Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 90-103.DOI: 10.11686/cyxb2023046
Previous Articles Next Articles
Chun-li MIAO1(), Zhong-xian LI2, Zhi-cheng ZHAO3, Shuai FU1, Jin-long GAO1, Jie LIU1, Qi-sheng FENG1, Tian-gang LIANG1()
Received:
2023-02-13
Revised:
2023-05-04
Online:
2023-12-20
Published:
2023-10-18
Contact:
Tian-gang LIANG
Chun-li MIAO, Zhong-xian LI, Zhi-cheng ZHAO, Shuai FU, Jin-long GAO, Jie LIU, Qi-sheng FENG, Tian-gang LIANG. Real-time monitoring and analysis algorithm for key biophysical indicators of cultivated alfalfa in a grassland intelligent perception system[J]. Acta Prataculturae Sinica, 2023, 32(12): 90-103.
月份 Month | 采样地点 Sampling locations | 灌溉情况 Irrigation condition | 样本 数量 Sample size | 平均盖度 The average coverage (%) | 产量Yield (kg·hm-2) | |||
---|---|---|---|---|---|---|---|---|
平均 Average | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | |||||
5 | 甘肃河西地区Hexi corridor, Gansu (2020,2021) | 人工Artificial | 69 | 96.29 | 5362.81 | 6010.40 | 1164.80 | 1934.90 |
7 | 甘肃陇东Eastern Gansu、宁夏南部Southern Ningxia (2018,2019) | 旱作Dry farming | 28 | 69.70 | 2588.42 | 2902.80 | 483.80 | 1386.49 |
新疆Xinjiang (2018)、内蒙古Inner Mongolia (2019)、甘肃河西地区Hexi corridor, Gansu (2020) | 人工Artificial | 38 | 82.45 | 3822.21 | 5157.33 | 732.00 | 2158.86 | |
8 | 甘肃陇东、宁夏南部Eastern Gansu, Southern Ningxia (2021) | 旱作Dry farming | 18 | 91.55 | 3987.57 | 6566.53 | 1810.93 | 1436.25 |
9 | 甘肃河西地区Hexi corridor, Gansu (2021) | 人工Artificial | 32 | 95.00 | 3507.26 | 2902.80 | 1172.90 | 1380.26 |
Table 1 Statistical analysis of field observation data of key biophysical indicators of cultivated alfalfa from 2018 to 2021
月份 Month | 采样地点 Sampling locations | 灌溉情况 Irrigation condition | 样本 数量 Sample size | 平均盖度 The average coverage (%) | 产量Yield (kg·hm-2) | |||
---|---|---|---|---|---|---|---|---|
平均 Average | 最大值 Maximum | 最小值 Minimum | 标准差 Standard deviation | |||||
5 | 甘肃河西地区Hexi corridor, Gansu (2020,2021) | 人工Artificial | 69 | 96.29 | 5362.81 | 6010.40 | 1164.80 | 1934.90 |
7 | 甘肃陇东Eastern Gansu、宁夏南部Southern Ningxia (2018,2019) | 旱作Dry farming | 28 | 69.70 | 2588.42 | 2902.80 | 483.80 | 1386.49 |
新疆Xinjiang (2018)、内蒙古Inner Mongolia (2019)、甘肃河西地区Hexi corridor, Gansu (2020) | 人工Artificial | 38 | 82.45 | 3822.21 | 5157.33 | 732.00 | 2158.86 | |
8 | 甘肃陇东、宁夏南部Eastern Gansu, Southern Ningxia (2021) | 旱作Dry farming | 18 | 91.55 | 3987.57 | 6566.53 | 1810.93 | 1436.25 |
9 | 甘肃河西地区Hexi corridor, Gansu (2021) | 人工Artificial | 32 | 95.00 | 3507.26 | 2902.80 | 1172.90 | 1380.26 |
模型 Model | 样本量 Number of samples | 训练集Train set | 测试集Test set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (%) | AC (%) | R2 | RMSE (%) | AC (%) | ||
U-Net | 1124 | 1 | 0.06 | 98 | 0.99 | 1.44 | 92 |
Table 2 Parameters of inversion model for cultivated alfalfa grassland coverage
模型 Model | 样本量 Number of samples | 训练集Train set | 测试集Test set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (%) | AC (%) | R2 | RMSE (%) | AC (%) | ||
U-Net | 1124 | 1 | 0.06 | 98 | 0.99 | 1.44 | 92 |
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors | X、Y、h | 0.03 | 4642.21 | 0.06 | 4617.09 |
生物物理指标Biophysical indicators of plants | H、C、H×C | 0.62 | 1221.78 | 0.62 | 1271.58 |
环境因子、生物物理指标Environmental factors and biophysical indicators | X、Y、h、H、C、H×C | 0.64 | 1189.00 | 0.63 | 1218.15 |
Table 3 10-fold cross-validation of MLR estimation model based on environmental factors and vegetation biophysical indicators
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors | X、Y、h | 0.03 | 4642.21 | 0.06 | 4617.09 |
生物物理指标Biophysical indicators of plants | H、C、H×C | 0.62 | 1221.78 | 0.62 | 1271.58 |
环境因子、生物物理指标Environmental factors and biophysical indicators | X、Y、h、H、C、H×C | 0.64 | 1189.00 | 0.63 | 1218.15 |
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors (E) | X、Y、h | 0.87 | 837.96 | 0.37 | 1623.17 |
植物生物物理指标Biophysical indicators of plants (B) | H、C、H×C | 0.91 | 634.56 | 0.65 | 1216.24 |
E×B | X、Y、h、H、C、H×C | 0.94 | 536.09 | 0.69 | 1151.24 |
Table 4 10-fold cross-validation of RF estimation model based on enviromental factors and vegetation biophysical indicators
因子 Factors | 变量 Variables | 训练集Train set | 测试集Test set | ||
---|---|---|---|---|---|
R2 | RMSE (kg·hm-2) | R2 | RMSE (kg·hm-2) | ||
环境因子Environmental factors (E) | X、Y、h | 0.87 | 837.96 | 0.37 | 1623.17 |
植物生物物理指标Biophysical indicators of plants (B) | H、C、H×C | 0.91 | 634.56 | 0.65 | 1216.24 |
E×B | X、Y、h、H、C、H×C | 0.94 | 536.09 | 0.69 | 1151.24 |
1 | Zhang C M, Wang C Z, Hu X F, et al. Research progress on nutritional value and application of alfalfa. China Feed, 2005, 38(1): 15-17. |
张春梅, 王成章, 胡喜峰, 等. 紫花苜蓿的营养价值及应用研究进展. 中国饲料, 2005, 38(1): 15-17. | |
2 | Yang Q C, Sun Y. The history, current situation and development of alfalfa breeding in China. Chinese Journal of Grassland, 2011, 33(6): 95-101. |
杨青川, 孙彦. 中国苜蓿育种的历史、现状与发展趋势. 中国草地学报, 2011, 33(6): 95-101. | |
3 | Li X L, Wan L Q. Research progress on Medicago sativa silage technology. Acta Prataculturae Sinica, 2005, 14(2): 9-15. |
李向林, 万里强. 苜蓿青贮技术研究进展. 草业学报, 2005, 14(2): 9-15. | |
4 | Zhao C J. State-of-the-art and recommended developmental strategic objectives of smart agriculture. Smart Agriculture, 2019, 1(1): 1-7. |
赵春江. 智慧农业发展现状及战略目标研究. 智慧农业, 2019, 1(1): 1-7. | |
5 | Sun K T, Wang X L, Jiang D W, et al. 2030 scientific and technological breakthrough plan in the field of agriculture and food in the United States and its enlightenment. Global Science, Technology and Economy Outlook, 2020, 35(11): 25-32. |
孙康泰, 王小龙, 蒋大伟, 等. 美国农业和食品领域2030科技突破计划及启示. 全球科技经济瞭望, 2020, 35(11): 25-32. | |
6 | Liu X, Li W H, Zhao C J, et al. High-quality development of modern smart ecological agriculture. Strategic Study of CAE, 2022, 24(1): 38-45. |
刘旭, 李文华, 赵春江, 等. 面向2050年我国现代智慧生态农业发展战略研究. 中国工程科学, 2022, 24(1): 38-45. | |
7 | Wu W B, Shi Y, Duan Y L, et al. The precise management of orchard production driven by the remote sensing big data with the SAGI. China Agricultural Informatics, 2019, 31(4): 1-9. |
吴文斌, 史云, 段云林, 等. 天空地遥感大数据赋能果园生产精准管理. 中国农业信息, 2019, 31(4): 1-9. | |
8 | Li Y, Zhang W W, Jiang F, et al. Air, space and earth integrated smart agricultural service and management platform. Geomatics & Spatial Information Technology, 2022, 45(2): 132-134. |
李岩, 张雯雯, 姜飞, 等. 空天地一体化智慧农业服务与管理平台. 测绘与空间地理信息, 2022, 45(2): 132-134. | |
9 | Liu P Z, Meng X W, Tian P, et al. Design of a precision agriculture information perception system based on the internet of things. Computer Engineering & Science, 2012, 34(3): 137-141. |
柳平增, 孟祥伟, 田盼, 等. 基于物联网的精准农业信息感知系统设计. 计算机工程与科学, 2012, 34(3): 137-141. | |
10 | Zhang J N, Zhang X F, Jian M, et al. Crop covering algorithm using convolution neural network based on prior threshold optimization. Journal of Signal Processing, 2012, 33(9): 1230-1238. |
张加楠, 张雪芬, 简萌, 等. 先验阈值优化卷积神经网络的作物覆盖度提取算法. 信号处理, 2012, 33(9): 1230-1238. | |
11 | Fu S, Feng Q S, Dang J Y, et al. Comparison of grassland vegetation coverage extraction algorithms from UAV technology. Pratacultural Science, 2022, 39(3): 455-464. |
伏帅, 冯琦胜, 党菁阳, 等. 基于无人机图像的草地植被盖度估算方法比较. 草业科学, 2022, 39(3): 455-464. | |
12 | Zhou T, Hu Z Q, Han J Z, et al. Green vegetation extraction based on visible light image of UAV. China Environmental Science, 2021, 41(5): 2380-2390. |
周涛, 胡振琪, 韩佳政, 等. 基于无人机可见光影像的绿色植被提取. 中国环境科学, 2021, 41(5): 2380-2390. | |
13 | Li B, Xu X M, Han J W, et al. The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 2020, 16(1): 1-12. |
14 | Deng L X. Application of UAV images in monitoring flowering coverage and insect visiting activities of wetland plant communities. Wuhan: Wuhan University, 2022. |
邓璐希. 无人机影像用于监测湿地植物群落开花覆盖度与昆虫访花活动. 武汉: 武汉大学, 2022. | |
15 | Wang C B. Research of corn vegetation fraction based on UAV visible spectrum. Kunming: Kunming University of Science and Technology, 2017. |
王成波. 基于无人机可视光谱的玉米植被覆盖度研究. 昆明: 昆明理工大学, 2017. | |
16 | Wang K N, Wang X X. Research on winter wheat yield estimation with the multiply remote sensing vegetation index combination. Journal of Arid Land Resources and Environment, 2017, 32(3): 44-49. |
王恺宁, 王修信. 多植被指数组合的冬小麦遥感估产方法研究. 干旱区资源与环境, 2017, 32(3): 44-49. | |
17 | Zhu Z C, Chen L Q, Zhang J S, et al. Division of winter wheat yield estimation by remote sensing based on MODIS EVI time series data and spectral angle clustering. Spectroscopy and Spectral Analysis, 2012, 32(7): 1899-1903. |
朱再春, 陈联裙, 张锦水, 等. MODIS EVI 时间序列数据和光谱角聚类的冬小麦遥感估产分区方法研究. 光谱学与光谱分析, 2012, 32(7): 1899-1903. | |
18 | Li H. Rice growth monitoring and yield forecasting through HJ-1A/B image. Hefei: Anhui Agricultural University, 2013. |
李花. HJ-1A/B遥感监测水稻长势与产量的研究. 合肥: 安徽农业大学, 2013. | |
19 | An M L. Study on of spring maize-yield estimation of Ganzhou District by remote sensing in the middle reaches of Heihe River. Lanzhou: Northwest Normal University, 2015. |
安美玲. 黑河中游甘州区春玉米遥感估产研究. 兰州: 西北师范大学, 2015. | |
20 | Cheng Y F. Study of remote sensing cotton yield estimation model in north of Xinjiang. Urumqi: Xinjiang University, 2012. |
程乙峰. 新疆北疆棉花遥感估产模型研究. 乌鲁木齐: 新疆大学, 2012. | |
21 | A R N. The potato yield estimation and it’s accuracy accessment using multi-source remote sensing data. Hohhot: Inner Mongolia Normal University, 2015. |
阿茹娜. 基于多源遥感数据的马铃薯估产与精度评估. 呼和浩特: 内蒙古师范大学, 2015. | |
22 | Yuan H, Yang G, Li C, et al. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sensing, 2017, 9(4): 309. |
23 | Jing X, Zhang J, Wang J J, et al. Comparison of machine learning algorithms for remote sensing monitoring of rice yields. Spectroscopy and Spectral Analysis, 2022, 42(5): 1620-1627. |
竞霞, 张杰, 王娇娇, 等. 水稻产量遥感监测机器学习算法对比. 光谱学与光谱分析, 2022, 42(5): 1620-1627. | |
24 | Yin H M, Guli J P E, Yu T, et al. Wheat yield estimation with remote sensing in Northern Kazakhstan. Arid Land Geography, 2022, 45(2): 488-498. |
尹瀚民, 古丽·加帕尔, 于涛, 等. 哈萨克斯坦北部小麦估产方法研究. 干旱区地理, 2022, 45(2): 488-498. | |
25 | Yu X H, Zhao W Q, Zhu Z C, et al. Research in crop yield estimation models on different scales based on remote sensing and crop growth model. Spectroscopy and Spectral Analysis, 2021, 41(7): 2205-2211. |
余新华, 赵维清, 朱再春, 等. 基于遥感数据和作物生长模型的多尺度冬小麦估产研究. 光谱学与光谱分析, 2021, 41(7): 2205-2211. | |
26 | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation//International conference on medical image computing and computer assisted intervention. Heidelberg, Germany: Springer, 2015: 234-241. |
27 | Liang H, Gui J, Hua Y, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods, 2019, 15: 10. |
28 | Meng B, Gao J, Liang T, et al. Modeling of alpine grassland cover based on unmanned aerial vehicle technology and multi-factor methods: A case study in the east of Tibetan Plateau, China. Remote Sensing, 2018, 10(2): 320. |
29 | Park D, El-sharkawi M, Marks R, et al. Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 1991(2): 442-449. |
30 | Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32. |
31 | Liaw A, Wiener M. Classification and regression by random forest. R News, 2002, 2(3): 18-22. |
32 | Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment, 2005, 95(2): 177-194. |
33 | Chen J, Yang Z Y, Li Z G. Design and implementation expert system of apple precise management. Science Technology and Engineering, 2011, 11(6): 1231-1236. |
陈健, 杨志义, 李志刚. 苹果精准管理专家系统的设计与实现. 科学技术与工程, 2011, 11(6): 1231-1236. | |
34 | Wang X D. Design and implementation of farmland intelligent irrigation system based on WSN. Harbin: Northeast Agricultural University, 2018. |
王旭东. 基于WSN的农田智能灌溉系统的设计与实现. 哈尔滨: 东北农业大学, 2018. | |
35 | Zheng L H, Li M Z, Ji R H, et al. Development of soil moisture management models based on GIS for farmland and its application. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(Supp.2): 13-17. |
郑立华, 李民赞, 冀荣华, 等. 基于GIS的农田土壤水分状况管理模型及应用. 农业工程学报, 2009, 25(增刊2): 13-17. | |
36 | Yu G X, Wang W X, Xie J X, et al. Information acquisition and expert decision system in litchi based on internet of things. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 144-152. |
余国雄, 王卫星, 谢家兴, 等. 基于物联网的荔枝园信息获取与智能灌溉专家决策系统. 农业工程学报, 2016, 32(20): 144-152. | |
37 | Yu Z H. Research on automatic observation technology of maize development stage based on image. Wuhan: Huazhong University of Science and Technology, 2014. |
余正泓. 基于图像的玉米发育期自动观测技术研究. 武汉: 华中科技大学, 2014. | |
38 | Yan J C. Technology on remote automatic monitoring of crop canopy coverage and height. Hangzhou: Zhejiang Sci-Tech University, 2016. |
严锦程. 作物冠层覆盖率、株高的远程自动监测技术. 杭州: 浙江理工大学, 2016. | |
39 | Wu Z L, Liang D, Zhao J L, et al. Image segemention method for Achnatherum splendens coverage based on UAV remote sensing image. Transducer and Microsystem Technologies, 2018, 37(4): 51-53. |
吴赵丽, 梁栋, 赵晋陵, 等. 基于无人机遥感影像芨芨草盖度的图像分割方法. 传感器与微系统, 2018, 37(4): 51-53. | |
40 | Zhao X Y, Chen J J, Zhang K Q, et al. Automatic extraction of vegetation coverage from unmanned aerial vehicle images based on HSV and Otsu algorithm. Science Technology and Engineering, 2021(35): 15160-15166. |
赵晓宇, 陈建军, 张凯琪, 等. 基于 HSV 色彩空间和 Otsu算法的无人机影像植被覆盖度自动提取. 科学技术与工程, 2021(35): 15160-15166. | |
41 | Li R, Li C J, Xu X G, et al. Winter wheat yield estimation based on support vector machine regression and multi-temporal remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 114-117. |
黎锐, 李存军, 徐新刚, 等. 基于支持向量回归(SVR)和多时相遥感数据的冬小麦估产. 农业工程学报, 2009, 25(7): 114-117. | |
42 | Guo F C, Chen Z W, Zhang Z G. Research on remote sensing estimation of forage above-ground biomass based on optimal model selection. Acta Agrestia Sinica, 2021, 29(5): 946-955. |
郭凡超, 陈泽威, 张志高. 基于最优模型选择的牧草地上生物量遥感估算研究. 草地学报, 2021, 29(5): 946-955. | |
43 | Mohsen A, Davoud A, Hossein A, et al. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sensing Applications: Society and Environment, 2022, 25: 100657. |
44 | Wang J G, Lv X D, Yao G P, et al. Estimation of fresh forage yield of mixed sowing pastures of alfalfa and smooth-brome with hyperspectral remote sensing. Chinese Journal of Grassland, 2013, 35(1): 35-41. |
王建光, 吕小东, 姚贵平, 等. 苜蓿和无芒雀麦混播草地高光谱遥感估产研究. 中国草地学报, 2013, 35(1): 35-41. | |
45 | Gao H Y, Hou M J, Ge J, et al. Hyperspectral estimation of aboveground biomass of alpine grassland based on random forest algorithm. Acta Agrestia Sinica, 2021, 29(8): 1757-1768. |
高宏元, 侯蒙京, 葛静, 等. 基于随机森林的高寒草地地上生物量高光谱估算. 草地学报, 2021, 29(8): 1757-1768. | |
46 | Cui M R. Machine learning-based hyperspectral estimation of potato yield. Hohhot: Inner Mongolia Agricultural University, 2022. |
崔孟然. 基于机器学习的马铃薯产量高光谱估算. 呼和浩特: 内蒙古农业大学, 2022. | |
47 | Yang B P, Chen S B, Yu H Y, et al. Remote sensing estimation of rice yield based on random forest regression method. Journal of China Agricultural University, 2020, 25(6): 26-34. |
杨北萍, 陈圣波, 于海洋, 等. 基于随机森林回归方法的水稻产量遥感估算. 中国农业大学学报, 2020, 25(6): 26-34. |
[1] | Zhi-gui YANG, Jian-guo ZHANG, Jin-rong LI, Hong-yan YU, Li CHANG, Shu-hua YI, Yan-yan LYU, Yu-zhuo ZHANG, Bao-ping MENG. Spatiotemporal dynamic variation of temperate grassland classes in Inner Mongolia in the last 20 years [J]. Acta Prataculturae Sinica, 2023, 32(9): 1-16. |
[2] | Rui HUA, Daerhan BAO, Rui DONG, Zhuang-sheng TANG, Bin CHU, Yuan-yuan HAO, Li-min HUA. Monitoring of rodent damage areas in grassland using unmanned aerial vehicle remote sensing technology [J]. Acta Prataculturae Sinica, 2023, 32(5): 71-82. |
[3] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[4] | Yun-hao LI, Zhong-xian LI, Shuai FU, Zhong-xue ZHANG, Shi-qin MAO, Qi-sheng FENG, Tian-gang LIANG, Yan-zhong LI. Identification of cultivated alfalfa diseases based on AlexNet [J]. Acta Prataculturae Sinica, 2023, 32(12): 104-114. |
[5] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[6] | Rui HUA, Rui ZHOU, Daerhan BAO, Ke-chi DONG, Zhuang-sheng TANG, Li-min HUA. A study of UAV remote sensing technology for classifying the level of plateau pika damage to alpine rangeland [J]. Acta Prataculturae Sinica, 2022, 31(4): 165-176. |
[7] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[8] | Zhe-ren JIN, Qi-sheng FENG, Rui-jing WANG, Tian-gang LIANG. A study of grassland aboveground biomass on the Tibetan Plateau using MODIS data and machine learning [J]. Acta Prataculturae Sinica, 2022, 31(10): 1-17. |
[9] | Wei ZHANG, Shu-hua YI, Yu QIN, Dong-hui SHANGGUAN, Yan QIN. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27. |
[10] | YANG Fan, SHAO Quan-qin, GUO Xing-jian, LI Yu-zhe, WANG Dong-liang, ZHANG Ya-xian, WANG Yang-chun, LIU Ji-yuan, FAN Jiang-wen. Effects of wild large herbivore populations on the grassland-livestock balance in Maduo County [J]. Acta Prataculturae Sinica, 2018, 27(7): 1-13. |
[11] | GAO Ai-min, WU Jing-feng, DAI Fei, ZHANG Feng-wei, HAN Zheng-sheng. Correlation study of soil compaction by mowing machine and alfalfa yield [J]. Acta Prataculturae Sinica, 2014, 23(2): 59-65. |
[12] | HAN Hua-wen, SUN Li-na, YAO Tuo, RONG Liang-yan, LIU Qing-hai, LU Hu, MA Hui-ling. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa [J]. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||