Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (8): 159-169.DOI: 10.11686/cyxb2023338
Na WEI1,3(), Wen-mao JING1,3, Er-wen XU1,3, Rong-xin WANG1,3, Jing-zhong ZHAO1,3, Xue-e MA1,3, Ji-yu ZHANG2, Wen-xian LIU2()
Received:
2023-09-14
Revised:
2023-11-01
Online:
2024-08-20
Published:
2024-05-13
Contact:
Wen-xian LIU
Na WEI, Wen-mao JING, Er-wen XU, Rong-xin WANG, Jing-zhong ZHAO, Xue-e MA, Ji-yu ZHANG, Wen-xian LIU. Functional analysis of the MaERF058 gene in response to drought stress in Melilotus albus[J]. Acta Prataculturae Sinica, 2024, 33(8): 159-169.
引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|
MsERF058-F | AACCAATGCATTGGATGTACGGAAATAGTAAT |
MsERF058-R | GGATCCCGTTAGGAAACCAATAACTGTCC |
35S-F | CTATCCTTCGCAAGACCCTTC |
MsERF058-R1 | GGATCCCGTTAGGAAACCAATAACTGTCC |
HPT-F | GGTCGCGGAGGCTATGGATGC |
HPT-R | GCTTCTGCGGGCGATTTGTGT |
Table 1 PCR primers used in the experiment
引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|
MsERF058-F | AACCAATGCATTGGATGTACGGAAATAGTAAT |
MsERF058-R | GGATCCCGTTAGGAAACCAATAACTGTCC |
35S-F | CTATCCTTCGCAAGACCCTTC |
MsERF058-R1 | GGATCCCGTTAGGAAACCAATAACTGTCC |
HPT-F | GGTCGCGGAGGCTATGGATGC |
HPT-R | GCTTCTGCGGGCGATTTGTGT |
1 | Licausi F, Ohme-Takagi M, Perata P. APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649. |
2 | Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432. |
3 | Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110. |
4 | Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 1995, 7(2): 173-182. |
5 | Wei N, Zhai Q Y, Li H, et al. Genome-wide identification of ERF transcription factor family and functional analysis of the drought stress-responsive genes in Melilotus albus. International Journal of Molecular Sciences, 2022, 23(19): 12023. |
6 | Zhou Q, Li Y, Wang X, et al. Effects of different drought degrees on physiological characteristics and endogenous hormones of soybean. Plants, 2022, 11(17): 2282. |
7 | Cheng M, Liao P, Kuo W, et al. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 2013, 162(3): 1566-1582. |
8 | Xu Z, Xia L, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 2007, 65(6): 719-732. |
9 | Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, 2010, 8(4): 476-488. |
10 | Yang D, Zhou S, Quan R, et al. Mechanism of plant response to abiotic stresses regulated by AP2/ERF proteins. Journal of Agricultural Science and Technology, 2012, 14(6): 23-29. |
11 | Li Q, Jiang W, Jiang Z, et al. Transcriptome and functional analyses reveal ERF053 from Medicago falcata as key regulator in drought resistances. Frontiers in Plant Science, 2022, 11(13): 995754. |
12 | Zhao M J, Yin L J, Liu Y, et al. The ABA-induced soybean ERF transcription factor gene GmERF75 plays a role in enhancing osmotic stress tolerance in Arabidopsis and soybean. BMC Plant Biology, 2019, 19(1): 1-14. |
13 | Wang H, Ni D, Shen J, et al. Genome-wide identification of the AP2/ERF gene family and functional analysis of GmAP2/ERF144 for drought tolerance in soybean. Frontiers in Plant Science, 2022, 28(13): 848766. |
14 | Stickler F C, Johnson I J. Dry matter and nitrogen production of legumes and legume associations in the fall of the seeding year 1. Agronomy Journal, 1959, 51(3): 135-137. |
15 | Ma Q D, Xu P, Li W J, et al. Method, effect and water-salt dynamics by furrow-ridge to emprove high salinized grassland. Acta Agrestia Sinica, 1997, 5(2): 85-92. |
马其东, 许鹏, 李卫军, 等. 沟垄作种植牧草改良重盐渍草地的效果及其水盐动态. 草地学报, 1997, 5(2): 85-92. | |
16 | Cong J M, Chen F Q, Sun C L. Study on comprehensive development of Metlilotus suaverolens L. Journal of Anhui Agricultural Sciences, 2012, 40(5): 2962-2963. |
丛建民, 陈凤清, 孙春玲. 草木樨综合开发研究. 安徽农业科学, 2012, 40(5): 2962-2963. | |
17 | Wu F. Study on whole genome sequencing and functional genes of key traits in Cleistogenes songorica and Melilotus albus. Lanzhou: Lanzhou University, 2021. |
吴凡. 无芒隐子草和白花草木樨全基因组及其关键性状相关功能基因研究. 兰州: 兰州大学, 2021. | |
18 | Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20(3): 592-609. |
19 | Hu L F, Liu S Q. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetics and Molecular Biology, 2011, 34(4): 624-634. |
20 | Zhang Z S, Jin X Y, Liu Z P, et al. Genome-wide identification of FAD gene family and functional analysis of MsFAD3.1 involved in the accumulation of α-linolenic acid in alfalfa. Crop Science, 2021, 61(4): 566-579. |
21 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 2009, 37: W202-W208. |
22 | Zong X, Wang S, Han Y, et al. Genome-wide profiling of the potential regulatory network of lncRNA and mRNA in Melilotus albus under salt stress. Environmental and Experimental Botany, 2021, 189: 104548. |
23 | Chen J H, Liu W X. Construction and application of a graphic visualization tool for important forage omics data. Acta Prataculturae Sinica, 2024, 33(2): 57-67. |
陈嘉慧, 刘文献. 重要牧草组学数据图形可视化展示工具的构建及应用. 草业学报, 2024, 33(2): 57-67. | |
24 | Wang Q X. Functional analysis of alfalfa SAP22 gene in response to drought stress. Lanzhou: Lanzhou University, 2022. |
王秋霞. 紫花苜蓿SAP22的鉴定及响应干旱胁迫功能分析. 兰州: 兰州大学, 2022. | |
25 | Ma Y T. Identification of alfalfa-specific gene MsASG166 and analysis of its function in response to drought stress. Lanzhou: Lanzhou University, 2022. |
马艺桐. 紫花苜蓿特有基因MsASG166的鉴定及响应干旱胁迫功能分析. 兰州: 兰州大学, 2022. | |
26 | Edwards D J, Grodevant N W, Lee P J, et al. DNA-MAN: dynamic natural attributes for synthetic military forces//IEEE systems and information engineering design symposium. IEEE, 2007, 1(1): 246-250. |
27 | Mao P. Identification of the WRKY gene family in Medicago sativa and functional analysis of MsWRKY100 gene in response to drought stress. Lanzhou: Lanzhou University, 2022. |
毛培. 紫花苜蓿WRKY基因家族鉴定及MsWRKY100基因耐旱功能研究. 兰州: 兰州大学, 2022. | |
28 | Wang S S, Duan Z, Zhang J Y. Establishment of hairy root transformation system of Melilotus albus induced by Agrobacterium rhizogenes. Acta Agrestia Sinica, 2021, 29(11): 2591-2599. |
王升升, 段珍, 张吉宇. 发根农杆菌介导的白花草木樨毛状根转化体系的建立.草地学报, 2021, 29(11): 2591-2599. | |
29 | Luo K, Jahufer M Z Z, Wu F, et al. Genotypic variation in a breeding population of yellow sweet clover (Melilotus officinalis). Frontiers in Plant Science, 2016, 7: 00972. |
30 | Duan Z, Wang S, Zhang Z, et al. The MabHLH11 transcription factor interacting with MaMYB4 acts additively in increasing plant scopolin biosynthesis. The Crop Journal, 2023, 11(6): 1675-1685. |
31 | Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences, 1997, 94(13): 7076-7081. |
32 | Faraji S, Filiz E, Kazemitabar S K, et al. The AP2/ERF gene family in Triticum durum: genome-wide identification and expression analysis under drought and salinity stresses. Genes, 2020, 11(12): 1464. |
33 | Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 2017, 22(1): 53-65. |
34 | Ding S, Cai Z, Du H, et al. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences, 2019, 20(11): 2762. |
35 | Lou X, Yao S, Chen P, et al. Transcriptome identification of R2R3-MYB gene family members in Pinus massoniana and PmMYB4 response to drought stress. Forests, 2023, 14(2): 410. |
36 | Yang S, Zhu H, Huang L, et al. Transcriptome-wide and expression analysis of the NAC gene family in pepino (Solanum muricatum) during drought stress. PeerJ, 2021, 9: e10966. |
37 | Jin Y, Pan W Y, Zheng X F, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Molecular Biology, 2018, 98: 51-65. |
38 | Long H Y, Deng L X. Response and adaptation of plant morphology to drought stress. Hubei Agricultural Science, 2019, 58(8): 5-7. |
龙海燕, 邓伦秀. 植物形态对干旱胁迫的反应与适应性研究. 湖北农业科学, 2019, 58(8): 5-7. | |
39 | Song C P, Agarwal M, Onta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. The Plant Cell, 2005, 17(8): 2384-2396. |
40 | Zhang H B, Li W Z, Chen J, et al. Transcriptional activator TSRF1 reversely regulates pathogen resistance and osmotic stress tolerance in tobacco. Plant Molecular Biology, 2007, 63(1): 63-71. |
41 | Shen H Y, Xiong H C, Guo X T, et al. A new method of Agrobacterium-mediated genetic transformation in peanut plants. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 518-522. |
申红芸, 熊宏春, 郭笑彤, 等. 一种发根农杆菌介导的花生遗传转化新方法. 植物营养与肥料学报, 2012, 18(2): 518-522. | |
42 | Du L, Huang X, Ding L, et al. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytologist, 2023, 237(1): 232-250. |
43 | Luo D, Liu J, Wu Y, et al. NUCLEAR TRANSPORT FACTOR 2‐LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). The Plant Journal, 2022, 112(2): 429-450. |
[1] | Ting-ting ZHANG, Yu-le LIU, Hong CHEN, Ling-xin XU, Xiang-wei CHEN, En-heng WANG, Jun-xin YAN. Effects of different exogenous substances on the seed germination, seedling growth, and physiology of Melilotus suaveolens under salt, alkali, and drought stress [J]. Acta Prataculturae Sinica, 2024, 33(8): 122-132. |
[2] | Lu-jing ZENG, Guo-hua WANG. Effects of drought stress and rehydration on the growth and physiological characteristics of annual herbaceous plants from a desert-oasis ecotone [J]. Acta Prataculturae Sinica, 2024, 33(5): 41-57. |
[3] | Shuo LI, Pei-ying LI, Zong-jiu SUN, Wen LI. Transcriptome analysis-based bermudagrass root RNA sequencing data under drought stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 186-198. |
[4] | Yu-zhu LI, Jiang-di YU, Fei-fei DING, Jia-min MIAO, Xiao-ming BAI, Shang-li SHI. Progress in studies of molecular mechanisms and applications of somatic cell regeneration during genetic transformation [J]. Acta Prataculturae Sinica, 2024, 33(2): 198-211. |
[5] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[6] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[7] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[8] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[9] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[10] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[11] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[12] | Zhan-jun WANG, Bo JI, Tong JI, Qi JIANG. An evaluation of drought resistance of five forage legumes based on a quantile model [J]. Acta Prataculturae Sinica, 2023, 32(10): 187-199. |
[13] | Mu-ye LIU, Li-zhu GUO, Yue-sen YUE, Ju-ying WU, Xi-feng FAN, Guo-zeng XIAO, Ke TENG. Physiological and antioxidant enzyme gene expression differences between female and male Buchloe dactyloides plants under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 93-103. |
[14] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[15] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||