Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (11): 53-64.DOI: 10.11686/cyxb2023011
Previous Articles Next Articles
Zhi-hao ZHU1,2,3(), Chen MENG1,2,3(), Xing WANG1,2,3, Nai-ping SONG1,2,3, Li WANG1,2,3, Miao-miao XU4, Ling-tong DU1,2,3
Received:
2023-01-05
Revised:
2023-03-27
Online:
2023-11-20
Published:
2023-09-27
Contact:
Chen MENG
Zhi-hao ZHU, Chen MENG, Xing WANG, Nai-ping SONG, Li WANG, Miao-miao XU, Ling-tong DU. Geometric distribution, formation, and topological structure of soil aggregates after introduction of Caragana korshinskii on the desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(11): 53-64.
样地 Plot | 柠条引入情况 C. korshinskii introduction situation | 草本情况 Herbaceous condition | 坐标 Coordinate | 海拔 Altitude (m) |
---|---|---|---|---|
M1 | 引入35年Introduced for 35 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.2152′, E 107°30.3382′ | 1519 |
M2 | 引入24年Introduced for 24 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.0330′, E 107°29.7485′ | 1491 |
M3 | 引入14年Introduced for 14 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.1854′, E 107°30.1312′ | 1489 |
M4 | 引入9年Introduced for 9 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.3001′, E 107°29.6180′ | 1497 |
CK | ─ | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.4154′, E 107°29.7912′ | 1511 |
Table 1 Plot fundamental information
样地 Plot | 柠条引入情况 C. korshinskii introduction situation | 草本情况 Herbaceous condition | 坐标 Coordinate | 海拔 Altitude (m) |
---|---|---|---|---|
M1 | 引入35年Introduced for 35 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.2152′, E 107°30.3382′ | 1519 |
M2 | 引入24年Introduced for 24 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.0330′, E 107°29.7485′ | 1491 |
M3 | 引入14年Introduced for 14 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.1854′, E 107°30.1312′ | 1489 |
M4 | 引入9年Introduced for 9 years | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.3001′, E 107°29.6180′ | 1497 |
CK | ─ | 猪毛蒿+狗尾草A. scoparia+S. viridis | N 37°49.4154′, E 107°29.7912′ | 1511 |
样地 Plot | 土壤深度 Soil depth (cm) | 孔隙度 Porosity (%) | 土壤密度 Soil bulk density (g·m-3) | 稳渗速率 Stable infiltration rate (mm·min-1) | 土壤含水量 Soil moisture content (%) | 土壤颗粒组成 Soil particle composition (%) | ||
---|---|---|---|---|---|---|---|---|
<0.05 mm | 0.05~0.25 mm | >0.25 mm | ||||||
M1 | 0~10 | 0.028±0.016 | 1.307±0.067 | 3.533±0.252 | 11.650±1.876 | 9.53 | 76.28 | 14.19 |
10~20 | 0.042±0.058 | 1.317±0.051 | 3.367±0.322 | 10.053±1.962 | 6.30 | 70.12 | 23.58 | |
M2 | 0~10 | 0.022±0.010 | 1.317±0.012 | 2.667±0.153 | 6.600±4.555 | 9.81 | 68.32 | 21.87 |
10~20 | 0.018±0.007 | 1.273±0.032 | 3.000±0.265 | 7.577±1.746 | 6.12 | 63.15 | 30.73 | |
M3 | 0~10 | 0.018±0.006 | 1.290±0.072 | 2.733±0.058 | 8.853±1.365 | 6.58 | 55.35 | 21.87 |
10~20 | 0.014±0.003 | 1.337±0.012 | 3.000±0.100 | 12.230±2.983 | 7.88 | 59.16 | 30.73 | |
M4 | 0~10 | 0.158±0.006 | 1.440±0.017 | 2.233±0.058 | 9.470±0.259 | 5.35 | 58.32 | 36.33 |
10~20 | 0.013±0.002 | 1.477±0.006 | 2.567±0.208 | 8.837±0.652 | 1.85 | 58.24 | 39.91 | |
CK | 0~10 | 0.016±0.002 | 1.310±0.030 | 2.700±0.200 | 7.980±1.112 | 0.98 | 61.67 | 37.35 |
10~20 | 0.013±0.013 | 1.360±0.010 | 3.200±0.300 | 7.803±0.352 | 1.25 | 50.36 | 48.39 |
Table 2 Basic properties of the soil in the plot
样地 Plot | 土壤深度 Soil depth (cm) | 孔隙度 Porosity (%) | 土壤密度 Soil bulk density (g·m-3) | 稳渗速率 Stable infiltration rate (mm·min-1) | 土壤含水量 Soil moisture content (%) | 土壤颗粒组成 Soil particle composition (%) | ||
---|---|---|---|---|---|---|---|---|
<0.05 mm | 0.05~0.25 mm | >0.25 mm | ||||||
M1 | 0~10 | 0.028±0.016 | 1.307±0.067 | 3.533±0.252 | 11.650±1.876 | 9.53 | 76.28 | 14.19 |
10~20 | 0.042±0.058 | 1.317±0.051 | 3.367±0.322 | 10.053±1.962 | 6.30 | 70.12 | 23.58 | |
M2 | 0~10 | 0.022±0.010 | 1.317±0.012 | 2.667±0.153 | 6.600±4.555 | 9.81 | 68.32 | 21.87 |
10~20 | 0.018±0.007 | 1.273±0.032 | 3.000±0.265 | 7.577±1.746 | 6.12 | 63.15 | 30.73 | |
M3 | 0~10 | 0.018±0.006 | 1.290±0.072 | 2.733±0.058 | 8.853±1.365 | 6.58 | 55.35 | 21.87 |
10~20 | 0.014±0.003 | 1.337±0.012 | 3.000±0.100 | 12.230±2.983 | 7.88 | 59.16 | 30.73 | |
M4 | 0~10 | 0.158±0.006 | 1.440±0.017 | 2.233±0.058 | 9.470±0.259 | 5.35 | 58.32 | 36.33 |
10~20 | 0.013±0.002 | 1.477±0.006 | 2.567±0.208 | 8.837±0.652 | 1.85 | 58.24 | 39.91 | |
CK | 0~10 | 0.016±0.002 | 1.310±0.030 | 2.700±0.200 | 7.980±1.112 | 0.98 | 61.67 | 37.35 |
10~20 | 0.013±0.013 | 1.360±0.010 | 3.200±0.300 | 7.803±0.352 | 1.25 | 50.36 | 48.39 |
林龄 Years | 土壤深度 Soil depth (cm) | 数量密度 Number density (No.·mm-3) | 长度密度 Length density (mm·mm-3) | 体积密度 Volume density (mm3·mm-3) | 表面积密度 Surface area density (mm2·mm-3) | 平均等效直径 Average equivalent diameter (mm) | 平均球度 Average sphericity |
---|---|---|---|---|---|---|---|
9 | 0~10 | 0.635±0.002a | 0.309±0.001c | 0.008±0.000e | 0.202±0.001d | 0.309±0.003e | 3.214±0.465a |
10~20 | 0.935±0.003a | 0.446±0.001b | 0.016±0.000c | 0.310±0.001b | 0.342±0.005c | 2.649±0.313a | |
14 | 0~10 | 0.359±0.001c | 0.261±0.000d | 0.017±0.000c | 0.265±0.000b | 0.382±0.006b | 2.613±0.183c |
10~20 | 0.336±0.001d | 0.235±0.001d | 0.012±0.000d | 0.213±0.000c | 0.365±0.005a | 2.536±0.122b | |
24 | 0~10 | 0.514±0.001b | 0.359±0.000b | 0.023±0.000a | 0.364±0.001a | 0.389±0.005a | 2.168±0.204d |
10~20 | 0.748±0.002b | 0.345±0.001c | 0.010±0.000e | 0.218±0.000c | 0.314±0.003d | 2.543±0.305b | |
35 | 0~10 | 0.513±0.001b | 0.376±0.000a | 0.021±0.000b | 0.371±0.000a | 0.378±0.004c | 2.743±0.127b |
10~20 | 0.972±0.002a | 0.510±0.001a | 0.024±0.000a | 0.410±0.000a | 0.341±0.003c | 2.064±0.165c | |
CK | 0~10 | 0.323±0.001d | 0.225±0.000e | 0.012±0.000d | 0.222±0.001c | 0.358±0.006d | 2.791±0.313b |
10~20 | 0.667±0.001c | 0.460±0.001b | 0.020±0.000b | 0.400±0.001a | 0.360±0.003b | 2.569±0.134b |
Table 3 Topological characteristics of soil aggregates in soil layers at different depths in C. korshinskii shrubland of different years
林龄 Years | 土壤深度 Soil depth (cm) | 数量密度 Number density (No.·mm-3) | 长度密度 Length density (mm·mm-3) | 体积密度 Volume density (mm3·mm-3) | 表面积密度 Surface area density (mm2·mm-3) | 平均等效直径 Average equivalent diameter (mm) | 平均球度 Average sphericity |
---|---|---|---|---|---|---|---|
9 | 0~10 | 0.635±0.002a | 0.309±0.001c | 0.008±0.000e | 0.202±0.001d | 0.309±0.003e | 3.214±0.465a |
10~20 | 0.935±0.003a | 0.446±0.001b | 0.016±0.000c | 0.310±0.001b | 0.342±0.005c | 2.649±0.313a | |
14 | 0~10 | 0.359±0.001c | 0.261±0.000d | 0.017±0.000c | 0.265±0.000b | 0.382±0.006b | 2.613±0.183c |
10~20 | 0.336±0.001d | 0.235±0.001d | 0.012±0.000d | 0.213±0.000c | 0.365±0.005a | 2.536±0.122b | |
24 | 0~10 | 0.514±0.001b | 0.359±0.000b | 0.023±0.000a | 0.364±0.001a | 0.389±0.005a | 2.168±0.204d |
10~20 | 0.748±0.002b | 0.345±0.001c | 0.010±0.000e | 0.218±0.000c | 0.314±0.003d | 2.543±0.305b | |
35 | 0~10 | 0.513±0.001b | 0.376±0.000a | 0.021±0.000b | 0.371±0.000a | 0.378±0.004c | 2.743±0.127b |
10~20 | 0.972±0.002a | 0.510±0.001a | 0.024±0.000a | 0.410±0.000a | 0.341±0.003c | 2.064±0.165c | |
CK | 0~10 | 0.323±0.001d | 0.225±0.000e | 0.012±0.000d | 0.222±0.001c | 0.358±0.006d | 2.791±0.313b |
10~20 | 0.667±0.001c | 0.460±0.001b | 0.020±0.000b | 0.400±0.001a | 0.360±0.003b | 2.569±0.134b |
1 | Zhang Y H, Weng B S, Yan D H. Research progress of soil aggregates based on literature visualization analysis. Advances in Earth Science, 2022, 37(4): 429-438. |
张彧行, 翁白莎, 严登华. 基于文献可视化分析的土壤团聚体研究进展. 地球科学进展, 2022, 37(4): 429-438. | |
2 | Zhang X R, Zhang W Q. Research progress of soil aggregates. Northern Horticulture, 2020, 468(21): 131-137. |
张旭冉, 张卫青. 土壤团聚体研究进展. 北方园艺, 2020, 468(21): 131-137. | |
3 | Li Z H, Zhang Q H, Tian H W, et al. Study on the structure of topsoil aggregates for Mu Us sandy land in China. Institute of Physics Conference Series: Earth and Environmental Science, 2016, 41(1): 012021. |
4 | Liang A, McLaughlin N B, Zhang X, et al. Short-term effects of tillage practices on soil aggregate fractions in a Chinese Mollisol. Acta Agriculturae Scandinavia, Section B-Soil & Plant Science, 2011, 61(6): 535-542. |
5 | Huang Y, Zhang F B, Gao J X, et al. Progress in research on structural stability of soil aggregates based on high energy moisture characteristic method. Research of Soil and Water Conservation, 2022, 29(6): 431-437, 443. |
黄悦, 张风宝, 高晶霞, 等. 基于高能水分特性法的土壤团聚体结构稳定性研究进展. 水土保持研究, 2022, 29(6): 431-437, 443. | |
6 | Li N, Han X Z, You M Y, et al. Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 2013, 22(9): 1625-1632. |
李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632. | |
7 | Rong H, Fang H, Zhang Z B, et al. Effects of aggregate size distribution on soil pore structure and soil organic carbon mineralization. Acta Pedologica Sinica, 2022, 59(2): 476-485. |
荣慧, 房焕, 张中彬, 等. 团聚体大小分布对孔隙结构和土壤有机碳矿化的影响. 土壤学报, 2022, 59(2): 476-485. | |
8 | Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103. |
9 | Nadian H, Hashemi M, Herbert S J. Soil aggregate size and mycorrhizal colonization effect on root growth and phosphorus accumulation by berseem clover. Communications in Soil Science and Plant Analysis, 2009, 40(15/16): 2413-2425. |
10 | Mawodza T, Menon M, Brooks H, et al. Preferential wheat (Triticum aestivum. L. cv. Fielder) root growth in different sized aggregates. Soil and Tillage Research, 2021, 212: 105054. |
11 | Wang X, Whalley W R, Miller A J, et al. Sustainable cropping requires adaptation to a heterogeneous rhizosphere. Trends in Plant Science, 2020, 25(12): 1194-1202. |
12 | Rabot E, Wiesmeier M, Schlüter S, et al. Soil structure as an indicator of soil functions: A review. Geoderma, 2018, 314: 122-137. |
13 | Garcia L, Damour G, Gary C, et al. Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 2019, 435(1): 1-14. |
14 | Le Bissonnais Y, Prieto I, Roumet C, et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant and Soil, 2018, 424(1): 303-317. |
15 | Song R, Liu L, Ma L Y, et al. Effect of crop root exudates on the size and stability of soil aggregate. Journal of Nanjing Agricultural University, 2009, 32(3): 93-97. |
宋日, 刘利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响. 南京农业大学学报, 2009, 32(3): 93-97. | |
16 | Zhang Z, Huang Y Z, Zhang C, et al. Distribution of soil phosphorus fractions in aggregates in Chinese fir plantations with different stand ages. Chinese Journal of Applied Ecology, 2022, 33(4): 939-948. |
张喆, 黄永珍, 张超, 等. 不同林龄杉木人工林土壤团聚体磷素分布特征. 应用生态学报, 2022, 33(4): 939-948. | |
17 | Zhang H O, Shi C D, Li J. Changes of aggregates in soft rock improved sandy soil after years of corn plantation. Journal of Arid Land Resources and Environment, 2022, 36(2): 110-115. |
张海欧, 师晨迪, 李娟. 砒砂岩改良风沙土后玉米不同种植年限下土壤团聚体变化特征. 干旱区资源与环境, 2022, 36(2): 110-115. | |
18 | Zhuang Z, Zhang Y, Zhang Y, et al. Study on distribution characteristics and stability of soil aggregate in Chinese fir plantation at different developmental stages. Journal of Soil and Water Conservation, 2017, 31(6): 183-188. |
庄正, 张芸, 张颖, 等. 不同发育阶段杉木人工林土壤团聚体分布特征及其稳定性研究. 水土保持学报, 2017, 31(6): 183-188. | |
19 | Gao R, Zhao Y G, Liu X F, et al. Effects of stand age and slope position of Caragana korshinskii plantations on soil aggregate stability in the loess hilly region. Acta Ecologica Sinica, 2020, 40(9): 2964-2974. |
高冉, 赵勇钢, 刘小芳, 等. 黄土丘陵区人工柠条种植年限和坡位对土壤团聚体稳定性的影响. 生态学报, 2020, 40(9): 2964-2974. | |
20 | Zhang F, Chen Y M, Wang Y F, et al. Effects of Caragana korshinskii plantation on soil physical properties and organic matter in semi-arid loess hilly region. Research of Soil and Water Conservation, 2010, 17(3): 105-109. |
张飞, 陈云明, 王耀凤, 等. 黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响. 水土保持研究, 2010, 17(3): 105-109. | |
21 | Zhu Q L, Cheng M, An S S, et al. Effects of re-vegetation on characteristics of soil aggregates and humus in soil aggregate in loess hilly region of southern Ningxia. Journal of Soil and Water Conservation, 2013, 27(4): 247-251, 257. |
朱秋莲, 程曼, 安韶山, 等. 宁南山区植被恢复对土壤团聚体特征及腐殖质分布的影响. 水土保持学报, 2013, 27(4): 247-251, 257. | |
22 | Xue S, Liu G B, Zhang C, et al. Change of soil-erodibility of artificial shrubs in loess hilly area. Scientia Agricultura Sinica, 2010, 43(15): 3143-3150. |
薛萐, 刘国彬, 张超, 等. 黄土丘陵区人工灌木林土壤抗蚀性演变特征. 中国农业科学, 2010, 43(15): 3143-3150. | |
23 | Shi Y, Chen X, Shen S M. Stable mechanisms of soil aggregate and effects of human activities. Chinese Journal of Applied Ecology, 2002, 13(11): 1491-1494. |
史奕, 陈欣, 沈善敏. 土壤团聚体的稳定机制及人类活动的影响. 应用生态学报, 2002,13(11): 1491-1494. | |
24 | Liu J Y, Zhou Z C, Su X M. A review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273, 298. |
刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273, 298. | |
25 | Liu D H, Li Y. Mechanism of plant roots improving resistance of soil to concentrated flow erosion. Journal of Soil and Water Conservation, 2003, 17(3): 34-37, 117. |
刘定辉, 李勇. 植物根系提高土壤抗侵蚀性机理研究. 水土保持学报, 2003, 17(3): 34-37, 117. | |
26 | Yang Q, Zhu D Y, Chen J, et al. Effects of vegetation restoration models on soil aggregate and organic carbon stock. Journal of Forest and Environment, 2022, 42(6): 631-639. |
杨倩, 朱大运, 陈静, 等. 植被恢复模式对土壤团聚体和有机碳储量的影响. 森林与环境学报, 2022, 42(6): 631-639. | |
27 | Xiao T Q, Liu Y Q, Liu X J, et al. Effects of six vegetation restoration models on the physicochemical properties and aggregate stability of degraded red soil in Jiangxi Province. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(5): 1292-1304. |
肖廷琦, 刘苑秋, 刘晓君, 等. 六种植被恢复模式对江西退化红壤理化性质及团聚体稳定性的影响. 江西农业大学学报, 2022, 44(5): 1292-1304. | |
28 | Fang X, Li J, Xiong Y, et al. Responses of Caragana korshinskii Kom. to shoot removal: mechanisms underlying regrowth. Ecological Research, 2008, 23(5): 863-871. |
29 | Wang S, Li L, Zhou D W. Root morphological responses to population density vary with soil conditions and growth stages: The complexity of density effects. Ecology and Evolution, 2021, 11(15): 10590-10599. |
30 | Liang H B, Shi J W, Li Z S, et al. Evaluation of soil desiccation intensity in different ages of Caragana korshinskii Kom. in loess hilly region, northwestern Shanxi. Research of Soil and Water Conservation, 2018, 25(2): 87-93. |
梁海斌, 史建伟, 李宗善, 等. 晋西北黄土丘陵区不同林龄柠条林地土壤干燥化效应. 水土保持研究, 2018, 25(2): 87-93. | |
31 | Wang W, Kravchenko A N, Smucker A J M, et al. Comparison of image segmentation methods in simulated 2D and 3D microtomographic images of soil aggregates. Geoderma, 2011, 162(3/4): 231-241. |
32 | Kravchenko A N, Wang A N W, Smucker A J M, et al. Long-term differences in tillage and land use affect intra-aggregate pore heterogeneity. Soil Science Society of America Journal, 2011, 75(5): 1658-1666. |
33 | Wang W, Kravchenko A N, Smucker A J M, et al. Intra-aggregate pore characteristics: X-ray computed microtomography analysis. Soil Science Society of America Journal, 2012, 76(4): 1159-1171. |
34 | Zhou H, Peng X, Peth S, et al. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography. Soil and Tillage Research, 2012, 124: 17-23. |
35 | Cho G C, Dodds J, Santamarina J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. |
36 | Li Z K, Li X Y, Zhou S, et al. A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Science China Earth Sciences, 2022, 52(11): 2105-2138. |
李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展. 中国科学: 地球科学, 2022, 52(11): 2105-2138. | |
37 | Xiao L, Yao K, Li P, et al. Increased soil aggregate stability is strongly correlated with root and soil properties along a gradient of secondary succession on the Loess Plateau. Ecological Engineering, 2020, 143: 105671. |
38 | Tan X J, Mu X M, Gao P, et al. Effects of vegetation restoration on changes to soil physical properties on the Loess Plateau. China Environmental Science, 2019, 39(2): 713-722. |
谭学进, 穆兴民, 高鹏, 等. 黄土区植被恢复对土壤物理性质的影响. 中国环境科学, 2019, 39(2): 713-722. | |
39 | Wang Y, Liu S, Guo J L, et al. Influence of different vegetation types on soil nutrients, enzyme activities and microbial diversities in loess plateau. Bulletin of Soil and Water Conservation, 2018, 38(1): 62-68. |
王雅, 刘爽, 郭晋丽, 等. 黄土高原不同植被类型对土壤养分、酶活性及微生物的影响. 水土保持通报, 2018, 38(1): 62-68. | |
40 | Liu M Y, Chang Q R, An S S, et al. Features of soil aggregate and tiny aggregate under different land use. Chinese Agricultural Science Bulletin, 2005(11): 247-250. |
刘梦云, 常庆瑞, 安韶山, 等. 土地利用方式对土壤团聚体及微团聚体的影响. 中国农学通报, 2005(11): 247-250. | |
41 | Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskii shrubland in different years of desert grassland in Ningxia. Acta Ecologica Sinica, 2022, 42(3): 895-903. |
马昀, 孟晨, 岳健敏, 等. 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究. 生态学报, 2022, 42(3): 895-903. | |
42 | Zhao F W, Wang N, Su X M, et al. Effects of main plant roots on soil organic matter and aggregates in loess hilly region. Journal of Soil and Water Conservation, 2019, 33(5): 105-113. |
赵富王, 王宁, 苏雪萌, 等. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响. 水土保持学报, 2019, 33(5): 105-113. | |
43 | Cui X R, Zhang J L, Wang Y Q, et al. Effect of different forests on the soil aggregate stability in Xiaolongshan forest region of Gansu Province. Journal of Soil and Water Conservation, 2021, 35(4): 275-281. |
崔芯蕊, 张嘉良, 王云琦, 等. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报, 2021, 35(4): 275-281. | |
44 | Jiang C X, Wang B, Wang Y J, et al. Soil aggregate stability of typical forest stands in the Jinyun Mountain based on Le Bissonnais method. Science of Soil and Water Conservation, 2020, 18(2): 52-61. |
蒋春晓, 王彬, 王玉杰, 等. 基于LB法的缙云山典型林分土壤团聚体的稳定性. 中国水土保持科学, 2020, 18(2): 52-61. |
[1] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[2] | Xin GUO, Huan LUO, Xue-mei XU, Ai-xia MA, Zhen-yan SHANG, Tian-hu HAN, De-cao NIU, Hai-yan WEN, Xu-dong LI. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
[3] | Wen-jie QU, Wen-zhi ZHAO, Lei WANG, Jian-jun QU, Xin-guo YANG. Response of germination and seedling survival of two shrubs to simulated dry-wet treatments [J]. Acta Prataculturae Sinica, 2023, 32(11): 179-187. |
[4] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[5] | Zhi-peng CHANG, Ying-ying SUN, Jia-yang LI, Chun-mei GONG. Cloning and transformation of the CkCAD gene in Caragana korshinskii and analysis of its drought resistance function [J]. Acta Prataculturae Sinica, 2021, 30(3): 68-80. |
[6] | MA Xiao-jing, GUO Yan-ju, ZHANG Jia-yu, XU Ai-yun, LIU Jin-long, XU Dong-mei. Size distribution of soil aggregates in different grassland desertification categories in Yanchi County, Ningxia [J]. Acta Prataculturae Sinica, 2020, 29(3): 27-37. |
[7] | Hai-tao CHANG, Ren-tao LIU, Wei CHEN, An-ning ZHANG, Xiao-an ZUO. Distribution of ground-active arthropod community structure after introduction of Caragana korshinskii into Reaumuria soongorica shrubland on the Urat desert steppe, Inner Mongolia [J]. Acta Prataculturae Sinica, 2020, 29(12): 188-197. |
[8] | LI Ming, QIN Jie, HONG Yu, YANG Dian-lin, ZHOU Guang-fan, WANG Yu, WANG Li-juan. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates [J]. Acta Prataculturae Sinica, 2019, 28(12): 29-40. |
[9] | LI Tie, WANG Run-ze, CHEN Yun, HE Bing-hui, ZHOU Tao, WU Chen, LIU Xiao-hong. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes [J]. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
[10] | JIANG La-mei, YANG Xiao-dong, YANG Jian-jun, HE Xue-min, LÜ Guang-hui. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors [J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. |
[11] | WANG Run-Ze, CHEN Yun, LI Tie, ZHOU Tao, HE Bing-Hui, LIU Xiao-Hong, LIU Zhi-Peng, SHAN Zhi-Jie. Impacts of polyacrylamide and grass root systems on micro-aggregates of purple soil in barren hillside badlands [J]. Acta Prataculturae Sinica, 2017, 26(12): 13-23. |
[12] | LIU Xiao-Dong, YIN Guo-Li, WU Jun, CHEN Jian-Gang, MA Long-Xi, SHI Shang-Li. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2015, 24(10): 12-21. |
[13] | REN Ai-qin, YI Jin, GAO Hong-wen, LI Jun, WANG Xue-min. Cloning and expression analysis of the promoter of Caragana korshinskii gene [J]. Acta Prataculturae Sinica, 2013, 22(2): 165-170. |
[14] | FENG Yan, WANG Yan-rong, HU Xiao-wen. Effects of soil water stress on seedling growth and water use efficiency of two desert shrubs [J]. Acta Prataculturae Sinica, 2011, 20(4): 293-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||