes, France (48°11′ N; 1°71′ W) | 630 | 10.0 | 荷斯坦奶牛Holstein cow | 母Female | 72.6 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 83.0 | Cr2O3 | [ |
TSS | 墨西哥Mexico (19°24′ N; 99°9′ W) | 800~1000 | 10.0~26.0 | Pelibuey羊Pelibuey sheep | - | 81.0 | TiO2 | [ |
SSF | 澳大利亚棉花山Cotton hill, Australia (27°28′ S; 153°2′ E) | 1153 | 20.5 | 美利奴×多塞特Merino×Dorset | 公Male | 68.2 | Cr-EDTA | [ |
EBF | 西班牙萨拉戈萨Zaragoza, Spain (43°21′ N; -6°53′ W) | 300~800 | 10.0~25.0 | 荷斯坦×弗里赛Holstein×Frisai | 公Male | 72.0 | Cr2O3 | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | OMD (%) | 参考文献 References |
---|---|---|---|---|---|---|---|
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | Toronke绵羊Toronke sheep | - | 59.0 | [ |
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | 瘤牛Zebu | - | 65.0 | [ |
EBF | 让布卢Gembloux (53°32′ N; 4°40′ E) | 600.0 | 7.2~25.0 | 荷斯坦奶牛Holstein cow | 母Female | 69.8 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 25.0 | Martinik羊Martinik sheep | 母Female | 64.4 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 15.3 | 克里奥尔牛Creole cow | - | 64.0 | [ |
WFG | 法国农科院试验农场Institut Nationale de la Recherche Agronomigue (43°55′ N; 3°5′ E) | 775.1 | 10.5 | Romane羊Romane sheep | 母Female | 59.5 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 56.4 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 59.0 | [ |
Table 5 Determination of nutrient digestibility of animals by NIRS method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | OMD (%) | 参考文献 References |
---|---|---|---|---|---|---|---|
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | Toronke绵羊Toronke sheep | - | 59.0 | [ |
TDB | 塞内加尔Senegal (15°58′ N; 15°10′ W) | 300.0 | 29.0 | 瘤牛Zebu | - | 65.0 | [ |
EBF | 让布卢Gembloux (53°32′ N; 4°40′ E) | 600.0 | 7.2~25.0 | 荷斯坦奶牛Holstein cow | 母Female | 69.8 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 25.0 | Martinik羊Martinik sheep | 母Female | 64.4 | [ |
TXF | 加勒比Caribbean (16°17′ N; 61°31′ W) | 1116.0 | 15.3 | 克里奥尔牛Creole cow | - | 64.0 | [ |
WFG | 法国农科院试验农场Institut Nationale de la Recherche Agronomigue (43°55′ N; 3°5′ E) | 775.1 | 10.5 | Romane羊Romane sheep | 母Female | 59.5 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 56.4 (DMD) | [ |
TSS | 卡梅尔山脊Carmel ridge (32°32′ N; 34°52′ E) | 600.0 | - | 大马士革山羊Damascene goat | - | 59.0 | [ |
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 900.0 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 40.10 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 羊Sheep | 阉羊 Wether | 75.50 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 牛Cow | - | 74.70 | - | - | [ |
TRF | 巴伊亚Bahia (8°6′ S; 37°5′ W) | 1950.0 | 24.5 | 波尔山羊 Boer goat | - | 59.90 (OMD) | - | - | [ |
TCG | 爱尔兰Ireland (52°9′ N; 8°15′ W) | 1000.0~1200.0 | 14.5 | 羊Sheep | 公Male | 76.50 | - | 76.90/63.30 | [ |
- | - | 89.0 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 79.40 | - | - | [ |
FAM | 西藏Tibet (29°46′ N; 94°44′ E) | 361.6 | 0.6~3.8 | 高山美利奴 Alpine Merino | 公Male | 62.94 | 84.95 | 60.70/64.08 | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 66.30 | - | - | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 49.40 | - | - | [ |
Table 6 Determination of nutrient digestibility of animals by in vitro gas production method
类型 Type | 地点 Site | AMP (mm) | AMT (℃) | 家畜品种 Breeds | 性别 Gender | DMD (%) | CPD (%) | NDF/ADF (%) | 参考文献References |
---|---|---|---|---|---|---|---|---|---|
TSS | 拉潘帕Rapanpa (36°46′ S; 64°16′ W) | 900.0 | 10.0~26.0 | Pampinta羊 Pampinta sheep | 公Male | 40.10 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 羊Sheep | 阉羊 Wether | 75.50 | - | - | [ |
TCG | 爱尔兰Ireland (53°23′ N; 8°6′ W) | 750.0~1000.0 | 15.5 | 牛Cow | - | 74.70 | - | - | [ |
TRF | 巴伊亚Bahia (8°6′ S; 37°5′ W) | 1950.0 | 24.5 | 波尔山羊 Boer goat | - | 59.90 (OMD) | - | - | [ |
TCG | 爱尔兰Ireland (52°9′ N; 8°15′ W) | 1000.0~1200.0 | 14.5 | 羊Sheep | 公Male | 76.50 | - | 76.90/63.30 | [ |
- | - | 89.0 | 8.3 | 湖羊×小尾寒羊Hu sheep×Small-tailed Han sheep | 公Male | 79.40 | - | - | [ |
FAM | 西藏Tibet (29°46′ N; 94°44′ E) | 361.6 | 0.6~3.8 | 高山美利奴 Alpine Merino | 公Male | 62.94 | 84.95 | 60.70/64.08 | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 66.30 | - | - | [ |
- | - | 450.0 | 17.5 | 牛Cow | 公Male | 49.40 | - | - | [ |
家畜种类Breeds | 预测方程Prediction equation | R2 | 参考文献References |
---|---|---|---|
杂交公羊Crossbred rams | 0.956 | [ | |
特塞尔绵羊Texel sheep | 0.144 | [ | |
藏羊Tibetan sheep | 0.660 | [ | |
甘肃高山细毛羊 Gansu alpine fine-wool sheep | 0.701 | [ | |
马Horse | 0.878 | [ | |
奶牛Cow | 0.640 | [ | |
绵羊Sheep | 0.380 | [ |
Table 7 Prediction of nutrient digestibility of animals by forage quality
家畜种类Breeds | 预测方程Prediction equation | R2 | 参考文献References |
---|---|---|---|
杂交公羊Crossbred rams | 0.956 | [ | |
特塞尔绵羊Texel sheep | 0.144 | [ | |
藏羊Tibetan sheep | 0.660 | [ | |
甘肃高山细毛羊 Gansu alpine fine-wool sheep | 0.701 | [ | |
马Horse | 0.878 | [ | |
奶牛Cow | 0.640 | [ | |
绵羊Sheep | 0.380 | [ |
测定方法 Determination method | 适用性Applicability | 准确性Accuracy | 成本Cost | 尺度Scale | 特殊性Particularity | |||||
---|---|---|---|---|---|---|---|---|---|---|
放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | |
全收粪法Total fecal collection method | ++ | +++ | +++ | +++ | +++ | ++ | + | ++ | 影响放牧行为Affecting grazing behavior | - |
烷烃法Alkane method | +++ | +++ | ++ | +++ | + | + | +++ | ++ | 饲喂烷烃胶囊Feeding alkane capsules | 饲喂烷烃胶囊Feeding alkane capsules |
酸不溶灰分法AIA method | ++ | +++ | + | ++ | ++ | + | ++ | + | 嗜土行为Pedophilic behavior | - |
外源指示剂法Exogenous indicator method | + | ++ | ++ | +++ | ++ | + | ++ | ++ | 饲喂外源指示剂Feeding exogenous indicator | 饲喂外源指示剂Feeding exogenous indicator |
近红外光谱技术NIRS method | ++ | +++ | ++ | +++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
体外产气法In vitro gas production method | ++ | +++ | ++ | ++ | ++ | + | + | +++ | 代表性采食牧草Representative forage samples | - |
牧草品质预测法 Forage quality prediction method | ++ | +++ | + | ++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
气候预测法Climate prediction method | +++ | + | + | + | + | ++ | +++ | + | - | - |
Table 8 Comparison of the methods for determination of nutrient digestibility in grazing animals
测定方法 Determination method | 适用性Applicability | 准确性Accuracy | 成本Cost | 尺度Scale | 特殊性Particularity | |||||
---|---|---|---|---|---|---|---|---|---|---|
放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | 放牧 Grazing | 舍饲 Feeding | |
全收粪法Total fecal collection method | ++ | +++ | +++ | +++ | +++ | ++ | + | ++ | 影响放牧行为Affecting grazing behavior | - |
烷烃法Alkane method | +++ | +++ | ++ | +++ | + | + | +++ | ++ | 饲喂烷烃胶囊Feeding alkane capsules | 饲喂烷烃胶囊Feeding alkane capsules |
酸不溶灰分法AIA method | ++ | +++ | + | ++ | ++ | + | ++ | + | 嗜土行为Pedophilic behavior | - |
外源指示剂法Exogenous indicator method | + | ++ | ++ | +++ | ++ | + | ++ | ++ | 饲喂外源指示剂Feeding exogenous indicator | 饲喂外源指示剂Feeding exogenous indicator |
近红外光谱技术NIRS method | ++ | +++ | ++ | +++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
体外产气法In vitro gas production method | ++ | +++ | ++ | ++ | ++ | + | + | +++ | 代表性采食牧草Representative forage samples | - |
牧草品质预测法 Forage quality prediction method | ++ | +++ | + | ++ | + | + | +++ | +++ | 代表性采食牧草Representative forage samples | - |
气候预测法Climate prediction method | +++ | + | + | + | + | ++ | +++ | + | - | - |
1 | Hou F J, Wang C M, Lou S N, et al. Rangeland productivity in China. Strategic Study of CAE, 2016, 18(1): 80-93. |
侯扶江, 王春梅, 娄珊宁, 等. 我国草原生产力. 中国工程科学, 2016, 18(1): 80-93. | |
2 | Hou F J, Yang Z Y. Effects of grazing of livestock on grassland. Acta Ecologica Sinica, 2006, 26(1): 244-264. |
侯扶江, 杨中艺. 放牧对草地的作用. 生态学报, 2006, 26(1): 244-264. | |
3 | Beecher M, Baumont R, O’donovan M, et al. Effects of harvesting perennial ryegrass at different levels of herbage mass on voluntary intake and in vivo digestibility in sheep. Grass and Forage Science, 2018, 73(2): 553-561. |
4 | Marco M D, Miraglia N, Peiretti P G, et al. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker. Animal, 2012, 6(2): 227-231. |
5 | Ren J Z, Hu Z Z, Hou F J, et al. A grassland classification system and its application in China. The Rangeland Journal, 2008, 30(2): 199-209. |
6 | Ko Y D, Kim J H, Adesogan A T, et al. The effect of replacing rice straw with dry wormwood on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Animal Feed Science & Technology, 2006, 125(1/2): 99-110. |
7 | Hou F J, Nan Z B, Ren J Z. Integrated crop-livestock production system. Acta Prataculturae Sinica, 2009, 18(5): 211-234. |
侯扶江, 南志标, 任继周. 作物-家畜综合生产系统. 草业学报, 2009, 18(5): 211-234. | |
8 | Hou F J. Research on grassland productivity and food safety in China. Beijing: Science Press, 2017. |
侯扶江. 中国草原生产力与食物安全研究. 北京: 科学出版社, 2017. | |
9 | Mayes R W, Lamb C S, Colgrove P M, et al. The use of dosed herbage n-alkanes as markers for the determination of herbage intake. The Journal of Agricultural Science, 1986, 107(1): 161-170. |
10 | Norris K H, Barnes R F, Moore J E, et al. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science, 1976, 43: 889-897. |
11 | Jin Y S, Hou F J. Determination of feed intake of grazing livestock. Chinese Journal of Animal Nutrition, 2020, 32(7): 3012-3030. |
金有顺, 侯扶江. 放牧家畜采食量的测定. 动物营养学报, 2020, 32(7): 3012-3030. | |
12 | Ferri, Carlos M. Comparison of four techniques to estimate forage intake by rams grazing on a Panicum coloratum L. pasture. Chilean Journal of Agricultural Research, 2008, 68(3): 248-256. |
13 | Kobayashi N, Hou F J, Tsunekawa A, et al. Effects of substituting alfalfa hay for concentrate on energy utilization and feeding cost of crossbred simmental male calves in Gansu province, China. Grassland Science, 2017, 63(4): 245-254. |
14 | Wang C M, Zhang C, Hou F J, et al. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. Journal of Animal Physiology and Animal Nutrition, 2019, 104(5): 22-31. |
15 | Kobayashi N, Hou F J, Tsunekawa A, et al. Appropriate level of alfalfa hay in diets for rearing Simmental crossbred calves in dryland China. Asian Australasian Journal of Animal Sciences, 2018, 31(12): 1881-1889. |
16 | Liu X L, Liu F Y, Yan T H, et al. Cistanche deserticola addition improves growth, digestibility, and metabolism of sheep fed on fresh forage from alfalfa/tall fescue pasture. Animals, 2020, 10(4): 668. |
17 | Feng X W, Zhang L, Zheng Z C, et al. Study on the forage intake and dry-matter digestion coefficient in the different season in HaiNan QingHai. China Herbivores Science, 2005, 25(5): 18-20. |
冯昕炜, 张力, 郑中朝, 等. 青海海南不同季节牧场放牧绵羊采食量与消化率的研究. 中国草食动物科学, 2005, 25(5): 18-20. | |
18 | Rodrigues L M, Almeida F Q D, Pereira M B, et al. Roughage digestion evaluation in horses with total feces collection and mobile nylon bags. Revista Brasilra De Zootecnia, 2012, 41(2): 341-346. |
19 | Yin G M. Effects of different grassland type on meat performance and quality of grazing sheep. Hohhot: Inner Mongolia Agricultural University, 2009. |
殷国梅. 不同类型草地对放牧绵羊产肉性能及品质的影响. 呼和浩特: 内蒙古农业大学, 2009. | |
20 | De Souza J, Batistel F, Welter K C, et al. Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Tropical Animal Health & Production, 2015, 47(1): 265-268. |
21 | Guzman-Cedillo A E, Corona L, Castrejon-Pineda F, et al. Evaluation of chromium oxide and titanium dioxide as inert markers for calculating apparent digestibility in sheep. Journal of Applied Animal Research, 2017, 45(1): 275-279. |
22 | Jiao T, Wu T C, Wu J P, et al. A comparative study on digestibility and feed intake of Tibetan sheep of different types. Acta Prataculturae Sinica, 2019, 28(5): 102-110. |
焦婷, 吴铁成, 吴建平, 等. 不同类型藏羊消化率与采食量的比较研究. 草业学报, 2019, 28(5): 102-110. | |
23 | Fers S S, Bulang M, Meyer U, et al. Suitability of n-alkanes and chromium (Ⅲ) oxide as digestibility markers in calves at the end of the milk feeding period supplemented with a prebiotic. Animal Nutrition, 2018, 4(1): 84-89. |
24 | Boland H T, Scaglia G, Notter D R, et al. Diet composition and dry matter intake of beef steers grazing tall fescue and alfalfa. Crop Science, 2012, 52(6): 2817. |
25 | Narvaez N, Brosh A, Pittroff W, et al. Use of n-alkanes to estimate seasonal diet composition and intake of sheep and goats grazing in California chaparral. Small Ruminant Research, 2012, 104(1/2/3): 129-138. |
26 | Charmley E, Ouellet D R, Veira D M, et al. Estimation of intake and digestibility of silage by beef steers using a controlled release capsule of n-alkanes. Canadian Journal of Animal Science, 2003, 83(4): 761-768. |
27 | Konagh G, Beck M R, Kelly F, et al. A comparison of methods for estimating forage intake, digestibility, and fecal output in red deer (Cervus elaphus). Journal of Animal Science, 2020, 98(3): 1-7. |
28 | Zhang K D. Study on feeding preference, intake and nutrients digestibility of cashmere goats in Naqu area. Xianyang: Northwest A&F University, 2019. |
张开栋. 那曲地区放牧绒山羊采食习性、采食量和消化率研究. 咸阳: 西北农林科技大学, 2019. | |
29 | Morais J A S, Berchielli T T, Vega A D, et al. The validity of n-alkanes to estimate intake and digestibility in Nellore beef cattle fed a tropical grass (Brachiaria brizantha cv. Marandu). Livestock Science, 2011, 135(2/3): 184-192. |
30 | Castelan-Ortega O A, Estrada-Flores J G, Smith D G, et al. Use of n-alkanes for estimation of voluntary intake and digestibility in donkeys (Equus asinus). Journal of Animal & Feed Sciences, 2007, 16(2): 307-312. |
31 | Ferreira L M M, Oliván M, Rodrigues M A M, et al. Estimation of feed intake by cattle using controlled-release capsules containing n-alkanes or chromium sesquioxide. The Journal of Agricultural Science, 2004, 142(2): 225-234. |
32 | Li C Q, Alatengdalai, Xue S Y. Estimation of herbage intake and digestibility of grazing sheep in Zhenglan Banner of Inner Mongolia by using n-alkanes. Animal Nutrition, 2015, 1(4): 324-328. |
33 | Reis S F, Huntington G, Hopkins M, et al. Herbage selection, intake and digestibility in grazing beef cattle. Livestock Science, 2015, 174: 39-45. |
34 | Schaafstra F J, Doorn D A V, Schonewille J T, et al. Evaluation of ADL, AIA and TiO2 as markers to determine apparent digestibility in ponies fed increasing proportions of concentrate. EAAP Scientific Series, 2012, 132(1): 121-124. |
35 | Lee C, Hristov A N. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. Journal of Dairy Science, 2013, 96(8): 5295-5299. |
36 | Ouyang Y X, Wang Q F, Wang J, et al. Comparison of testing daily intake and dry-matter digestion coefficient of Tibetan goat. Journal of Southwest University for Nationalities (Natural Science Edition), 2000, 26(2): 188-191. |
欧阳熙, 王茜飞, 王杰, 等. 藏山羊放牧采食量及牧草干物质消化率测定方法的比较研究. 西南民族大学学报(自然科学版), 2000, 26(2): 188-191. | |
37 | Chemmam M, Moujahed N, Ouzrout R, et al. Seasonal variations of chemical composition, intake and digestibility by ewes of natural pasture in the south-eastern regions of Algeria. Mediterranean Seminars, 2009, 85: 123-127. |
38 | Min B R, Solaiman S. Prediction of feed intake and its relationships with chemical composition of diets in goats consuming concentrate, bahiagrass pasture and mimosa browse. Open Journal of Animal Sciences, 2015, 5(3): 283-293. |
39 | Jurjanz S, Feidt C, Pérez-Prieto L A, et al. Soil intake of lactating dairy cows in intensive strip grazing systems. Animal, 2012, 6(8): 1350-1359. |
40 | Bergero D, Préfontaine C, Miraglia N, et al. A comparison between the 2N and 4N HCl acid-insoluble ash methods for digestibility trials in horses. Animal, 2009, 3(12): 1728-1732. |
41 | Sun D F. Study of supplementary on grazing beef cattle in Deyeuxia angustifolia meadow Sanjiang plain in four seasons. Harbin: Northeast Agricultural University, 2013. |
孙东峰. 三江平原小叶章草甸放牧肉牛四季补饲的研究. 哈尔滨: 东北农业大学, 2013. | |
42 | Bösing B M, Susenbeth A, Hao J, et al. Effect of concentrate supplementation on herbage intake and live weight gain of sheep grazing a semi-arid grassland steppe of North-Eastern Asia in response to different grazing management systems and intensities. Livestock Science, 2014, 165: 157-166. |
43 | Delagarde R, Pérez-Ramírez E, Peyraud J L, et al. Ytterbium oxide has the same accuracy as chromic oxide for estimating variations of faecal dry matter output in dairy cows fed a total mixed ration at two feeding levels. Animal Feed Science and Technology, 2010, 161(3/4): 121-131. |
44 | Vega A D, Poppi D P. Extent of digestion and rumen condition as factors affecting passage of liquid and digesta particles. The Journal of Agricultural Science, 1997, 128(2): 207-215. |
45 | Alami A Al, Gimeno A, Vega A de, et al. Effects of Cr2O3 labelling dose, and of faeces sampling schedule, on faecal Cr concentration and on digestibility estimation in cattle fed high-concentrate diets. Livestock Science, 2014, 168: 53-59. |
46 | Assouma M H, Lecomte P, Hiernaux P, et al. How to better account for livestock diversity and fodder seasonality in assessing the fodder intake of livestock grazing semi-arid sub-Saharan Africa rangelands. Livestock Science, 2018, 216: 16-23. |
47 | Decruyenaere V, Froidmont E, Bartiaux-Thill N, et al. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Animal Feed Science and Technology, 2012, 173(3/4): 220-234. |
48 | Boval M, Ortega-Jimenez E, Fanchone A, et al. Diet attributes of lactating ewes at pasture using faecal NIRS and relationship to pasture characteristics and milk production. The Journal of Agricultural Science, 2010, 148(4): 477-485. |
49 | Boval M, Coates D B, Lecomte P, et al. Faecal near infrared reflectance spectroscopy (NIRS) to assess chemical composition, in vivo digestibility and intake of tropical grass by Creole cattle. Animal Feed Science & Technology, 2004, 114(1/2/3/4): 19-29. |
50 | Hassoun P, Bastianelli D, Foulquié D, et al. Polyethylene glycol marker measured with NIRS gives a reliable estimate of the rangeland intake of grazing sheep. Animal, 2016, 10(5): 771-778. |
51 | Glasser T, Landau S, Ungar E D, et al. A fecal near-infrared reflectance spectroscopy-aided methodology to determine goat dietary composition in a Mediterranean shrubland. Journal of Animal Science, 2008, 86(6): 1345-1356. |
52 | Garry B, Kennedy E, Baumont R, et al. Comparison of sheep and dairy cows for in vivo digestibility of perennial ryegrass. Animal, 2021, 15(6): 100258. |
53 | Wang C M, Hou F J, Wanapat M, et al. Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars. Asian-Australasian Journal of Animal Sciences, 2020, 33(8): 1242-1251. |
54 | Zhang S M. Research on grazing nutrition monitoring and energy and protein nutrition requirements of apline merino rams. Lanzhou: Lanzhou University, 2019. |
张树淼. 高山美利奴种公羊放牧营养监测及其能量与蛋白质营养需要研究. 兰州: 兰州大学, 2019. | |
55 | Murillo M, Herrera E, Reyes O, et al. Use in vitro gas production technique for assessment of nutritional quality of diets by range steers. African Journal of Agricultural Research, 2011, 6(11): 2522-2526. |
56 | Liu J, Diao Q Y, Zhao Y G, et al. Prediction of nutrient digestibility and energy concentrations using chemical compositions in meat sheep feeds. Acta Veterinaria et Zootechnica Sinica, 2012, 43(8): 1230-1238. |
刘洁, 刁其玉, 赵一广, 等. 肉用绵羊饲料养分消化率和有效能预测模型的研究. 畜牧兽医学报, 2012, 43(8): 1230-1238. | |
57 | Andueza D, Picard F, Pradel P, et al. Reproducibility and repeatability of forage in vivo digestibility and voluntary intake of permanent grassland forages in sheep. Livestock Science, 2011, 140(1/2/3): 42-48. |
58 | Yang C T, Gao P, Hou F J, et al. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai-Tibetan Plateau. Journal of Animal Science, 2018, 96(4): 1140-1149. |
59 | Yao X X. Studies on response mechanism of plant community and livestock to grazing pressure in an alpine meadow. Lanzhou: Gansu Agricultural University, 2019. |
姚喜喜. 高寒草甸植物群落和家畜对放牧压力的响应机制研究. 兰州: 甘肃农业大学, 2019. | |
60 | Martin R W, Andrieu J, Jestin M, et al. Prediction of organic matter digestibility of forages in horses using different chemical, biological and physical methods. EAAP Scientific Series, 2012, 132(1): 83-96. |
61 | Stergiadis S, Allen M, Chen X J, et al. Prediction of nutrient digestibility and energy concentrations in fresh grass using nutrient composition. Journal of Dairy Science, 2015, 98(5): 3257-3273. |
62 | Peripolli V, Ênio R P, Barcellos O J J. Fecal nitrogen to estimate intake and digestibility in grazing ruminants. Animal Feed Science and Technology, 2011, 163(2/3/4): 170-176. |
63 | Grant K, Kreyling J, Dienstbach L F H, et al. Water stress due to increased intra-annual precipitation variability reduced forage yield but raised forage quality of a temperate grassland agriculture. Ecosystems & Environment, 2014, 186: 11-22. |
64 | Cain Iii J W, Gedir J V, Marshal J P, et al. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments. Oikos, 2017, 126(10): 1459-1471. |
65 | Jarillo-Rodríguez J, Castillo-Gallegos E, Avilés R Y L, et al. Milk production, grazing behaviour and biomass quality in native tropical pastures grazed to different stocking rate during two years. Tropical and Subtropical Agroecosystems, 2018, 21(3): 373-386. |
[1] | Ge-xia QIN, Jing WU, Chun-bin LI, Shuai-jie SHEN, Huai-hai LI, Dao-han YANG, Mei-rong JIAO, Qi QI. Sensitivity analysis of WOFOST model crop parameters in different grassland types [J]. Acta Prataculturae Sinica, 2022, 31(5): 13-25. |
[2] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[3] | Hai-yan WU, Ni QU, Zhen QU, Tongsangcuomu, Dawazhuoga, Deyang, Nimazhuoga, Zhao-ming LIU, Yu-shou MA. Comparison of crop yield and forage quality of six oat varieties in Angren County, Shigatse [J]. Acta Prataculturae Sinica, 2022, 31(4): 72-80. |
[4] | Cai-he ZHANG, Chun-bin LI, Jing WU. Definition of Comprehensive Sequential Classification System subclasses in Chinese montane grassland [J]. Acta Prataculturae Sinica, 2022, 31(3): 16-25. |
[5] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[6] | Ya-hui WANG, Wen-jia TANG, Sen LI, Hong-yan ZHAO, Jia-li XIE, Chao MA, Chang-zhen YAN. Change in grassland productivity in Qinghai Province and its driving factors [J]. Acta Prataculturae Sinica, 2022, 31(2): 1-13. |
[7] | Ren-ping ZHANG, Jing GUO, Xiao-fang MA, Wei-yong GUO. Grassland phenology extraction for Xinjiang Province and trend analysis using MODIS data [J]. Acta Prataculturae Sinica, 2022, 31(1): 1-12. |
[8] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
[9] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[10] | Jing-hai WANG, Guang LI, Min-hua YIN, Guang-ping QI, Yan-xia KANG, Yan-lin MA. Effects of regulated deficit irrigation on the soil environment and forage growth of mixed-species forage plantings in China’s high-cold desert area [J]. Acta Prataculturae Sinica, 2022, 31(1): 95-106. |
[11] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[12] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[13] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
[14] | Qing ZHANG, Lu-yao LIU, Xue XU, Peng HAN, Yan-yun ZHAO, Jian-ming NIU, Yong DING. Sustainable development of family ranches in the Inner Mongolian grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 168-181. |
[15] | Gang FU, Jun-hao WANG, Shao-wei LI, Ping HE. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(9): 38-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||