Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (4): 99-109.DOI: 10.11686/cyxb2023189
Previous Articles Next Articles
Lu-ping MA1(), Zhao-yong SHI1,2,3(), Wen-jing WEI1, Shuang YANG1
Received:
2023-06-09
Revised:
2023-07-24
Online:
2024-04-20
Published:
2024-01-15
Contact:
Zhao-yong SHI
Lu-ping MA, Zhao-yong SHI, Wen-jing WEI, Shuang YANG. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology[J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109.
1 | Lu L H, Zou Y N, Wu Q S.Relationship between arbuscular mycorrhizas and plant growth: improvement or depression? Soil Biology, 2018, 52: 451-464. |
2 | Berruti A, Lumini E, Balestrini R, et al. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontiers in Microbiology, 2016, 6: 1559. |
3 | Jiang S J, Liu Y J, Shi G X, et al. The diversity and community assembly of arbuscular mycorrhizal fungi: a review. Chinese Bulletin of Life Sciences, 2014, 26(2): 169-180. |
蒋胜竞, 刘永俊, 石国玺, 等. 丛枝菌根真菌物种多样性及其群落构建机制研究进展. 生命科学, 2014, 26(2): 169-180. | |
4 | Chu W, Guo X L, Zhang C, et al. Research progress and future directions of arbuscular mycorrhizal fungi-plant-rhizosphere microbial interaction. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1709-1721. |
储薇, 郭信来, 张晨, 等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望. 中国生态农业学报, 2022, 30(11): 1709-1721. | |
5 | Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759. |
6 | Van Der Heijden M G A, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396(6706): 69-72. |
7 | Maherali H, Klironomos J N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 2007, 316(5832): 1746-1748. |
8 | Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. |
9 | Hikosaka K, Ishikawa K, Borjigidai A, et al. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 2006, 57(2): 291-302. |
10 | Duc N H, Csintalan Z, Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiology and Biochemistry, 2018, 132: 297-307. |
11 | Bi Y, Zhang Y, Zou H. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science & Technology, 2018, 5: 47-53. |
12 | Morris E K, Morris D J P, Vogt S, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. The ISME Journal, 2019, 13(7): 1639-1646. |
13 | Agus C, Primananda E, Faridah E, et al. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. International Journal of Environmental Science and Technology, 2019, 16: 3365-3374. |
14 | Zhang H, Xu N, Li X, et al. Arbuscular mycorrhizal fungi(Glomus mosseae)improves growth, photosynthesis and protects photosystem Ⅱ in leaves of Lolium perenne L. in cadmium contaminated soil. Frontiers in Plant Science, 2018, 9: 1156. |
15 | Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. |
16 | Van Houwelingen H C, Arends L R, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine, 2002, 21(4): 589-624. |
17 | Viechtbauer W. Conducting Meta-analyses in R with the metafor package. Journal of Statistical Software, 2010, 36(3): 1-48. |
18 | Liu H, Wu M, Chen J, et al. Arbuscular mycorrhizal fungus identity modulates growth effects of endophyte-infected grasses on neighboring plants. Mycorrhiza, 2020, 30: 663-670. |
19 | Wipf D, Krajinski F, Van Tuinen D, et al. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytologist, 2019, 223(3): 1127-1142. |
20 | Wu Q S, Li G H, Zou Y N. Improvement of root system architecture in peach(Prunus persica)seedlings by arbuscular mycorrhizal fungi, related to allocation of glucose/sucrose to root. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39(2): 232-236. |
21 | Smith S E, Read D J. Mycorrhizal symbiosis. London, United Kingdom: Academic Press, 2010. |
22 | Kohl L, Marcel G A. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biology and Biochemistry, 2016, 94: 191-199. |
23 | Pellegrino E, Opik M, Bonari E, et al. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biology and Biochemistry, 2015, 84: 210-217. |
24 | Wang Y, Zhou W, Wu J, et al. LjAMT2;2 promotes ammonium nitrogen transport during arbuscular mycorrhizal fungi symbiosis in Lotus japonicus. International Journal of Molecular Sciences, 2022, 23(17): 9522. |
25 | Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. |
26 | Han J J, Shen X A, Yang F, et al. Research progress on the mechanism of arbuscular mycorrhizal fungi(AMF)mediated mineral elements uptake by plants. Acta Agrestia Sinica, 2023, 31(6): 1609-1621. |
韩金吉, 沈小奥, 杨帆, 等. 丛枝菌根真菌(AMF)介导植物矿质元素吸收机制的研究进展. 草地学报, 2023, 31(6): 1609-1621. | |
27 | Lehmann A, Rillig M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biology and Biochemistry, 2015, 81: 147-158. |
28 | Outamamat E, El Mrabet S, Dounas H, et al. Symbiotic interactions between a newly identified native mycorrhizal fungi complex and the endemic tree Argania spinosa mediate growth, photosynthesis, and enzymatic responses under drought stress conditions. Canadian Journal of Forest Research, 2022, 52(3): 335-345. |
29 | Karthikeyan A. Effects of arbuscular mycorrhizal fungi and Rhizobium on photosynthetic activity and growth response in Acacia auriculiformis seedlings under elevated CO2. Journal of Tropical Forest Science, 2019, 31(4): 398-403. |
30 | Zhang T, Hu Y, Zhang K, et al. Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 2018, 117: 13-19. |
31 | Rostamikia Y, Kouchaksaraei M T, Asgharzadeh A, et al. Biomass allocation, leaf gas exchange and nutrient uptake of hazelnut seedlings in response to Trichoderma harzianum and Glomus intraradices inoculation. Journal of Forest Science, 2017, 63(5): 219-226. |
32 | Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. |
33 | Sánchez-Díaz M, Pardo M, Antolin M, et al. Effect of water stress on photosynthetic activity in the Medicago-Rhizobium-Glomus symbiosis. Plant Science, 1990, 71(2): 215-221. |
34 | Liu H, Yao T, Liu T, et al. Effect of different arbuscularmycorrhizal fungi on the growth of Medicago sativa. Grassland and Turf, 2017, 37(4): 61-67, 73. |
刘欢, 姚拓, 刘婷, 等. 不同丛枝菌根真菌对苜蓿生长的影响. 草原与草坪, 2017, 37(4): 61-67, 73. | |
35 | Singh J, Thakur J K. Photosynthesis and abiotic stress in plants//Biotic and abiotic stress tolerance in plants. Singapore: Springer, 2018: 27-46. |
36 | Gao M Y, Chen X W, Huang W X, et al. Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. Journal of Hazardous Materials, 2021, 416: 125894. |
37 | Amanifar S, Toghranegar Z. The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Industrial Crops and Products, 2020, 147: 112234. |
38 | Feng G, Zhang F, Li X, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 2002, 12: 185-190. |
39 | Zhang Y X, Bi Y L, Guo N, et al. Effects of arbuscular mycorrhizal fungi on the growth of Medicago falcata. Journal of China Coal Society, 2019, 44(12): 3815-3822. |
张延旭, 毕银丽, 郭楠, 等. 接种不同丛枝菌根真菌对黄花苜蓿生长影响. 煤炭学报, 2019, 44(12): 3815-3822. | |
40 | Zhang H S, Zhao G Q, Li M F, et al. Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prataculturae Sinica, 2014, 23(2): 180-188. |
张怀山, 赵桂琴, 栗孟飞, 等. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188. | |
41 | He J D, Zou Y N, Wu Q S, et al. Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 2020, 262: 108745. |
42 | Tahiri A, Meddich A, Raklami A, et al. Assessing the potential role of compost, PGPR, and AMF in improving tomato plant growth, yield, fruit quality, and water stress tolerance. Journal of Soil Science and Plant Nutrition, 2022, 22: 743-764. |
43 | Kapoor R, Singh N. Arbuscular mycorrhiza and reactive oxygen species//Arbuscular mycorrhizas and stress tolerance of plants. Singapore: Springer, 2017: 225-243. |
44 | Sayyahfar M, Mirshekari B, Yarnia M, et al. Effect of mycorrhiza inoculation and methanol spraying on some photosynthetic characteristics and yield in wheat cultivars under end-season drought stress. Applied Ecology & Environmental Research, 2018, 16(4): 3783-3803. |
[1] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
[2] | Yan-lan ZHAO, Xin-yi ZENG, Jin-chao GONG, Xiang-jun LI, Xu-xu LI, Shan LIU, Xin-quan ZHANG, Ji-qiong ZHOU. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens [J]. Acta Prataculturae Sinica, 2023, 32(3): 179-188. |
[3] | Hong-jian WEI, Wen-yuan HE, Yue WANG, Ming TANG, Hui CHEN. The effects of arbuscular mycorrhizal fungi and melatonin on the heat tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2023, 32(12): 126-138. |
[4] | Hong SUN, Yu-long ZHENG, Yan-li LIN, Chao CHEN, Fu-yu YANG. Effects of biochar, phosphorus addition and AMF inoculation on switchgrass growth and soil properties under Cd stress [J]. Acta Prataculturae Sinica, 2021, 30(12): 71-80. |
[5] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[6] | ZHAO Xin, WU Zi-long, ZHANG Hao, YANG Xu-zhao, HAN Chao, GAO Jie. Arbuscular mycorrhizal fungal infection rates of flora of the Fengfeng mining area coal gob piles and influence on plant Cd content [J]. Acta Prataculturae Sinica, 2020, 29(5): 78-87. |
[7] | Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
[8] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[9] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[10] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[11] | QI Lin, YANG Ying-bo, ZHANG Bo, ZHAO Wei, WANG Xiao-ling, LIU Yu-hua. Arbuscular mycorrhizal fungi (AMF) enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings [J]. Acta Prataculturae Sinica, 2018, 27(12): 103-112. |
[12] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[13] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[14] | LI Fang, LI Yan-Zhong, DUAN Ting-Yu. Effects of interactions between a grass endophyte and an arbuscular mycorrhizal fungus on perennial ryegrass growth [J]. Acta Prataculturae Sinica, 2017, 26(9): 132-140. |
[15] | LIU Fang, JING Shu-Xuan, HU Jian, XIAO Yan, ZHANG Ying-Jun. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2017, 26(2): 69-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||