Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (2): 149-162.DOI: 10.11686/cyxb2024110
Jing-jing MAI1(), Qi-sheng FENG1(), Rui-jing WANG2, Sen-yao FENG3, Zhe-ren JIN4, Zhong-xue ZHANG1, Tian-gang LIANG1, Jia-ming JIN5
Received:
2024-04-09
Revised:
2024-06-20
Online:
2025-02-20
Published:
2024-11-27
Contact:
Qi-sheng FENG
Jing-jing MAI, Qi-sheng FENG, Rui-jing WANG, Sen-yao FENG, Zhe-ren JIN, Zhong-xue ZHANG, Tian-gang LIANG, Jia-ming JIN. Construction of a high-precision cultivated land identification model based on machine learning-using Zhangye City, Gansu Province as an example[J]. Acta Prataculturae Sinica, 2025, 34(2): 149-162.
编号Number | 特征类型组合Feature type combinations |
---|---|
1 | 光谱Spectrum |
2 | 光谱+雷达Spectrum+synthetic aperture radar (SAR) |
3 | 光谱+植被指数Spectrum+vegetation index |
4 | 植被指数+雷达Vegetation index+SAR |
5 | 光谱+植被指数+雷达Spectrum+vegetation index+SAR |
6 | 植被指数+雷达+土壤Vegetation index+SAR+soil |
7 | 植被指数+雷达+地形Vegetation index+SAR+topography |
8 | 植被指数+雷达+地形+土壤Vegetation index+SAR+topography+soil |
9 | 全部特征类型组合All feature types |
Table 1 9 groups of different feature type combinations
编号Number | 特征类型组合Feature type combinations |
---|---|
1 | 光谱Spectrum |
2 | 光谱+雷达Spectrum+synthetic aperture radar (SAR) |
3 | 光谱+植被指数Spectrum+vegetation index |
4 | 植被指数+雷达Vegetation index+SAR |
5 | 光谱+植被指数+雷达Spectrum+vegetation index+SAR |
6 | 植被指数+雷达+土壤Vegetation index+SAR+soil |
7 | 植被指数+雷达+地形Vegetation index+SAR+topography |
8 | 植被指数+雷达+地形+土壤Vegetation index+SAR+topography+soil |
9 | 全部特征类型组合All feature types |
识别特征Feature | 特征重要性Feature importance |
---|---|
海拔Elevation | 8771.81 |
VH, 雷达特征中的VH极化Synthetic aperture radar features VH polarization | 8210.86 |
归一化水指数Normalized difference water index, NDWI | 8128.18 |
简单比值Sample ratio, SR | 7979.18 |
VV, 雷达特征中的VV极化Synthetic aperture radar features VV polarization | 7978.85 |
归一化物候指数Normalized difference phenology index, NDPI | 7947.32 |
土壤调整植被指数Soil adjusted vegetation index, SAVI | 7896.25 |
Table 2 Rank of feature importance
识别特征Feature | 特征重要性Feature importance |
---|---|
海拔Elevation | 8771.81 |
VH, 雷达特征中的VH极化Synthetic aperture radar features VH polarization | 8210.86 |
归一化水指数Normalized difference water index, NDWI | 8128.18 |
简单比值Sample ratio, SR | 7979.18 |
VV, 雷达特征中的VV极化Synthetic aperture radar features VV polarization | 7978.85 |
归一化物候指数Normalized difference phenology index, NDPI | 7947.32 |
土壤调整植被指数Soil adjusted vegetation index, SAVI | 7896.25 |
模型 Model | 总精度 Overall accuracy | 用户精度 User’s accuracy | 生产者精度 Producer’s accuracy | 卡帕系数 Kappa coefficient |
---|---|---|---|---|
随机森林Random forest, RF | 0.9004 | 0.9540 | 0.9747 | 0.7944 |
支持向量机Support vector machine, SVM | 0.8868 | 0.9466 | 0.9694 | 0.7660 |
分类回归树Classification and regression trees, CART | 0.8547 | 0.9467 | 0.9494 | 0.7054 |
Table 3 Comparison of accuracy of random forest, support vector machine, and classification and regression tree
模型 Model | 总精度 Overall accuracy | 用户精度 User’s accuracy | 生产者精度 Producer’s accuracy | 卡帕系数 Kappa coefficient |
---|---|---|---|---|
随机森林Random forest, RF | 0.9004 | 0.9540 | 0.9747 | 0.7944 |
支持向量机Support vector machine, SVM | 0.8868 | 0.9466 | 0.9694 | 0.7660 |
分类回归树Classification and regression trees, CART | 0.8547 | 0.9467 | 0.9494 | 0.7054 |
1 | Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment, 2008, 112(3): 1096-1116. |
2 | Clark M L, Aide T M, Grau H R, et al. A scalable approach to mapping annual land cover at 250 m using MODIS time series data: A case study in the Dry Chaco ecoregion of South America. Remote Sensing of Environment, 2010, 114(11): 2816-2832. |
3 | Johnson D M. Using the Landsat archive to map crop cover history across the United States. Remote Sensing of Environment, 2019, 232: 111286. |
4 | Gong P, Wang J, Yu L, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 2013, 34(7): 2607-2654. |
5 | Du B J, Zhang J, Wang Z M, et al. Crop mapping based on Sentinel-2A NDVI time series using object-oriented classification and decision tree model. Journal of Geo-information Science, 2019, 21(5): 740-751. |
杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类. 地球信息科学学报, 2019, 21(5): 740-751. | |
6 | Valero S, Morin D, Inglada J, et al. Processing Sentinel-2 image time series for developing a real-time cropland mask//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: Institute of Electrical and Electronics Engineers, 2015: 2731-2734. |
7 | Xiong J, Thenkabail P, Tilton J, et al. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sensing, 2017, 9(10): 1065. |
8 | Xiong X L, Hu Y M, Wen N, et al. Progress and prospect of cultivated land extraction research using remote sensing. Journal of Agricultural Resources and Environment, 2020, 37(6): 856-865. |
熊曦柳, 胡月明, 文宁, 等. 耕地遥感识别研究进展与展望. 农业资源与环境学报, 2020, 37(6): 856-865. | |
9 | Wu B, Zhang M, Zeng H, et al. Challenges and opportunities in remote sensing-based crop monitoring: a review. National Science Review, 2023, 10(4): nwac290. https://academic.oup.com/nsr/article/10/4/nwac290/6939854. |
10 | Liu C, Chen Z, Shao Y, et al. Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 2019, 18(3): 506-525. |
11 | Song Q, Zhou Q B, Wu W B, et al. Recent progresses in research of integrating multi-source remote sensing data for crop mapping. Scientia Agricultura Sinica, 2015, 48(6): 1122-1135. |
宋茜, 周清波, 吴文斌, 等. 农作物遥感识别中的多源数据融合研究进展. 中国农业科学, 2015, 48(6): 1122-1135. | |
12 | Orynbaikyzy A, Gessner U, Conrad C. Crop type classification using a combination of optical and radar remote sensing data: a review. International Journal of Remote Sensing, 2019, 40(17): 6553-6595. |
13 | Sun C, Bian Y, Zhou T, et al. Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors, 2019, 19(10): 2401. |
14 | Guo J, Zhu L, Jin B, et al. Crop classification based on data fusion of Sentinel-1 and Sentinel-2. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 192-198. |
郭交, 朱琳, 靳标, 等. 基于Sentinel-1和Sentinel-2数据融合的农作物分类. 农业机械学报, 2018, 49(4): 192-198. | |
15 | Lin C J, Liu Z H, Hu Y M, et al. Cultivated land extraction based on Google Earth Engine multisource data. Southwest China Journal of Agricultural Sciences, 2022, 35(10): 2372-2378. |
林陈捷, 刘振华, 胡月明, 等. 基于Google Earth Engine多源数据的耕地提取研究. 西南农业学报, 2022, 35(10): 2372-2378. | |
16 | Maxwell A E. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 2018, 39(9): 2784-2817. |
17 | Pazúr R, Huber N, Weber D, et al. A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data. Earth System Science Data, 2022, 14(1): 295-305. |
18 | Rawat S, Saini R. Cropland mapping using single date Sentinel-2 imagery using machine learning classifiers//2022 International Conference on Advances in Computing, Communication and Materials (ICACCM). Dehradun, India: Institute of Electrical and Electronics Engineers, 2022: 1-7. |
19 | Savitha C, Talari R. Mapping cropland extent using Sentinel-2 datasets and machine learning algorithms for an agriculture watershed. Smart Agricultural Technology, 2023(4): 100193. |
20 | Wang R, Feng Q, Jin Z, et al. Identification and area information extraction of oat pasture based on GEE-A case study in the Shandan racecourse (China). Remote Sensing, 2022, 14(17): 4358. |
21 | Zhang J, Zhang X, Tian L, et al. The support vector machine method for RS images’ classification in northwest arid area. Science of Surveying and Mapping, 2017, 42(1): 49-52, 58. |
张静, 张翔, 田龙, 等. 西北旱区遥感影像分类的支持向量机法. 测绘科学, 2017, 42(1): 49-52, 58. | |
22 | Fu D J, Xiao H, Su F Z, et al. Remote sensing cloud computing platform development and earth science application. National Remote Sensing Bulletin, 2021, 25(1): 220-230. |
付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用. 遥感学报, 2021, 25(1): 220-230. | |
23 | Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 152-170. |
24 | Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m Landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325-340. |
25 | Pan L, Xia H M, Wang R M, et al. Mapping of the winter crop planting areas in Huaihe river basin based on Google Earth Engine. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 211-218. |
潘力, 夏浩铭, 王瑞萌, 等. 基于Google Earth Engine的淮河流域越冬作物种植面积制图. 农业工程学报, 2021, 37(18): 211-218. | |
26 | Han J, Zhang Z, Cao J, et al. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 2020, 12(2): 236. |
27 | Chen X Y, Zhang H P, Hu J L. Current status and promotion measures of Zhangye City’s grain-forage transformation work. China Dairy Cattle, 2022(1): 40-42. |
陈晓燕, 张和平, 胡江林. 张掖市粮改饲工作现状及推进措施. 中国奶牛, 2022(1): 40-42. | |
28 | Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission. Reviews of Geophysics, 2007, 45(2): RG2004.doi:10.1029/2005RG000183. |
29 | Poggio L, de Sousa L M, Batjes N H, et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 2021,7(1): 217-240. |
30 | Cao X, Chen X H, Zhang W W, et al. Global cultivated land mapping at 30 m spatial resolution. Scientia Sinica (Terrae), 2016, 46(11): 1426-1435. |
曹鑫, 陈学泓, 张委伟, 等. 全球30 m空间分辨率耕地遥感制图研究. 中国科学: 地球科学, 2016, 46(11): 1426-1435. | |
31 | Dong J, Xiao X, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016, 185: 142-154. |
32 | Breiman L. Random forests. Machine Learning, 2001, 45: 5-32. |
33 | Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests. Journal of Statistics and Information, 2011, 26(3): 32-38. |
方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述. 统计与信息论坛, 2011, 26(3): 32-38. | |
34 | Zhang B H, Zhang Y L, Gu C J, et al. Land cover classification based on random forest and feature optimism in the Southeast Qinghai-Tibet Plateau. Scientia Geographica Sinica, 2023, 43(3): 388-397. |
张炳华, 张镱锂, 谷昌军, 等. 基于随机森林与特征选择的藏东南土地覆被分类方法及精度评价. 地理科学, 2023, 43(3): 388-397. | |
35 | Cortes C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273-297. |
36 | Yang X F, Tureniguli·Amuti. Study of SVM classification method optimized by artificial bee colony algorithm: A case study of the Ancient Manasi Lake Basin. Geography and Geo-Information Science, 2018, 34(4): 40-45. |
杨雪峰, 吐热尼古丽·阿木提. 基于人工蜂群算法优化的SVM遥感分类方法——以玛纳斯湖古湖盆为例. 地理与地理信息科学, 2018, 34(4): 40-45. | |
37 | Breiman L, Friedman J, Olshen R A, et al. Classification and regression trees. Monterey, California, U.S.A.: Wadsworth International Group, 1984. |
38 | Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37(1): 35-46. |
39 | Karra K, Kontgis C, Statman-Weil Z, et al. Global land use/land cover with Sentinel 2 and deep learning//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: Institute of Electrical and Electronics Engineers, 2021: 4704-4707. |
40 | Zanaga D, Van De Kerchove R, Daems D, et al. ESA WorldCover 10 m 2021 v200. Zenodo. 2022, https://doi.org/10.5281/zenodo.7254221. |
41 | Feng S, Li W, Xu J, et al. Land use/land cover mapping based on GEE for the monitoring of changes in ecosystem types in the upper Yellow River Basin over the Tibetan Plateau. Remote Sensing, 2022, 14(21): 5361. |
42 | Palanisamy P A, Jain K, Bonafoni S. Machine learning classifier evaluation for different input combinations: A case study with Landsat 9 and Sentinel-2 data. Remote Sensing, 2023, 15(13): 3241. |
43 | Qian X, Li P X, Xie H Q, et al. Crop information extraction and water demand analysis based on Sentinel-2 remote sensing image. Water Saving Irrigation, 2022(5): 33-38, 46. |
钱鑫, 李培显, 谢宏全, 等. 基于Sentinel-2遥感影像的作物信息提取与需水量分析研究. 节水灌溉, 2022(5): 33-38, 46. | |
44 | Li H Y, He R B, Xie M D, et al. Influence of natural and anthropogenic factors on soil organic matter content in farmland. Chinese Journal of Soil Science, 2023, 54(5): 1050-1059. |
李洪义, 贺任彬, 谢模典, 等. 自然和人为因素对耕地土壤有机质含量影响的研究. 土壤通报, 2023, 54(5): 1050-1059. | |
45 | Chakhar A, Hernández-López D, Ballesteros R, et al. Improving the accuracy of multiple algorithms for crop classification by integrating Sentinel-1 observations with Sentinel-2 data. Remote Sensing, 2021, 13(2): 243. |
46 | Blickensdörfer L, Schwieder M, Pflugmacher D, et al. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 2022, 269: 112831. |
47 | Mu Y X, Wu M Q, Niu Z, et al. Method of remote sensing extraction of cultivated land area under complex conditions in southern region. Remote Sensing Technology and Application, 2020, 35(5): 1127-1135. |
牟昱璇, 邬明权, 牛铮, 等. 南方地区复杂条件下的耕地面积遥感提取方法. 遥感技术与应用, 2020, 35(5): 1127-1135. | |
48 | Xie D, Xu H, Xiong X, et al. Cropland extraction in southern China from very high-resolution images based on deep learning. Remote Sensing, 2023, 15(9): 2231. |
49 | Wang M, Zhang X C, Wang J Y, et al. Forest resource classification based on random forest and object-oriented method. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 235-244. |
王猛, 张新长, 王家耀, 等. 结合随机森林面向对象的森林资源分类. 测绘学报, 2020, 49(2): 235-244. | |
50 | Gu H Y, Yan L, Li H T, et al. An object-based automatic interpretation method for geographic features based on random forest machine learning. Geomatics and Information Science of Wuhan University, 2016, 41(2): 228-234. |
顾海燕, 闫利, 李海涛, 等. 基于随机森林的地理要素面向对象自动解译方法. 武汉大学学报(信息科学版), 2016, 41(2): 228-234. |
[1] | Zhi-gui YANG, Jian-guo ZHANG, Jin-rong LI, Hong-yan YU, Li CHANG, Shu-hua YI, Yan-yan LYU, Yu-zhuo ZHANG, Bao-ping MENG. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years [J]. Acta Prataculturae Sinica, 2023, 32(9): 1-16. |
[2] | Hui-long ZHANG, Xiu-chun YANG, Dong YANG, Ang CHEN, Min ZHANG. Spatio-temporal changes in grassland fractional vegetation cover in Inner Mongolia from 2000 to 2020 and a future forecast [J]. Acta Prataculturae Sinica, 2023, 32(8): 1-13. |
[3] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[4] | Chun-li MIAO, Zhong-xian LI, Zhi-cheng ZHAO, Shuai FU, Jin-long GAO, Jie LIU, Qi-sheng FENG, Tian-gang LIANG. Real-time monitoring and analysis algorithm for key biophysical indicators of cultivated alfalfa in a grassland intelligent perception system [J]. Acta Prataculturae Sinica, 2023, 32(12): 90-103. |
[5] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[6] | Yi-han ZHAO, Meng-jing HOU, Qi-sheng FENG, Hong-yuan GAO, Tian-gang LIANG, Jin-sheng HE, Da-wen QIAN. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach [J]. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
[7] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[8] | Zhe-ren JIN, Qi-sheng FENG, Rui-jing WANG, Tian-gang LIANG. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning [J]. Acta Prataculturae Sinica, 2022, 31(10): 1-17. |
[9] | WANG Suo-Min, CUI Yan-Nong, LIU Jin-Xiang, XIA Zeng-Run. Research progress on seagrass and seagrass ecosystems [J]. Acta Prataculturae Sinica, 2016, 25(11): 149-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||