Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (1): 89-101.DOI: 10.11686/cyxb2023087
Previous Articles Next Articles
Jin-xiu HAN1(), Bin CHEN1, Yan-ting LIU1, Ru MENG1, Li-yan JIN2, Miao HE1()
Received:
2023-03-21
Revised:
2023-04-19
Online:
2024-01-20
Published:
2023-11-23
Contact:
Miao HE
Jin-xiu HAN, Bin CHEN, Yan-ting LIU, Ru MENG, Li-yan JIN, Miao HE. Identification of CibHLH1 and its effect on photosynthetic characteristics in Chrysanthemum indicum var. aromaticum[J]. Acta Prataculturae Sinica, 2024, 33(1): 89-101.
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
bHLH-F | ATTTTACCAAACAGCGTCTTACGAGAAC |
bHLH-R | TTAGGCAACCGGAGGGCGA |
bHLH-1-F | AGTGCGGAACAAGATGGCTCA |
bHLH-1-R | GGGCTTCCCAGGTTCAAGG |
CmUBI-F | AGCTGAGCAGACTCCCGATG |
CmUBI-R | AGGCGAATCATCAGTACCAAGT |
CibHLH1-KpnI | |
CibHLH1-SpeI | |
pBI121-T-F | TCATTTCATTTGGAGAGAACAC |
pBI121-T-R | TTGCCAAATGTTTGAACGATC |
Table 1 Primer sequence
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
bHLH-F | ATTTTACCAAACAGCGTCTTACGAGAAC |
bHLH-R | TTAGGCAACCGGAGGGCGA |
bHLH-1-F | AGTGCGGAACAAGATGGCTCA |
bHLH-1-R | GGGCTTCCCAGGTTCAAGG |
CmUBI-F | AGCTGAGCAGACTCCCGATG |
CmUBI-R | AGGCGAATCATCAGTACCAAGT |
CibHLH1-KpnI | |
CibHLH1-SpeI | |
pBI121-T-F | TCATTTCATTTGGAGAGAACAC |
pBI121-T-R | TTGCCAAATGTTTGAACGATC |
株系 Plants | 最大净光合速率 Maximum net photosynthetic rate (μmol·m-2·s-1) | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent photosynthetic quantum yield |
---|---|---|---|---|
WT | 8.28±0.20a | 12.11±6.56b | 392.17±8.11a | 0.0219±0.0014a |
EV | 8.35±0.65a | 9.80±1.11b | 363.50±13.52a | 0.0241±0.0025a |
B1 | 5.13±0.51b | 24.66±7.05a | 325.85±49.52b | 0.0174±0.0011b |
B2 | 4.98±0.88b | 22.38±2.89a | 306.69±25.21b | 0.0176±0.0033b |
Table 2 Photosynthetic parameters of different strains
株系 Plants | 最大净光合速率 Maximum net photosynthetic rate (μmol·m-2·s-1) | 光补偿点 Light compensation point (μmol·m-2·s-1) | 光饱和点 Light saturation point (μmol·m-2·s-1) | 表观量子效率 Apparent photosynthetic quantum yield |
---|---|---|---|---|
WT | 8.28±0.20a | 12.11±6.56b | 392.17±8.11a | 0.0219±0.0014a |
EV | 8.35±0.65a | 9.80±1.11b | 363.50±13.52a | 0.0241±0.0025a |
B1 | 5.13±0.51b | 24.66±7.05a | 325.85±49.52b | 0.0174±0.0011b |
B2 | 4.98±0.88b | 22.38±2.89a | 306.69±25.21b | 0.0176±0.0033b |
1 | Wang Y P, Gao H H, Liu Y S, et al. Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: A review. Chinese Journal of Applied Ecology, 2013, 24(7): 2049-2055. |
王玉萍, 高会会, 刘悦善, 等. 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 2013, 24(7): 2049-2055. | |
2 | Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants. Chinese Journal of Ecology, 2018, 37(1): 245-254. |
蔡金桓, 薛立. 高山植物的光合生理特性研究进展. 生态学杂志, 2018, 37(1): 245-254. | |
3 | Xing H S, Wu J M, Chen J, et al. Research progress on limiting factors of plant photosynthesis and vegetation productivity. Acta Ecologica Sinica. (2023-02-10)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.2031.q.20230210.0905.002.html. |
邢红爽, 乌佳美, 陈健, 等. 植物光合作用限制因素与植被生产力的研究进展. 生态学报. (2023-02-10)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.2031.q.20230210.0905.002.html. | |
4 | Chu R, Zhang Q H, Wei Y Z. Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. Photosynthesis Research, 2022, 153(3): 177-189. |
5 | Shi S B, Zhou D W, Li T C, et al. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2023, 47(3): 361-373. |
师生波, 周党卫, 李天才, 等. 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 2023, 47(3): 361-373. | |
6 | Zhong X R, Zhang L, Pan X H, et al. Response and adaptation of leaf functional traits to different altitudes in evergreen broad-leaved forest of Castanopsis carlesii. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(6): 1438-1447. |
仲小茹, 张露, 潘昕昊, 等. 常绿阔叶林米槠叶片功能性状对不同海拔梯度的响应与适应. 江西农业大学学报, 2022, 44(6): 1438-1447. | |
7 | Wang F. Study on physiological and biochemical characteristics and genetic diversity of wild ancient tea tree leaves at different altitudes in Qianjiazhai. Kunming: Southwest Forestry University, 2021. |
王菲. 千家寨不同海拔野生古茶树叶片生理生态特性及遗传多样性研究. 昆明: 西南林业大学, 2021. | |
8 | Tang L Y, Chen Z Y, Dai Z, et al. Chlorophyll content and photosynthetic efficiency of Thuidium kanedae at different altitudes. Subtropical Plant Science, 2021, 50(4): 251-256. |
唐录艳, 陈泽宇, 戴尊, 等. 不同海拔短肋羽藓叶绿素含量与光合效率研究. 亚热带植物科学, 2021, 50(4): 251-256. | |
9 | Shi S B, Shang Y X, Shi R, et al. Response of PSⅡ photochemical efficiency and photosynthetic pigments of Sauaaurea superba to short-term UV-B-supplementation. Chinese Journal of Plant Ecology, 2012, 36(5): 420-430. |
师生波, 尚艳霞, 师瑞, 等. 高山植物美丽风毛菊PSⅡ光化学效率和光合色素对短期增补UV-B辐射的响应. 植物生态学报, 2012, 36(5): 420-430. | |
10 | Liu Q H, Zhang H Q, Jia W J, et al. The investigation on geographical distribution, ecological habit and storage quantity on a new resource plant of Hubei, Dendranthema indicum (L.) Des Monl. var. aromaticum. Plant Science Journal, 1983, 1(2): 239-245, 338. |
刘启宏, 张红旗, 贾卫疆, 等. 湖北新资源植物-神农香菊的地理分布、生态习性与蕴藏量的调查研究. 植物科学学报, 1983, 1(2): 239-245, 338. | |
11 | Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology, 2000, 20(2): 429-440. |
12 | Li F, Liu W. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos taurus. Mammalian Genome, 2017, 28(5/6): 176-197. |
13 | Zhang J, Guo M Z, Wu H H, et al. GhPAS1, a bHLH transcription factor in upland cotton (Gossypium hirsutum), positively regulates Verticillium dahlia resistance. Industrial Crops & Products, 2023, 192: 116077. |
14 | Guo X J, Fu Y X, Lee Y J, et al. The PGS1 basic helix-loop-helix (bHLH) protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20(7): 1311-1326. |
15 | Jin J, Chu C C. Regulation of dormancy of rice seed by two antagonistic bHLH transcription factors. Hereditas, 2023, 45(1): 3-5. |
金晶, 储成才. 两个拮抗的bHLH转录因子对水稻种子休眠的调控. 遗传, 2023, 45(1): 3-5. | |
16 | Nan G L, Teng C, Fernandes J, et al. A cascade of bHLH-regulated pathways programs maize anther development. The Plant Cell, 2022, 34(4): 1207-1225. |
17 | Deguchi A, Tatsuzawa F, Ishii K, et al. Localized repression of two bHLH genes is involved in the formation of white margins and white abaxial surfaces in carnation petals by inducing the absence of anthocyanin synthesis. The Horticulture Journal, 2022, 91(1): 68-84. |
18 | Yang Y Y, Zhang Y F, He J H, et al. Transcription factor GlbHLH regulates hyphal growth, stress resistance, and polysaccharide biosynthesis in Ganoderma lucidum. Journal of Basic Microbiology, 2021, 62(1): 82-91. |
19 | Wu H H, Ren Z Y, Zheng L, et al. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton. The Crop Journal, 2021, 9(5): 1049-1059. |
20 | Wang J P, Li C N, Mao X G, et al. The wheat basic helix-loop-helix (bHLH) gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. Journal of Experimental Botany, 2023, 74(8): 2542-2555. |
21 | Tan C, Qiao H L, Ma M, et al. Genome-wide identification and characterization of melon bHLH transcription factors in regulation of fruit development. Plants, 2021, 10(12): 2721. |
22 | Zhang L, Xiang Z P, Li J F, et al. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant, Cell & Environment, 2022, 46(4): 1402-1418. |
23 | Pablo L, Elena M, Yoshito O, et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Current Biology, 2008, 18(23): 1815-1823. |
24 | Zhang Y Q, Liu Z J, Chen Y D, et al. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis. Plant Science, 2015, 237: 57-68. |
25 | Guo P Y. Cloning and functional study of tomato bHLH transcription factor SlPRE3. Chongqing: Chongqing University, 2021. |
郭鹏宇. 番茄bHLH转录因子SlPRE3的克隆与功能研究. 重庆: 重庆大学, 2021. | |
26 | Yu J Q. The apple bHLH transcription factor MdbHLH3 functions in regulating the fruit sugar and malate metabolism. Tai’an: Shandong Agricultural University, 2022. |
于建强. 苹果bHLH转录因子MdbHLH3在调控果实糖酸代谢中的功能研究. 泰安: 山东农业大学, 2022. | |
27 | Wei Y, Jiang C, Han R, et al. Plasma membrane proteomic analysis by TMT-PRM provides insight into mechanisms of aluminum resistance in tamba black soybean roots tips. PeerJ, 2020, 8: e9312. |
28 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔ CT method. Methods, 2001, 25(4): 402-408. |
29 | Liu Y Z. Research on DiaMYB gene expression characteristic and stress tolerance in Dendranthema indicum var. aromaticum. Harbin: Northeast Forestry University, 2016. |
刘颖竹. 神农香菊DiaMYB基因的表达特性及抗逆功能研究. 哈尔滨: 东北林业大学, 2016. | |
30 | Wang L. Cloning and primary characterization of CiMYB61 in Chrysanthemum indicum var. aromaticum. Harbin: Northeast Forestry University, 2018. |
王蕾. 神农香菊CiMYB61基因的克隆及其功能的初步研究. 哈尔滨: 东北林业大学, 2018. | |
31 | Zhang J L, Li Y X, Luo H X, et al. Effects of molybdenum application on chlorophyll contents, photosynthetic rates, yield and quality of tobacco leaves. Chinese Tobacco Science, 2011, 32(2): 24-28. |
张纪利, 李余湘, 罗红香, 等. 施钼对烟草叶绿素含量、光合速率、产量及品质的影响. 中国烟草科学, 2011, 32(2): 24-28. | |
32 | Carretero-Paulet L, Galstyan A, Roig-Villanova I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology, 2010, 153(3): 1398-1412. |
33 | Ludwig S R, Habera L F, Dellaporta S L, et al. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18): 7092-7096. |
34 | Jiang Y Q, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics & Genomics, 2009, 282(5): 503-516. |
35 | Rushton P J, Bokowiec M T, Han S C, et al. Tobacco transcription factors: Novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 2008, 147(1): 280-295. |
36 | Xiong Y Q, Liu T Y, Tian C G, et al. Transcription factors in rice: A genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology, 2005, 59(1): 191-203. |
37 | Zhao W, Liu Y H, Li L, et al. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.). Frontiers in Genetics, 2021, 12: 632509. |
38 | Kumar S V, Lucyshyn D, Jaeger K, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484(7393): 242-245. |
39 | Liu W W, Tai H H, Li S S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist, 2014, 201(4): 1192-1204. |
40 | Wang K N, Liu H Y, Mei Q L, et al. Characteristics of bHLH transcription factors and their roles in the abiotic stress responses of horticultural crops. Scientia Horticulturae, 2023, 310: 111710. |
41 | Hao Y Q, Zong X M, Ren P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 2021, 22(13): 7152. |
42 | Dong Y, Wang C P, Han X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. Biochemical and Biophysical Research Communications, 2014, 450(1): 453-458. |
43 | Wang T L. Function analysis of soybean bHLH-like transcription factors GmbHLH3 and GmPIF1. Changchun: Jilin University, 2020. |
王天亮. 大豆bHLH类转因子GmbHLH3和GmPIF1的功能分析. 长春: 吉林大学, 2020. | |
44 | Chen W. Map-based cloning and functional analysis of YGL3 gene controlling chloroplast development. Nanchang: Jiangxi Agricultural University, 2022. |
陈炜. 调控水稻叶绿体发育基因YGL3的图位克隆及功能研究. 南昌: 江西农业大学, 2022. | |
45 | Chen Y D, Song Y H, Li G, et al. Heterologous expression of strawberry FaFIT promotes iron uptakes by roots in Arabidopsis thaliana. Journal of Fruit Science, 2022, 39(9): 1562-1572. |
陈亚铎, 宋艳红, 李刚, 等. 草莓FaFIT在拟南芥中异源表达促进根系铁吸收. 果树学报, 2022, 39(9): 1562-1572. | |
46 | Tian Q. Functional characterization of BpbHLH112 gene in modulating salt and drought tolerance in Betula platyphylla. Harbin: Northeast Forestry University, 2022. |
田晴. 白桦BpbHLH112基因调控白桦抗旱耐盐功能研究. 哈尔滨: 东北林业大学, 2022. | |
47 | Lu C F, Jian L C, Ben G Y. Photosynthesis in alpine plant Lagotis brevituba and its response to freezing stress. Chinese Bulletin of Botany, 2000, 17(6): 559-564. |
卢存福, 简令成, 贲桂英. 高山植物短管兔儿草光合作用特性及其对冰冻胁迫的反应. 植物学通报, 2000, 17(6): 559-564. | |
48 | Yang Z X, Li Y, Wang Z H, et al. Tissue structure and plastid pigment characteristics of tobacco leaves at different altitudes. Jiangsu Agricultural Sciences, 2016, 44(11): 133-136. |
杨志晓, 李雨, 王志红, 等. 不同海拔高度烟草叶片组织结构和质体色素特性研究. 江苏农业科学, 2016, 44(11): 133-136. | |
49 | Wang Y P, He W L, Cheng L X, et al. Changes of pigment contents and photosynthetic electron transport activities of thylakoid membranes of Polygonum viviparum grown at different altitudes. Acta Prataculturae Sinica, 2011, 20(1): 75-81. |
王玉萍, 何文亮, 程李香, 等. 不同海拔珠芽蓼叶片类囊体膜色素含量及光系统功能变化. 草业学报, 2011, 20(1): 75-81. | |
50 | Li H, Tian K, Liu G D, et al. Impacts of change in altitude on chlorophyll fluorescence characteristics of dominant plants in plateau wetland. Acta Ecologica Sinica, 2018, 38(20): 7421-7434. |
李晖, 田昆, 刘国栋, 等. 海拔变化对高原湿地优势植物叶绿素荧光特性的影响. 生态学报, 2018, 38(20): 7421-7434. | |
51 | Carmen D, Neculai D, Corina C, et al. Study of the photosynthetic ability of perennial legume species in the floristic structure of permanent high altitude pastures. Scientific Papers Animal Science and Biotechnologies, 2012, 45(1): 394-396. |
52 | Lu C F, Ben G Y. Photosynthetic characteristics of plants at high altitudes. Chinese Bulletin of Botany, 1995(2): 38-42, 56. |
卢存福, 贲桂英. 高海拔地区植物的光合特性. 植物学通报, 1995(2): 38-42, 56. | |
53 | Deng X H, Wang J J. Effects of simulated elevated atmospheric CO2 concentration on the physiological characteristics and medicinal quality of Saxifraga stolonifera. Ecological Science, 2023, 42(2): 9-16. |
邓小红, 王健健. 模拟大气CO2浓度升高对虎耳草生理特性和药用品质的影响. 生态科学, 2023, 42(2): 9-16. | |
54 | Yang Z X, Wang Y, Xie S D, et al. Differences of photosynthetic physiological response in two resistant and susceptible tobacco cultivars to brown spot stress. Plant Physiology Journal, 2022, 58(3): 565-576. |
杨志晓, 王轶, 谢升东, 等. 二个抗、感病烟草品种对赤星病胁迫的光合生理响应差异. 植物生理学报, 2022, 58(3): 565-576. | |
55 | Zhang J Y, Cun Z, Shuang S P, et al. Steady-state and dynamic photosynthetic characteristics of shade-tolerant species Panax notoginseng in response to nitrogen levels. Chinese Journal of Plant Ecology. (2023-02-15)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.3397.Q.20230214.1446.002.html. |
张金燕, 寸竹, 双升普, 等. 阴生植物三七稳态和动态光合特性对氮水平的响应. 植物生态学报. (2023-02-15)[2023-05-15]. http://kns.cnki.net/kcms/detail/11.3397.Q.20230214.1446.002.html. | |
56 | Tan J H, Yu Y H, Luo X T, et al. Effect of different light environment on photosynthetic characteristics and biomass allocation of Aspidistra elatior Blume using wild imitated-cultivation. Journal of Northeast Forestry University, 2022, 50(11): 1-9. |
谭锦豪, 于耀泓, 罗晓茼, 等. 应用仿生模式分析光环境对蜘蛛抱蛋光合特性及生物量分配的影响. 东北林业大学学报, 2022, 50(11): 1-9. | |
57 | Yang Y E, Zhang X Y, Feng R, et al. Shading effects on the photosynthetic characteristics of Granny Smith leaves. Chinese Journal of Ecology. (2023-02-14)[2023-05-15]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230213.1754.006.html. |
杨永娥, 张晓煜, 冯蕊, 等. 遮光对澳洲青苹叶片光合特性的影响. 生态学杂志. (2023-02-14)[2023-05-15]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230213.1754.006.html. |
[1] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[2] | Wen-wei LIU, Xin LIU, Ying-xia LEI, Qing-ping ZHOU, Zhi-feng LIU, Pei WANG. A comprehensive evaluation of cold resistance and the physiological response of Elymus sibiricus genotypes [J]. Acta Prataculturae Sinica, 2023, 32(8): 152-163. |
[3] | Xiao-dong YU, Hao-yang YU, Xu YANG, Dong-xu ZHAO, Lin-gang ZHANG. Difference analysis of chloroplast genome sequence between two ecotypes of Leymus chinensis in Inner Mongolia [J]. Acta Prataculturae Sinica, 2023, 32(7): 72-84. |
[4] | Shi-yang ZHANG, Feng-min LIU, Jun-tao CUI, Lei HE, Yue-yan FENG, Wei-li ZHANG. Effects of three exogenous substances on the physiological and fluorescence characteristics of Stylosanthes guianensis under low-temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 85-99. |
[5] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[6] | Wen-wu QIAN, Peng GUO, Hui-sen ZHU, Shi-min ZHANG, De-ying LI. Responses of leaf epidermis, anatomical structure and photosynthetic characteristics of Poa pratensis to different nitrogen application level [J]. Acta Prataculturae Sinica, 2023, 32(1): 131-143. |
[7] | Ze-dong ZHOU, Hui-ling MA, Xu HAN, Yuan-heng LI, Xi-liang LI, Kun-na LI. Responses of photosynthetic characteristics of Leymus chinensis in temperate typical steppe to component factors of simulated grazing [J]. Acta Prataculturae Sinica, 2022, 31(8): 81-89. |
[8] | Meng-yu DONG, Jin-xin WANG, Meng WU, Zi-yao ZHOU, Shun CHENG, Yan-hui LI. Leaf structure and photosynthetic characteristics of two species of Hesperis [J]. Acta Prataculturae Sinica, 2022, 31(7): 172-184. |
[9] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[10] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[11] | Yong-chao ZHANG, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
[12] | Lu-yao WU, Jian-guo ZHANG, Wen-qian CHANG, Shao-lei ZHANG, Qing CHANG. Diurnal change in chlorophyll fluorescence parameters in three desert plants [J]. Acta Prataculturae Sinica, 2021, 30(9): 203-213. |
[13] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
[14] | SHAN Li-wen, ZHANG Qiang, ZHU Rui-feng, KONG Xiao-lei, CHEN Ji-shan. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application [J]. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
[15] | TONG Chang-chun, LIU Xiao-jing, LIN Fang, YU Tie-feng. Yield effect of optimisation of photosynthetic characteristics of alfalfa through balanced fertilization [J]. Acta Prataculturae Sinica, 2020, 29(8): 70-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||