Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (8): 40-47.DOI: 10.11686/cyxb2022442
Previous Articles Next Articles
Xin-yi YANG1(), Fu-qiang YANG2, Xu-jiao ZHOU3, Ming-jun WANG4, Hai-xia HUANG1, Song-song LU1, Xiao-wei ZHANG1, Wei-bo DU1, Xu-hu WANG1, Qing TIAN1,5, An ZHAO6, Wan-peng HE1, Xiao-lei ZHOU1(
)
Received:
2022-11-09
Revised:
2022-12-08
Online:
2023-08-20
Published:
2023-06-16
Contact:
Xiao-lei ZHOU
Xin-yi YANG, Fu-qiang YANG, Xu-jiao ZHOU, Ming-jun WANG, Hai-xia HUANG, Song-song LU, Xiao-wei ZHANG, Wei-bo DU, Xu-hu WANG, Qing TIAN, An ZHAO, Wan-peng HE, Xiao-lei ZHOU. Mechanism of herbaceous community assembly in a burned area of Picea asperata-Abies fargesii forest on the northeastern margin of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2023, 32(8): 40-47.
标识ID | 组分1 Group 1 | 组分2 Group 2 | 扩散-生态位连续体指数DNCI | DNCI的置信区间CI.DNCI | DNCI的标准差S.DNCI |
---|---|---|---|---|---|
5 a-Climax | 5 a | Climax | -22.6169 | 2.2968 | 1.1484 |
15 a-Climax | 15 a | Climax | -21.7507 | 1.3716 | 0.6858 |
23 a-Climax | 23 a | Climax | -8.2594 | 0.9296 | 0.4648 |
Table 1 DNCI between herbaceous plant community of burned site and Climax at different succession stages
标识ID | 组分1 Group 1 | 组分2 Group 2 | 扩散-生态位连续体指数DNCI | DNCI的置信区间CI.DNCI | DNCI的标准差S.DNCI |
---|---|---|---|---|---|
5 a-Climax | 5 a | Climax | -22.6169 | 2.2968 | 1.1484 |
15 a-Climax | 15 a | Climax | -21.7507 | 1.3716 | 0.6858 |
23 a-Climax | 23 a | Climax | -8.2594 | 0.9296 | 0.4648 |
标识 ID | 分组 Group | 随机性平均强度 ST.i.ruzicka | 标准化随机率 MST.i.ruzicka |
---|---|---|---|
5 a-Climax | 5 a | 0.7921 | 0.9165 |
Climax | 0.8861 | 1.0000 | |
15 a-Climax | 15 a | 0.7873 | 0.9026 |
Climax | 0.8169 | 0.6460 | |
23 a-Climax | 23 a | 0.6270 | 0.5558 |
Climax | 0.8300 | 0.9070 |
Table 2 MST value of herbaceous plant community in burned site and Climax at different succession stages
标识 ID | 分组 Group | 随机性平均强度 ST.i.ruzicka | 标准化随机率 MST.i.ruzicka |
---|---|---|---|
5 a-Climax | 5 a | 0.7921 | 0.9165 |
Climax | 0.8861 | 1.0000 | |
15 a-Climax | 15 a | 0.7873 | 0.9026 |
Climax | 0.8169 | 0.6460 | |
23 a-Climax | 23 a | 0.6270 | 0.5558 |
Climax | 0.8300 | 0.9070 |
1 | Pan J, Zhang Y, Li X S. Willingness to pay for forest cultural value conservation and its evaluation-Case of Diebu County in Gansu Province. Journal of Arid Land Resources and Environment, 2017, 31(9): 32-37. |
潘静, 张颖, 李秀山. 森林文化价值保护支付意愿及其评估研究——以甘肃省迭部县为例. 干旱区资源与环境, 2017, 31(9): 32-37. | |
2 | Ferreira P M A, Ely C V, Beal-Neves M. Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora, 2021, 285. https://doi.org/10.1016/j.flora.2021. |
3 | Zhao A, Zhou X L, Tian Q, et al. Analysis of shrub community and species diversity in burned area of Picea asperata-Abies fabri forest in the northern slope of Dieshan mountains. Journal of West China Forestry Science, 2021, 50(5): 90-100. |
赵安, 周晓雷, 田青, 等. 迭山北坡云冷杉林火烧迹地灌木群落特征和物种多样性分析. 西部林业科学, 2021, 50(5): 90-100. | |
4 | Zhao A, Tian Q, Zhou X L, et al. Interspecific association of shrub species in burned site of Picea asperata-Abies fabri forest on the northern slope of Dieshan Mountains. Forest Research, 2022, 35(2): 163-170. |
赵安, 田青, 周晓雷, 等. 迭山北坡云冷杉林火烧迹地灌木群落种间关联性. 林业科学研究, 2022, 35(2): 163-170. | |
5 | Zhou X L, Yan Y E, Zhang J, et al. Vegetation community structure and diversity in a burned area of Picea asperata-Abies fabri forest on different aspects on the northeastern margin of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2022, 31(5): 144-155. |
周晓雷, 闫月娥, 张婧, 等. 青藏高原东北边缘云杉-冷杉林火烧迹地不同坡向植物群落结构与多样性研究. 草业学报, 2022, 31(5): 144-155. | |
6 | Lu G, Huang H X, Zhou X L, et al. Characteristics of soil organic carbon and changes of enzyme activities in burned area of spruce-fir forests in Diebu forest region. Acta Agrestia Sinica, 2022, 30(4): 943-949. |
陆刚, 黄海霞, 周晓雷, 等. 迭部林区云冷杉林火烧迹地土壤有机碳及酶活性变化特征. 草地学报, 2022, 30(4): 943-949. | |
7 | Zhao A, Zhou X L, Shi R J, et al. Niche characteristics of population in shrub communities in spruce-fir forest burned areas on the northeastern margin of Qinghai-Tibetan Plateau. Forest Research, 2022, 35(5): 1-10. |
赵安, 周晓雷, 史瑞锦, 等. 青藏高原东北边缘云-冷杉林火烧迹地灌木群落种群生态位特征. 林业科学研究, 2022, 35(5): 1-10. | |
8 | Meng F F, Vilmi A, Gibert C, et al. Dispersal-niche continuum index: A quantitative metric of community assembly processes//Microbiome Protocols eBook. Bio-101, 2021. DOI: 10.21769/BioProtoc.2103988. |
9 | Lhotsky B, Kovacs B, Onodi G, et al. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. Journal of Ecology, 2016, 104(2): 507-517. |
10 | Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology. Annual Reviews Ecological Evolutionary Systematics, 2002, 33(1): 475-505. |
11 | Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 2008, 322(5901): 580-582. |
12 | Gotelli N J, Mcgill B J. Null versus neutral models: what’s the difference? Ecography, 2006, 29(5): 793-800. |
13 | Vilmi A, Gibert C, Escarguel G, et al. Dispersal-niche continuum index: a new quantitative metric for assessing the relative importance of dispersal versus niche processes in community assembly. Ecography, 2020, 44(3): 370-379. |
14 | Ning D L, Yuan M T, Wu L W, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 2020, 11(1): 4717-4728. |
15 | Chen Q L, Hu H W, Yan Z Z, et al. Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2020, 152: 108073. https://doi.org/10.1016/j.soilbio.2020. |
16 | Chesson P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 2000, 31(1): 343-366. |
17 | Adler P B, HilleRisLambers J, Levine J M. A niche for neutrality. Ecology Letters, 2006, 10(2): 95-104. |
18 | Emerson B C, Gillespie R G. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology & Evolution, 2008, 23(11): 619-630. |
19 | Luo Y H, Cadotte M W, Burgess K S, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecology Letters, 2019, 22(9): 1449-1461. |
20 | Murphy S J, Salpeter K, Comita L S. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 2016, 97(8): 2074-2084. |
21 | Gibert C, Escarguel G. PER-SIMPER—A new tool for inferring community assembly processes from taxon occurrences. Global Ecology and Biogeography, 2019, 28(3): 374-385. |
22 | Stegen J C, Lin X J, Fredrickson J K, et al. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 2015, 6. https://doi:10.3389/fmicb.2015.00370. |
23 | Stegen J C, Lin X J, Fredrickson J K, et al. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 2013, 7(11): 2069-2079. |
24 | Letcher S G, Chazdon R L, Andrade A, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(2): 79-87. |
25 | Chust G, Chave J, Condit R, et al. Determinants and spatial modeling of tree β-diversity in a tropical forest landscape in Panama. Journal of Vegetation Science, 2006, 17(1): 83-92. |
26 | Citenberer L, de Bello F, Brathen K A, et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biological Reviews, 2012, 87(1): 111-127. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||