Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 56-66.DOI: 10.11686/cyxb2022181
Previous Articles Next Articles
Le-le SU1(), Yan QIN1(), Zhao-min WANG2, Yong-chao ZHANG1, Wen-hui LIU1
Received:
2022-04-20
Revised:
2022-06-16
Online:
2023-03-20
Published:
2022-12-30
Contact:
Yan QIN
Le-le SU, Yan QIN, Zhao-min WANG, Yong-chao ZHANG, Wen-hui LIU. Soil nutrient and microbial activity responses to nitrogen and phosphorus addition in oats and arrowhead peas in monocrop and mixed sowings[J]. Acta Prataculturae Sinica, 2023, 32(3): 56-66.
处理 Treatment | 尿素Urea | 过磷酸钙Superphosphate | 编号Code |
---|---|---|---|
对照 Control | 0 | 0 | CK |
氮肥 Nitrogenous fertilizer | 200 | 0 | N |
磷肥 Phosphate fertilizer | 0 | 600 | P |
氮磷肥 Nitrogen and phosphorus fertilizers | 200 | 600 | NP |
Table 1 Treatments included in the study (kg·hm-2)
处理 Treatment | 尿素Urea | 过磷酸钙Superphosphate | 编号Code |
---|---|---|---|
对照 Control | 0 | 0 | CK |
氮肥 Nitrogenous fertilizer | 200 | 0 | N |
磷肥 Phosphate fertilizer | 0 | 600 | P |
氮磷肥 Nitrogen and phosphorus fertilizers | 200 | 600 | NP |
土壤胞外酶 Soil extracellular enzymes | 缩写 Abbreviations | 反应底物 Substrates |
---|---|---|
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖苷4-methylumbelliferyl-β-D-glucopyranoside |
N-乙酰-β-D-氨基葡萄糖苷酶 N-acetyl-β-D-glucosaminidase | NAG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖酸苷 4-methylumbelliferyl-β-D-glucosaminide |
亮氨酸氨基肽酶Leucine aminopeptidase | LAP | L-亮氨酸-7-氨基-4-盐酸甲基香豆素L-leucine-7-amido-4-methylcoumarin hydrochloride |
碱性磷酸酶Alkaline phosphatase | AP | 4-甲基伞形酮酰-磷酸酯 4-methylumbelliferyl-phosphate |
Table 2 The abbreviations, types and substrates of soil extracellular enzyme
土壤胞外酶 Soil extracellular enzymes | 缩写 Abbreviations | 反应底物 Substrates |
---|---|---|
β-1,4-葡萄糖苷酶 β-1,4-glucosidase | BG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖苷4-methylumbelliferyl-β-D-glucopyranoside |
N-乙酰-β-D-氨基葡萄糖苷酶 N-acetyl-β-D-glucosaminidase | NAG | 4-甲基伞形酮酰-β-D-吡喃葡萄糖酸苷 4-methylumbelliferyl-β-D-glucosaminide |
亮氨酸氨基肽酶Leucine aminopeptidase | LAP | L-亮氨酸-7-氨基-4-盐酸甲基香豆素L-leucine-7-amido-4-methylcoumarin hydrochloride |
碱性磷酸酶Alkaline phosphatase | AP | 4-甲基伞形酮酰-磷酸酯 4-methylumbelliferyl-phosphate |
指标Index | 处理Treatment | 燕麦Oat | 箭筈豌豆Common vetch | 燕×箭1︰1 Oat and common vetch 1︰1 mixture |
---|---|---|---|---|
SMBC︰SMBN | CK | 5.760±0.429a | 6.092±0.052a | 5.365±0.261b |
N | 4.741±0.389b | 5.712±0.306a | 8.404±0.324a | |
P | 6.115±0.037a | 5.611±0.193a | 5.501±0.322b | |
NP | 6.146±0.027a | 4.134±0.145b | 5.558±0.174b | |
SMBC︰SMBP | CK | 53.750±2.014b | 40.831±5.467a | 38.391±2.258a |
N | 35.621±1.409c | 42.445±1.556a | 42.897±2.290a | |
P | 83.144±6.416a | 40.346±4.016a | 37.672±1.936a | |
NP | 60.896±3.777b | 22.467±2.531b | 27.479±2.978b | |
SMBN︰SMBP | CK | 9.382±0.344b | 6.688±0.838a | 7.186±0.523a |
N | 7.580±0.458c | 7.448±0.197a | 5.124±0.369ab | |
P | 13.586±0.980a | 7.160±0.471a | 6.855±0.080a | |
NP | 9.914±0.661b | 5.405±0.433b | 4.921±0.379b |
Table 3 Stoichiometric ratios of soil microbial biomass of carbon, nitrogen and phosphorus under different nitrogen and phosphorus additions
指标Index | 处理Treatment | 燕麦Oat | 箭筈豌豆Common vetch | 燕×箭1︰1 Oat and common vetch 1︰1 mixture |
---|---|---|---|---|
SMBC︰SMBN | CK | 5.760±0.429a | 6.092±0.052a | 5.365±0.261b |
N | 4.741±0.389b | 5.712±0.306a | 8.404±0.324a | |
P | 6.115±0.037a | 5.611±0.193a | 5.501±0.322b | |
NP | 6.146±0.027a | 4.134±0.145b | 5.558±0.174b | |
SMBC︰SMBP | CK | 53.750±2.014b | 40.831±5.467a | 38.391±2.258a |
N | 35.621±1.409c | 42.445±1.556a | 42.897±2.290a | |
P | 83.144±6.416a | 40.346±4.016a | 37.672±1.936a | |
NP | 60.896±3.777b | 22.467±2.531b | 27.479±2.978b | |
SMBN︰SMBP | CK | 9.382±0.344b | 6.688±0.838a | 7.186±0.523a |
N | 7.580±0.458c | 7.448±0.197a | 5.124±0.369ab | |
P | 13.586±0.980a | 7.160±0.471a | 6.855±0.080a | |
NP | 9.914±0.661b | 5.405±0.433b | 4.921±0.379b |
指标Index | 处理Treatment | 燕麦Oat | 箭筈豌豆Common vetch | 燕×箭1︰1 Oat and common vetch 1︰1 mixture |
---|---|---|---|---|
土壤C︰N酶活性比 lnBG︰ln(NAG+LAP) | CK | 0.789±0.003b | 0.774±0.004b | 0.789±0.004a |
N | 0.859±0.005a | 0.847±0.014a | 0.828±0.014a | |
P | 0.771±0.002b | 0.771±0.019b | 0.793±0.008a | |
NP | 0.783±0.009b | 0.777±0.015b | 0.776±0.008a | |
土壤C︰P酶活性比 lnBG︰lnAP | CK | 0.864±0.004b | 0.834±0.008b | 0.853±0.003a |
N | 0.880±0.002a | 0.896±0.013a | 0.873±0.009a | |
P | 0.815±0.004c | 0.825±0.017b | 0.816±0.008b | |
NP | 0.817±0.004c | 0.810±0.018b | 0.853±0.006a | |
土壤N︰P酶活性比 ln(NAG+LAP)︰lnAP | CK | 1.095±0.006a | 1.077±0.005a | 1.082±0.010a |
N | 1.024±0.004c | 1.057±0.007b | 1.054±0.008b | |
P | 1.058±0.003b | 1.070±0.004a | 1.030±0.001c | |
NP | 1.042±0.008b | 1.042±0.000c | 1.098±0.004a |
Table 4 Soil extracellular enzyme stoichiometric ratios under different nitrogen and phosphorus additions
指标Index | 处理Treatment | 燕麦Oat | 箭筈豌豆Common vetch | 燕×箭1︰1 Oat and common vetch 1︰1 mixture |
---|---|---|---|---|
土壤C︰N酶活性比 lnBG︰ln(NAG+LAP) | CK | 0.789±0.003b | 0.774±0.004b | 0.789±0.004a |
N | 0.859±0.005a | 0.847±0.014a | 0.828±0.014a | |
P | 0.771±0.002b | 0.771±0.019b | 0.793±0.008a | |
NP | 0.783±0.009b | 0.777±0.015b | 0.776±0.008a | |
土壤C︰P酶活性比 lnBG︰lnAP | CK | 0.864±0.004b | 0.834±0.008b | 0.853±0.003a |
N | 0.880±0.002a | 0.896±0.013a | 0.873±0.009a | |
P | 0.815±0.004c | 0.825±0.017b | 0.816±0.008b | |
NP | 0.817±0.004c | 0.810±0.018b | 0.853±0.006a | |
土壤N︰P酶活性比 ln(NAG+LAP)︰lnAP | CK | 1.095±0.006a | 1.077±0.005a | 1.082±0.010a |
N | 1.024±0.004c | 1.057±0.007b | 1.054±0.008b | |
P | 1.058±0.003b | 1.070±0.004a | 1.030±0.001c | |
NP | 1.042±0.008b | 1.042±0.000c | 1.098±0.004a |
1 | Fan Z Z, Wang X, Wang C, et al. Effect of nitrogen and phosphorus addition on soil enzyme activities: A meta-analysis. Chinese Journal of Applied Ecology, 2018, 29(4): 1266-1272. |
范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响. 应用生态学报, 2018, 29(4): 1266-1272. | |
2 | Shi Y, Wang Z Q, Zhang X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia. Acta Ecologica Sinica, 2014, 34(17): 4943-4949. |
施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响. 生态学报, 2014, 34(17): 4943-4949. | |
3 | Xu G, Lu K, Li Z, et al. Impact of soil and water conservation on soil organic carbon content in a catchment of the middle Han River, China. Environmental Earth Sciences, 2015, 74(8): 6503-6510. |
4 | Guo F H. The study of adaptation ability and strategy of three types of plants in grassland in low-phosphorus environment. Beijing: Chinese Academy of Agricultural Sciences, 2017. |
郭丰辉. 天然草原三种类型植物对低磷环境的适应能力及适应策略研究. 北京: 中国农业科学院, 2017. | |
5 | Li Y. Research on nutrient content and soil microbial biomass of two types forest in the Xiao Xing’an Mountains. Harbin: Northeast Forestry University, 2015. |
李莹. 小兴安岭两种典型林型火后土壤养分和土壤微生物生物量的研究. 哈尔滨: 东北林业大学, 2015. | |
6 | Zhou X M. Kobresia meadow in China. Beijing: Science Press, 2001. |
周兴民. 中国嵩草草甸. 北京: 科学出版社, 2001. | |
7 | Wang M, Yan Z R, Zhao Z W, et al. Variation characteristics of specific soil enzyme activities during vegetation succession on the loess plateau. Journal of Soil and Water Conservation, 2021, 35(5): 181-187. |
王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征. 水土保持学报, 2021, 35(5): 181-187. | |
8 | Zhou S J, Luo J N, Liu Z M, et al. The effects of Vicia sativa planting density on soil microbial nutrient metabolism. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
周诗晶, 罗佳宁, 刘仲淼, 等. 箭筈豌豆种植密度对土壤微生物养分代谢的影响. 草业学报, 2021, 30(10): 63-72. | |
9 | Luan L L, Liu E Y, Gu X, et al. Effects of litter manipulation and nitrogen addition on soil ecoenzymatic stoichiometry in a mixed pine and oak forest. Acta Ecologica Sinica, 2020, 40(24): 9220-9233. |
栾历历, 刘恩媛, 顾新, 等. 凋落物处理和氮添加对松栎混交林土壤生态酶化学计量的影响. 生态学报, 2020, 40(24): 9220-9233. | |
10 | Sun J, Liang J X, Kong D J, et al. Effects of biochar and straw on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil. Acta Prataculturae Sinica, 2021, 30(11): 29-39. |
孙娇, 梁锦秀, 孔德杰, 等. 生物炭与秸秆还田对风沙土壤-微生物-胞外酶化学计量特征的影响. 草业学报, 2021, 30(11): 29-39. | |
11 | Wang H. Effects of application of organic and inorganic fertilizers on vegetable δ15N and soil microbial properties. Tai’an: Shandong Agricultural University, 2012. |
王会. 有机无机肥配施对蔬菜δ15N和土壤生物学性质的影响. 泰安: 山东农业大学, 2012. | |
12 | Verchot L V, Borelli T. Application of para-nitrophenol(pNP)enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 2004, 37(4): 625-633. |
13 | Zhai J Y. Effects of nitrogen and phosphorus addition on soil microbes and stoichiometric characteristic of alpine meadow in Qinghai-Tibet Plateau. Xianyang: University of Chinese Academy of Sciences(Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources), 2020. |
翟珈莹. 氮磷添加对青藏高原高寒草地土壤微生物及化学计量特征的影响. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2020. | |
14 | Yang S, Malhi S, Li F, et al. Long-term effects of manure and fertilization on soil organic matter and quality parameters of a calcareous soil in NW China. Journal of Plant Nutrition and Soil Science, 2007, 170(2): 234-243. |
15 | Chen C, Xu Z, Hughes J. Effects of nitrogen fertilization on soil nitrogen pools and microbial properties in a hoop pine (Araucaria cunninghamii) plantation in southeast Queensland, Australia. Biology Fertility of Soils, 2002, 36(4): 276-283. |
16 | Xu Y C, Shen Q R, Ran W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 89-96. |
徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 89-96. | |
17 | Qiao J, Bi L D, Zhang W J, et al. Effects of long-term chemical fertilization on soil microbial biomass, activity and community in paddy soil in red soil region of China. Soils, 2007, 39(5): 772-776. |
乔洁, 毕利东, 张卫建, 等. 长期施用化肥对红壤性水稻土中微生物生物量、活性及群落结构的影响. 土壤, 2007, 39(5): 772-776. | |
18 | Huang J, Hu B, Qi K, et al. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. European Journal of Soil Biology, 2016, 72: 35-41. |
19 | Cao Z P, Hu C, Ye Z N, et al. Impact of soil fertility maintaining practice on microbial biomass carbon in high production agro-ecosystem in northern China. Acta Ecologica Sinica, 2006, 26(5): 1486-1493. |
曹志平, 胡诚, 叶钟年, 等. 不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响. 生态学报, 2006, 26(5): 1486-1493. | |
20 | Lu L, Li Z P, Che Y P. Effects of different fertilization treatments on soil microbial biomass and enzyme activities in hapli-stagnic anthrosols. Soils, 2006, 38(3): 309-314. |
路磊, 李忠佩, 车玉萍. 不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响. 土壤, 2006, 38(3): 309-314. | |
21 | Guo H, Ye C, Zhang H, et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biology and Biochemistry, 2017, 113(6): 26-34. |
22 | Zhao C, Wang W J, Ruan H H, et al. Effects of nitrogen addition on microbial community structure in topsoil of poplar plantations. Journal of Northeast Forestry University, 2015, 43(6): 83-88. |
赵超, 王文娟, 阮宏华, 等. 氮添加对杨树人工林表层土壤微生物群落结构的影响. 东北林业大学学报, 2015, 43(6): 83-88. | |
23 | Liu W H, Zhang Y J, Shi S L, et al. Soil enzyme activities in alpine naked oat-artificial grassland in response to fertilizer and legume mix levels. Acta Prataculturae Sinica, 2017, 26(1): 23-33. |
刘文辉, 张英俊, 师尚礼, 等. 高寒区施肥和豆科混播水平对燕麦人工草地土壤酶活性的影响. 草业学报, 2017, 26(1): 23-33. | |
24 | Chen D D, Li Q, Chen X, et al. Response of soil microbial biomass C and N, C metabolism characteristics of microbes to grass-legume mixtures of annual artificial grassland in Sanjiangyuan Region. Acta Agrestia Sinica, 2018, 26(5): 1064-1070. |
陈懂懂, 李奇, 陈昕, 等. 三江源农牧交错区土壤微生物碳、氮以及群落碳代谢特征对一年生禾豆混播的响应. 草地学报, 2018, 26(5): 1064-1070. | |
25 | Ma Y, Xu Z H, Zeng Q H, et al. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
马英, 许志豪, 曾巧红, 等. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响. 草业学报, 2021, 30(6): 64-72. | |
26 | Zhang C X, Nan Z B. Research progress of soil microbial biomass in China. Pratacultural Science, 2010, 27(6): 50-57. |
张成霞, 南志标. 土壤微生物生物量的研究进展. 草业科学, 2010, 27(6): 50-57. | |
27 | Wang C J. The characteristics of the black soil C︰N︰P evolution based on ecological stoichiometry. Beijing: Chinese Academy of Agricultural Sciences, 2018. |
王传杰. 基于生态化学计量学的黑土C︰N︰P比的演变特征. 北京: 中国农业科学院, 2018. | |
28 | Heuch C, Weig A, Spohn M. Soil microbial biomass C∶N∶P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 2015, 85: 119-129. |
29 | Luo J L, Zhao Y H, Yu J G, et al. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582-1591. |
罗佳琳, 赵亚慧, 于建光, 等. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响. 中国生态农业学报, 2021, 29(9): 1582-1591. | |
30 | Cai X B, Qian C, Zhang Y, et al. Microbial characteristics of straw-amended degraded soils in central Tibet and its effect on soil fertility. Chinese Journal of Applied Ecology, 2004(3): 463-468. |
蔡晓布, 钱成, 张元, 等. 西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响. 应用生态学报, 2004(3): 463-468. | |
31 | Hessen D O, Agren G I, Anderson T R, et al. Carbon sequestration in ecosystems: The role of stoichiometry. Ecology, 2004, 85(5): 1179-1192. |
32 | Vries F T D, Hofflang E, Eekeren N V, et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, 2006, 38(8): 2092-2103. |
33 | Wu K S, Che Z X, Bao X G, et al. Analysis of soil fertility and crop yield characteristics following long-term straw return to the field in a Hexi Oasis irrigated area. Acta Prataculturae Sinica, 2021, 30(12): 59-70. |
吴科生, 车宗贤, 包兴国, 等. 河西绿洲灌区灌漠土长期秸秆还田土壤肥力和作物产量特征分析. 草业学报, 2021, 30(12): 59-70. | |
34 | Zhou J C, Liu X F, Zheng Y, et al. Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions. Acta Ecologica Sinica, 2017, 37(1): 127-135. |
周嘉聪, 刘小飞, 郑永, 等.氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响. 生态学报, 2017, 37(1): 127-135. | |
35 | Lydia P O, Peter M V. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 2000, 49(2): 175-190. |
36 | Bell C W, Acosta-Martinez V, McIntyre N E, et al. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecology, 2009, 58(4): 827-842. |
37 | Dilly O, Nannipieri P. Response of ATP content, respiration rate and enzyme activities in an arable and a forest soil to nutrient additions. Biology and Fertility of Soils, 2001, 34(1): 64-72. |
38 | Ma Y C, Zhu B, Sun Z Z, et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch. Journal of Plant Ecology, 2013, 7(3): 240-249. |
39 | Sinsabaugh R L, Shah J J F. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology Evolution Systematics, 2012, 43(1): 313-343. |
40 | Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biology and Biochemistry, 2003, 35(4): 549-563. |
41 | Zhang X X, Yang L M, Chen Z, et al. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas.Acta Ecologica Sinica, 2018, 38(16): 5828-5836. |
张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 2018, 38(16): 5828-5836. |
[1] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
[2] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[3] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[4] | Shi-jing ZHOU, Jia-ning LUO, Zhong-miao LIU, Chao DONG, Yan QIN, Shu-juan WU, Hong-jun GAN, Fei XIE, Guang-hui ZHUANG, Bing-zhe FU, De-cao NIU. The effects of Vicia sativa planting density on soil microbial nutrient metabolism [J]. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
[5] | BAO Gen-sheng, SONG Mei-ling, WANG Yu-qin, YIN Ya-li, WANG Hong-sheng. Effects of grazing exclosure and herbicide on soil physical-chemical properties and microbial biomass of Stellera chamaejasme patches in degraded grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 63-72. |
[6] | WANG Li-na, LUO Jiu-fu, YANG Mei-xiang, ZHANG Li, LIU Xue-min, DENG Dong-zhou, ZHOU Jin-xing. Effects of nitrogen addition on the soil microbial biomass C and microbial biomass N in degraded alpine grassland in Zoige County [J]. Acta Prataculturae Sinica, 2019, 28(7): 38-48. |
[7] | WANG Di, PANG Huan-cheng, LI Da, CHEN Jin-qiang, XIN Xiao-ping, XU Li-jun, TANG Xue-juan, GUO Ming-ying, ZHU Shu-sheng. Response of microbial C, N and respiration characteristics to sowing rates in alfalfa cultivation grasslands in Hulunber, Inner Mongolia [J]. Acta Prataculturae Sinica, 2018, 27(3): 135-143. |
[8] | YANG Wen-hang, REN Qing-shui, QIN Hong, SONG Hong, YUAN Zhong-xun, LI Chang-xiao. Characteristics of soil microbial biomass carbon, nitrogen, and phosphorus under Cynodon dactylon vegetation at different altitudes in the hydro-fluctuation belt of the Three Gorges Dam Reservoir [J]. Acta Prataculturae Sinica, 2018, 27(2): 57-68. |
[9] | LIU Dong, CUI Zheng-jun, GAO Yu-hong, YAN Bin, ZHANG Zhong-kai, WU Bing. Effect of rotation sequence on stability of soil organic carbon in dry-land oil flax [J]. Acta Prataculturae Sinica, 2018, 27(12): 45-57. |
[10] | Saiyaremu·Halifu, Aikebaier·Yilahong, SONG Rui-Qing, Abudousaimaiti·Naihemaiti. Correlations between soil microbial biomass and soil physical and chemical properties in grassland in Chabuchaer County [J]. Acta Prataculturae Sinica, 2017, 26(9): 36-44. |
[11] | WEI Jia-Bin, ZHOU Ling-Hong, XU Hua-Qin, TANG Qi-Yuan, FU Zhi-Qiang, CHENG Xiao-Lin, XIAO Zhi-Xiang, TANG Jian-Wu. Effects of forage planting and chickens on net carbon exchange and transformation of soil active carbon and nitrogen at different layers in paddy fields in south China in winter [J]. Acta Prataculturae Sinica, 2017, 26(7): 138-146. |
[12] | LIU Jing, ZHAO Yan, ZHANG Qiao-Ming, XU Shao-Jun. Effects of land use on soil microbial biomass and community structure in the loess hill region of west Henan [J]. Acta Prataculturae Sinica, 2016, 25(8): 36-47. |
[13] | JIANG Yong-Mei, YAO Tuo, LI Jian-Hong, CHEN Long, LIU Huan, LIU Ting, TIAN Yong-Liang, ZHANG Biao, GAO Ya-Min. Effects of different management measures on soil microbial biomass in an alpine meadow [J]. Acta Prataculturae Sinica, 2016, 25(12): 35-43. |
[14] | ZHOU Ling-Hong, WEI Jia-Bin, TANG Xian-Liang, CHENG Xiao-Lin, XIAO Zhi-Xiang, XU Hua-Qin, TANG Jian-Wu. Effects of winter green manure crops with and without chicken rearing on microbial biomass and effective carbon and nitrogen pools in a double-crop rice paddy soil [J]. Acta Prataculturae Sinica, 2016, 25(11): 103-114. |
[15] | LU Hu, YAO Tuo, LI Jian-Hong, MA Wen-Bin, CHAI Xiao-Hong. Vegetation and soil microorganism characteristics of degraded grasslands [J]. Acta Prataculturae Sinica, 2015, 24(5): 34-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||