Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (3): 71-84.DOI: 10.11686/cyxb2024195
Previous Articles Next Articles
Li-li MA1(), Fu-zhen JIANG2, Yu-shou MA1, Kai-bin QI2, Shun-bin JIA3, Zheng-peng LI2(
)
Received:
2024-05-22
Revised:
2024-07-15
Online:
2025-03-20
Published:
2025-01-02
Contact:
Zheng-peng LI
Li-li MA, Fu-zhen JIANG, Yu-shou MA, Kai-bin QI, Shun-bin JIA, Zheng-peng LI. Effect of particle size ratio, fertilizer application amount, and seeding rate combinations coal gangue matrix properties in restoration of a mining area[J]. Acta Prataculturae Sinica, 2025, 34(3): 71-84.
处理 Treatment | <7 mm粒径占比 Proportion of particle size less than 7 mm (A, % ) | 有机肥施用量(羊板粪+商品有机肥) Amount of organic fertilizer applied (sheep manure+commercial organic fertilizer) (B, m3·hm-2+t·hm-2) | 缓释尿素施用量 Amount of slow-release urea applied (C, kg·hm-2) | 播量 Seeding rate (D, kg·hm-2) |
---|---|---|---|---|
T1(A1B1C1D1) | 0(A1) | 15+7.5(B1) | 30(C1) | 60(D1) |
T2(A1B2C2D2) | 0(A1) | 30+15(B2) | 60(C2) | 120(D2) |
T3(A1B3C3D3) | 0(A1) | 45+22.5(B3) | 90(C3) | 180(D3) |
T4(A2B1C2D3) | 25(A2) | 15+7.5(B1) | 60(C2) | 180(D3) |
T5(A2B2C3D1) | 25(A2) | 30+15(B2) | 90(C3) | 60(D1) |
T6(A2B3C1D2) | 25(A2) | 45+22.5(B3) | 30(C1) | 120(D2) |
T7(A3B1C3D2) | 50(A3) | 15+7.5(B1) | 90(C3) | 120(D2) |
T8(A3B2C1D3) | 50(A3) | 30+15(B2) | 30(C1) | 180(D3) |
T9(A3B3C2D1) | 50(A3) | 45+22.5(B3) | 60(C2) | 60(D1) |
Table 1 The orthogonal tests
处理 Treatment | <7 mm粒径占比 Proportion of particle size less than 7 mm (A, % ) | 有机肥施用量(羊板粪+商品有机肥) Amount of organic fertilizer applied (sheep manure+commercial organic fertilizer) (B, m3·hm-2+t·hm-2) | 缓释尿素施用量 Amount of slow-release urea applied (C, kg·hm-2) | 播量 Seeding rate (D, kg·hm-2) |
---|---|---|---|---|
T1(A1B1C1D1) | 0(A1) | 15+7.5(B1) | 30(C1) | 60(D1) |
T2(A1B2C2D2) | 0(A1) | 30+15(B2) | 60(C2) | 120(D2) |
T3(A1B3C3D3) | 0(A1) | 45+22.5(B3) | 90(C3) | 180(D3) |
T4(A2B1C2D3) | 25(A2) | 15+7.5(B1) | 60(C2) | 180(D3) |
T5(A2B2C3D1) | 25(A2) | 30+15(B2) | 90(C3) | 60(D1) |
T6(A2B3C1D2) | 25(A2) | 45+22.5(B3) | 30(C1) | 120(D2) |
T7(A3B1C3D2) | 50(A3) | 15+7.5(B1) | 90(C3) | 120(D2) |
T8(A3B2C1D3) | 50(A3) | 30+15(B2) | 30(C1) | 180(D3) |
T9(A3B3C2D1) | 50(A3) | 45+22.5(B3) | 60(C2) | 60(D1) |
项目 Items | 全氮Total nitrogen (g·kg-1) | 全磷Total phosphorus (g·kg-1) | 全钾Total potassium (g·kg-1) | 碱解氮Available nitrogen (mg·kg-1) | 速效磷Available phosphorus (mg·kg-1) | 速效钾Available potassium (mg·kg-1) | 有机质Soil organic matter (g·kg-1) |
---|---|---|---|---|---|---|---|
煤矸石Coal gangue | 1.5 | 0.7 | 27.3 | 12.4 | 7.8 | 189.2 | 127.8 |
羊板粪Sheep manure | 11.1 | 3.7 | 13.0 | - | - | - | 400.8 |
商品有机肥Commercial organic fertilizer | 23.1 | 12.3 | 16.7 | - | - | - | 354.7 |
Table 2 Basic chemical property of coal gangue, sheep manure and organic fertilizer
项目 Items | 全氮Total nitrogen (g·kg-1) | 全磷Total phosphorus (g·kg-1) | 全钾Total potassium (g·kg-1) | 碱解氮Available nitrogen (mg·kg-1) | 速效磷Available phosphorus (mg·kg-1) | 速效钾Available potassium (mg·kg-1) | 有机质Soil organic matter (g·kg-1) |
---|---|---|---|---|---|---|---|
煤矸石Coal gangue | 1.5 | 0.7 | 27.3 | 12.4 | 7.8 | 189.2 | 127.8 |
羊板粪Sheep manure | 11.1 | 3.7 | 13.0 | - | - | - | 400.8 |
商品有机肥Commercial organic fertilizer | 23.1 | 12.3 | 16.7 | - | - | - | 354.7 |
参数 Parameter | 2021 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | |
K1 | 574.56 | 544.35 | 526.10 | 573.41 | 522.16 | 524.08 | 471.47 | 472.62 |
K2 | 572.17 | 600.27 | 532.90 | 525.10 | 495.88 | 508.05 | 568.09 | 573.27 |
K3 | 567.15 | 569.25 | 654.89 | 615.37 | 513.98 | 499.89 | 492.46 | 486.13 |
R | 7.41 | 55.92 | 128.79 | 90.27 | 26.28 | 24.18 | 96.63 | 100.65 |
P | NS | NS | NS | NS | NS | NS | NS | NS |
Table 3 Range analysis of above-ground biomass
参数 Parameter | 2021 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | |
K1 | 574.56 | 544.35 | 526.10 | 573.41 | 522.16 | 524.08 | 471.47 | 472.62 |
K2 | 572.17 | 600.27 | 532.90 | 525.10 | 495.88 | 508.05 | 568.09 | 573.27 |
K3 | 567.15 | 569.25 | 654.89 | 615.37 | 513.98 | 499.89 | 492.46 | 486.13 |
R | 7.41 | 55.92 | 128.79 | 90.27 | 26.28 | 24.18 | 96.63 | 100.65 |
P | NS | NS | NS | NS | NS | NS | NS | NS |
指标 Index | 参数 Parameter | 2021 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||
有机质 Organic matter (g·kg-1) | K1 | 136.18 | 134.40 | 134.50 | 131.36 | 85.48 | 81.19 | 88.49 | 87.64 |
K2 | 134.74 | 133.79 | 130.24 | 134.89 | 89.46 | 89.90 | 86.50 | 89.47 | |
K3 | 138.12 | 140.85 | 144.29 | 142.79 | 89.15 | 93.00 | 89.11 | 86.99 | |
R | 3.38 | 7.05 | 14.06 | 11.43 | 3.97 | 11.81 | 2.61 | 2.48 | |
全氮 Total nitrogen (g·kg-1) | K1 | 4.38 | 4.78 | 4.82 | 4.54 | 1.95 | 1.71 | 2.06 | 2.14 |
K2 | 4.78 | 4.63 | 4.59 | 4.90 | 2.30 | 2.25 | 2.12 | 2.16 | |
K3 | 5.22 | 4.96 | 4.96 | 4.93 | 2.10 | 2.39 | 2.17 | 2.05 | |
R | 0.84 | 0.33 | 0.37 | 0.38 | 0.35 | 0.68 | 0.11 | 0.12 | |
全磷 Total phosphorus (g·kg-1) | K1 | 1.78 | 1.93 | 1.89 | 1.91 | 1.35 | 1.22 | 1.32 | 1.28 |
K2 | 1.90 | 1.93 | 1.88 | 1.89 | 1.38 | 1.35 | 1.37 | 1.41 | |
K3 | 2.08 | 1.89 | 1.98 | 1.95 | 1.32 | 1.48 | 1.35 | 1.36 | |
R | 0.30 | 0.04 | 0.10 | 0.06 | 0.06 | 0.26 | 0.05 | 0.13 | |
全钾 Total potassium (g·kg-1) | K1 | 23.27 | 23.05 | 22.84 | 23.48 | 24.69 | 25.01 | 24.17 | 24.50 |
K2 | 23.37 | 23.48 | 23.05 | 22.84 | 23.47 | 23.77 | 24.09 | 24.29 | |
K3 | 22.52 | 22.62 | 23.27 | 22.84 | 24.28 | 23.66 | 24.18 | 23.65 | |
R | 0.85 | 0.86 | 0.43 | 0.64 | 1.22 | 1.34 | 0.10 | 0.85 | |
碱解氮 Available nitrogen (mg·kg-1) | K1 | 186.44 | 206.33 | 202.89 | 220.89 | 52.89 | 45.22 | 50.67 | 57.22 |
K2 | 202.33 | 213.11 | 207.11 | 190.22 | 56.44 | 62.44 | 60.44 | 54.56 | |
K3 | 240.11 | 209.44 | 218.89 | 217.78 | 57.00 | 58.67 | 55.22 | 54.56 | |
R | 53.67 | 6.78 | 16.00 | 30.67 | 4.11 | 17.22 | 9.78 | 2.67 | |
速效磷 Available phosphorus (mg·kg-1) | K1 | 31.14 | 42.18 | 42.56 | 42.57 | 15.13 | 10.96 | 13.51 | 15.00 |
K2 | 47.98 | 42.58 | 35.90 | 46.66 | 14.31 | 16.39 | 15.96 | 13.82 | |
K3 | 49.66 | 44.02 | 50.32 | 39.56 | 13.76 | 15.86 | 13.73 | 14.38 | |
R | 18.51 | 1.84 | 14.42 | 7.10 | 1.38 | 5.43 | 2.44 | 1.18 | |
速效钾 Available potassium (mg·kg-1) | K1 | 510.22 | 573.67 | 570.00 | 569.44 | 225.44 | 206.00 | 223.56 | 235.33 |
K2 | 552.78 | 559.00 | 538.89 | 549.22 | 227.33 | 238.89 | 231.67 | 223.67 | |
K3 | 615.33 | 545.67 | 569.44 | 559.67 | 237.22 | 245.11 | 234.78 | 231.00 | |
R | 105.11 | 28.00 | 31.11 | 20.22 | 11.78 | 39.11 | 11.22 | 11.67 |
Table 4 Range analysis of soil organic matter and available nutrients
指标 Index | 参数 Parameter | 2021 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||
有机质 Organic matter (g·kg-1) | K1 | 136.18 | 134.40 | 134.50 | 131.36 | 85.48 | 81.19 | 88.49 | 87.64 |
K2 | 134.74 | 133.79 | 130.24 | 134.89 | 89.46 | 89.90 | 86.50 | 89.47 | |
K3 | 138.12 | 140.85 | 144.29 | 142.79 | 89.15 | 93.00 | 89.11 | 86.99 | |
R | 3.38 | 7.05 | 14.06 | 11.43 | 3.97 | 11.81 | 2.61 | 2.48 | |
全氮 Total nitrogen (g·kg-1) | K1 | 4.38 | 4.78 | 4.82 | 4.54 | 1.95 | 1.71 | 2.06 | 2.14 |
K2 | 4.78 | 4.63 | 4.59 | 4.90 | 2.30 | 2.25 | 2.12 | 2.16 | |
K3 | 5.22 | 4.96 | 4.96 | 4.93 | 2.10 | 2.39 | 2.17 | 2.05 | |
R | 0.84 | 0.33 | 0.37 | 0.38 | 0.35 | 0.68 | 0.11 | 0.12 | |
全磷 Total phosphorus (g·kg-1) | K1 | 1.78 | 1.93 | 1.89 | 1.91 | 1.35 | 1.22 | 1.32 | 1.28 |
K2 | 1.90 | 1.93 | 1.88 | 1.89 | 1.38 | 1.35 | 1.37 | 1.41 | |
K3 | 2.08 | 1.89 | 1.98 | 1.95 | 1.32 | 1.48 | 1.35 | 1.36 | |
R | 0.30 | 0.04 | 0.10 | 0.06 | 0.06 | 0.26 | 0.05 | 0.13 | |
全钾 Total potassium (g·kg-1) | K1 | 23.27 | 23.05 | 22.84 | 23.48 | 24.69 | 25.01 | 24.17 | 24.50 |
K2 | 23.37 | 23.48 | 23.05 | 22.84 | 23.47 | 23.77 | 24.09 | 24.29 | |
K3 | 22.52 | 22.62 | 23.27 | 22.84 | 24.28 | 23.66 | 24.18 | 23.65 | |
R | 0.85 | 0.86 | 0.43 | 0.64 | 1.22 | 1.34 | 0.10 | 0.85 | |
碱解氮 Available nitrogen (mg·kg-1) | K1 | 186.44 | 206.33 | 202.89 | 220.89 | 52.89 | 45.22 | 50.67 | 57.22 |
K2 | 202.33 | 213.11 | 207.11 | 190.22 | 56.44 | 62.44 | 60.44 | 54.56 | |
K3 | 240.11 | 209.44 | 218.89 | 217.78 | 57.00 | 58.67 | 55.22 | 54.56 | |
R | 53.67 | 6.78 | 16.00 | 30.67 | 4.11 | 17.22 | 9.78 | 2.67 | |
速效磷 Available phosphorus (mg·kg-1) | K1 | 31.14 | 42.18 | 42.56 | 42.57 | 15.13 | 10.96 | 13.51 | 15.00 |
K2 | 47.98 | 42.58 | 35.90 | 46.66 | 14.31 | 16.39 | 15.96 | 13.82 | |
K3 | 49.66 | 44.02 | 50.32 | 39.56 | 13.76 | 15.86 | 13.73 | 14.38 | |
R | 18.51 | 1.84 | 14.42 | 7.10 | 1.38 | 5.43 | 2.44 | 1.18 | |
速效钾 Available potassium (mg·kg-1) | K1 | 510.22 | 573.67 | 570.00 | 569.44 | 225.44 | 206.00 | 223.56 | 235.33 |
K2 | 552.78 | 559.00 | 538.89 | 549.22 | 227.33 | 238.89 | 231.67 | 223.67 | |
K3 | 615.33 | 545.67 | 569.44 | 559.67 | 237.22 | 245.11 | 234.78 | 231.00 | |
R | 105.11 | 28.00 | 31.11 | 20.22 | 11.78 | 39.11 | 11.22 | 11.67 |
年份 Year | 因素 Factor | 有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
2021 | <7 mm粒径占比Proportion of particle size less than 7 mm (A) | NS | NS | NS | NS | NS | * | NS |
有机肥施用量Amount of organic fertilizer applied (B) | NS | NS | NS | NS | NS | NS | NS | |
缓释尿素施用量Amount of slow-release urea applied (C) | NS | NS | NS | NS | NS | NS | NS | |
播量Seeding rate (D) | NS | NS | NS | NS | NS | NS | NS | |
2023 | <7 mm粒径占比Proportion of particle size less than 7 mm (A) | NS | NS | NS | NS | NS | NS | NS |
有机肥施用量Amount of organic fertilizer applied (B) | * | ** | ** | NS | * | * | ** | |
缓释尿素施用量Amount of slow-release urea applied (C) | NS | NS | NS | NS | NS | NS | NS | |
播量Seeding rate (D) | NS | NS | NS | NS | NS | NS | NS |
Table 5 Variance analysis of different factors on soil nutrient indicators
年份 Year | 因素 Factor | 有机质 Organic matter | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
2021 | <7 mm粒径占比Proportion of particle size less than 7 mm (A) | NS | NS | NS | NS | NS | * | NS |
有机肥施用量Amount of organic fertilizer applied (B) | NS | NS | NS | NS | NS | NS | NS | |
缓释尿素施用量Amount of slow-release urea applied (C) | NS | NS | NS | NS | NS | NS | NS | |
播量Seeding rate (D) | NS | NS | NS | NS | NS | NS | NS | |
2023 | <7 mm粒径占比Proportion of particle size less than 7 mm (A) | NS | NS | NS | NS | NS | NS | NS |
有机肥施用量Amount of organic fertilizer applied (B) | * | ** | ** | NS | * | * | ** | |
缓释尿素施用量Amount of slow-release urea applied (C) | NS | NS | NS | NS | NS | NS | NS | |
播量Seeding rate (D) | NS | NS | NS | NS | NS | NS | NS |
处理 Treatment | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter |
---|---|---|---|---|---|---|---|
权重Weight | 0.1798 | 0.1263 | 0.1227 | 0.1458 | 0.1317 | 0.1510 | 0.1527 |
Table 6 The weight value of soil nutrient index
处理 Treatment | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter |
---|---|---|---|---|---|---|---|
权重Weight | 0.1798 | 0.1263 | 0.1227 | 0.1458 | 0.1317 | 0.1510 | 0.1527 |
处理 Treatment | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter | 土壤肥力综合指数 Integrated fertility index (IFI) |
---|---|---|---|---|---|---|---|---|
T1 | 1.52 | 1.12 | 25.93 | 39.67 | 11.40 | 200.33 | 78.71 | 0.2411 |
T2 | 2.14 | 1.44 | 24.40 | 64.00 | 18.10 | 229.67 | 87.26 | 0.6989 |
T3 | 2.21 | 1.49 | 23.74 | 55.00 | 15.90 | 246.33 | 90.48 | 0.6856 |
T4 | 1.82 | 1.27 | 23.77 | 50.33 | 12.40 | 206.00 | 80.04 | 0.3295 |
T5 | 2.52 | 1.32 | 23.48 | 65.00 | 16.23 | 246.33 | 92.01 | 0.7388 |
T6 | 2.56 | 1.54 | 23.16 | 54.00 | 14.30 | 229.67 | 96.32 | 0.7091 |
T7 | 1.79 | 1.25 | 25.32 | 45.67 | 9.07 | 211.67 | 84.83 | 0.3632 |
T8 | 2.11 | 1.30 | 23.44 | 58.33 | 14.83 | 240.67 | 90.44 | 0.5953 |
T9 | 2.40 | 1.40 | 24.09 | 67.00 | 17.37 | 259.33 | 92.20 | 0.8215 |
Table 7 Comprehensive evaluation of soil nutrients in different treatment groups
处理 Treatment | 全氮 Total nitrogen | 全磷 Total phosphorus | 全钾 Total potassium | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | 有机质 Organic matter | 土壤肥力综合指数 Integrated fertility index (IFI) |
---|---|---|---|---|---|---|---|---|
T1 | 1.52 | 1.12 | 25.93 | 39.67 | 11.40 | 200.33 | 78.71 | 0.2411 |
T2 | 2.14 | 1.44 | 24.40 | 64.00 | 18.10 | 229.67 | 87.26 | 0.6989 |
T3 | 2.21 | 1.49 | 23.74 | 55.00 | 15.90 | 246.33 | 90.48 | 0.6856 |
T4 | 1.82 | 1.27 | 23.77 | 50.33 | 12.40 | 206.00 | 80.04 | 0.3295 |
T5 | 2.52 | 1.32 | 23.48 | 65.00 | 16.23 | 246.33 | 92.01 | 0.7388 |
T6 | 2.56 | 1.54 | 23.16 | 54.00 | 14.30 | 229.67 | 96.32 | 0.7091 |
T7 | 1.79 | 1.25 | 25.32 | 45.67 | 9.07 | 211.67 | 84.83 | 0.3632 |
T8 | 2.11 | 1.30 | 23.44 | 58.33 | 14.83 | 240.67 | 90.44 | 0.5953 |
T9 | 2.40 | 1.40 | 24.09 | 67.00 | 17.37 | 259.33 | 92.20 | 0.8215 |
处理 Treatment | 正理想解距离 Distance of positive ideal solution (Di+ ) | 负理想解距离 Distance of negative ideal solution (Di- ) | 相对接近度 Relative proximity (Ci ) | 排序 Rank |
---|---|---|---|---|
T1 | 0.9333 | 0.0866 | 0.0849 | 9 |
T2 | 0.1303 | 0.9252 | 0.8765 | 1 |
T3 | 0.6831 | 0.4873 | 0.4163 | 5 |
T4 | 0.6404 | 0.4277 | 0.4004 | 7 |
T5 | 0.7918 | 0.5290 | 0.4005 | 6 |
T6 | 0.5219 | 0.5702 | 0.5221 | 3 |
T7 | 0.5460 | 0.5556 | 0.5044 | 4 |
T8 | 0.7799 | 0.3791 | 0.3271 | 8 |
T9 | 0.4386 | 0.7084 | 0.6176 | 2 |
Table 8 Comprehensive evaluation results of TOPSIS for different treatments
处理 Treatment | 正理想解距离 Distance of positive ideal solution (Di+ ) | 负理想解距离 Distance of negative ideal solution (Di- ) | 相对接近度 Relative proximity (Ci ) | 排序 Rank |
---|---|---|---|---|
T1 | 0.9333 | 0.0866 | 0.0849 | 9 |
T2 | 0.1303 | 0.9252 | 0.8765 | 1 |
T3 | 0.6831 | 0.4873 | 0.4163 | 5 |
T4 | 0.6404 | 0.4277 | 0.4004 | 7 |
T5 | 0.7918 | 0.5290 | 0.4005 | 6 |
T6 | 0.5219 | 0.5702 | 0.5221 | 3 |
T7 | 0.5460 | 0.5556 | 0.5044 | 4 |
T8 | 0.7799 | 0.3791 | 0.3271 | 8 |
T9 | 0.4386 | 0.7084 | 0.6176 | 2 |
1 | Fan L Y. Effect and assessment of vegetation restoration on soil quality in abandoned wasteland. Shanxi Forestry Science and Technology, 2014, 43(1): 25-27, 30. |
樊兰英. 煤矿废弃地植被恢复对土壤质量的影响及评价.山西林业科技, 2014, 43(1): 25-27, 30. | |
2 | Yan S. Study on the artificial re-vegetation techniques in coal gangue. Beijing: Chinese Academy of Forestry, 2015. |
闫帅. 煤矸石山人工植被恢复技术研究.北京: 中国林业科学研究院, 2015. | |
3 | Gu D M. Research of coal gangue storage impact on surface and shallow groundwater environment-A case of Panji mining area in Huainan. Huainan: Anhui University of Science and Technology, 2015. |
谷得明. 煤矸石堆存对地表与浅层地下水环境的影响研究——以淮南潘集矿区为例. 淮南: 安徽理工大学, 2015. | |
4 | Wang T, Zhang M, Xu H, et al. Soil fertility and heavy metal risk assessment in Jvhugeng mining area, Muli Coalfield, Qinghai Province. Coal Geology & Exploration, 2022, 50(4): 113-120. |
王佟, 章梅, 徐辉, 等. 青海木里煤田聚乎更矿区土壤肥力及重金属风险评价. 煤田地质与勘探, 2022, 50(4): 113-120. | |
5 | Zhao Y C, Zhang J Y, Chou C L, et al. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China. International Journal of Coal Geology, 2008, 73(1): 52-62. |
6 | Wang S B, Luo K, Wang X, et al. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Environmental Pollution, 2016, 209(2): 107-113. |
7 | Li S Q, Liber K. Influence of different re-vegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China. Science of the Total Environment, 2018, 618: 1314-1323. |
8 | Zhang L, Wang J M, Bai Z K, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, 2015, 128: 44-53. |
9 | Sheoran V, Sheoran A S, Poonia P. Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 2010, 3(2): 1-20. |
10 | Ni H B, Zhang L P, Wu X Y, et al. A research progress on soil reconstruction and property restoration in mine regions. Chinese Journal of Soil Science, 2007, 38(2): 399-403. |
倪含斌, 张丽萍, 吴希媛, 等. 矿区废弃地土壤重构与性能恢复研究进展. 土壤通报, 2007, 38(2): 399-403. | |
11 | Han X N, Dong Y, Geng Y Q, et al. Influence of coal gangue mulching on chemical characteristics of soil in the mining area. Ecology and Environmental Sciences, 2021, 30(11): 2251-2256. |
韩秀娜, 董颖, 耿玉清, 等. 覆盖煤矸石对矿区土壤养分及盐分特征的影响. 生态环境学报, 2021, 30(11): 2251-2256. | |
12 | Niu Y F, Zhou Z C. Progress in the study of site conditions and reclamation technologies of coal gangue dump. Environmental Protection Science, 2015, 41(5): 147-152. |
牛桠枫, 周正朝. 煤矸石山立地条件及复垦技术研究进展. 环境保护科学, 2015, 41(5): 147-152. | |
13 | Luo K. Study on the soil fertility improvement of mining wasteland by plants under different fertilizations. Yangling: Northwest A & F University, 2016. |
罗珂. 不同施肥条件下植物对矿山废弃地土壤肥力改良的研究. 杨凌: 西北农林科技大学, 2016. | |
14 | Yang X G, Li X L, Ma P P, et al. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area. Acta Prataculturae Sinica, 2021, 30(8): 98-108. |
杨鑫光, 李希来, 马盼盼, 等. 不同施肥水平下高寒矿区煤矸石山植被和土壤恢复效果研究. 草业学报, 2021, 30(8): 98-108. | |
15 | Bai Z K, Zhou W, Wang J M, et al. Rethink on ecosystem restoration and rehabilitation of mining areas. China Land Science, 2018, 32(11): 1-9. |
白中科, 周伟, 王金满, 等. 再论矿区生态系统恢复重建. 中国土地科学, 2018, 32(11): 1-9. | |
16 | Feng G B, Ruan M Y, Li H B, et al. Analysis on ecological reconstruction technology and benefit of vegetation in gangue dump of Changcun Coal Mine. China Coal, 2021, 47(2): 76-82. |
冯国宝, 阮梦颖, 李海波, 等. 浅析常村煤矿矸石山植被生态重建技术及效益. 中国煤炭, 2021, 47(2): 76-82. | |
17 | Yang X G, Li X L, Jin L Q, et al. Effectiveness of different artificial restoration measures for soil and vegetation recovery on coal mine tailings in an alpine area. Acta Prataculturae Sinica, 2019, 28(3): 1-11. |
杨鑫光, 李希来, 金立群, 等. 不同人工恢复措施下高寒矿区煤矸石山植被和土壤恢复效果研究. 草业学报, 2019, 28(3): 1-11. | |
18 | Bao S D. Soil agro-chemical analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
19 | Jiang B, Wang S T, Sun Z B, et al. Evaluation of cultivated land soil fertility based on membership function and principal component analysis. Chinese Agricultural Science Bulletin, 2023, 39(2): 22-27. |
姜冰, 王松涛, 孙增兵, 等. 基于隶属度函数和主成分分析的耕地土壤肥力评价. 中国农学通报, 2023, 39(2): 22-27. | |
20 | Xu Y Z, Hou Y M, Yuan H, et al. Soil fertility evaluation of Chinese fir planted forest based on Nemerow method and membership function in Hubei. Journal of Central South University of Forestry & Technology, 2021, 41(5): 1-11, 28. |
许业洲, 侯义梅, 袁慧, 等. 基于Nemerow法和隶属度函数的湖北杉木人工林土壤肥力评价. 中南林业科技大学学报, 2021, 41(5): 1-11, 28. | |
21 | Luo B S, Zhong J H, Chen J J. Integrated digitization evaluation on soil fertility. Soils, 2004, 36(1): 104-106. |
骆伯胜, 钟继洪, 陈俊坚. 土壤肥力数值化综合评价研究. 土壤, 2004, 36(1): 104-106. | |
22 | Yang X C, Ye H C, Li D M, et al. Assessment of red soil upland fertility in long-term fertilization based on fuzzy mathematics and principal component analysis. Soils and Fertilizer Sciences in China, 2018(3): 79-84. |
杨旭初, 叶会财, 李大明, 等. 基于模糊数学和主成分分析的长期施肥红壤旱地土壤肥力评价. 中国土壤与肥料, 2018(3): 79-84. | |
23 | Wu Y H, Tian X H, Tong Y A, et al. Assessment of integrated soil fertility index based on principal components analysis. Chinese Journal of Ecology, 2010, 29(1): 173-180. |
吴玉红, 田霄鸿, 同延安, 等. 基于主成分分析的土壤肥力综合指数评价.生态学杂志, 2010, 29(1): 173-180. | |
24 | Wen Y C, Li Y Q, Yuan L, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 91-99. |
温延臣, 李燕青, 袁亮, 等. 长期不同施肥制度土壤肥力特征综合评价方法. 农业工程学报, 2015, 31(7): 91-99. | |
25 | Wang H, Chen L, Chen K, et al. Multi index comprehensive evaluation method and selection of weight coefficient. Journal of Guangdong Pharmaceutical University, 2007, 23(5): 583-589. |
王晖, 陈丽, 陈垦, 等. 多指标综合评价方法及权重系数的选择. 广东药学院学报, 2007, 23(5): 583-589. | |
26 | Yu X F, Fu D. Review of multi index comprehensive evaluation methods. Statistics and Decision, 2004(11): 119-121. |
虞晓芬, 傅玳. 多指标综合评价方法综述. 统计与决策, 2004(11): 119-121. | |
27 | Zhang R C, Wang D M, Zhang Y, et al. Effects of green substrates composed of coal gangue on the growth of Trifolium repens L. and its resistance to heavy metal pollution. Chinese Journal of Applied & Environmental Biology, 2018, 24(4): 908-914. |
张汝翀, 王冬梅, 张英, 等. 煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响.应用与环境生物学报, 2018, 24(4): 908-914. | |
28 | Xu L, Zhou X C, Wang D M. Progress on the reclamation of gangue waste area. Science of Soil and Water Conservation, 2005, 3(3): 117-122. |
许丽, 周心澄, 王冬梅. 煤矸石废弃地复垦研究进展. 中国水土保持科学, 2005, 3(3): 117-122. | |
29 | Xie J Y, Zhang H F, Luo Y Q, et al. Driving factors of improving fertility and maize yields in the reclaimed soils by seven years of applied organic manure and chemical fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(1): 150-160. |
谢钧宇, 张慧芳, 罗云琪, 等. 连续7年施有机肥和化肥提高复垦土壤上玉米产量的驱动因子. 农业工程学报, 2024, 40(1): 150-160. | |
30 | Nan Y C, Yang Y G, Wang Z Q, et al. Effects of coal gangue on soil property and plant growth in mining area. Chinese Journal of Applied Ecology, 2023, 34(5): 1253-1262. |
南益聪, 杨永刚, 王泽青, 等. 煤矸石对矿区土壤特性与植物生长的影响. 应用生态学报, 2023, 34(5): 1253-1262. | |
31 | Zhang Y F, Xu Y X, Tang J W, et al. Effects of sowing, fertilization and non-woven covering on vegetation restoration and soil temperature and humidity in alpine coalmine area. Qinghai Prataculture, 2022, 31(2): 2-6. |
张玉芳, 徐有学, 唐俊伟, 等. 播量和施肥及无纺布覆盖对高寒矿区植被恢复和土壤温湿度的影响. 青海草业, 2022, 31(2): 2-6. | |
32 | Jiang S X, Zhao P. Morphological structure and biomass allocation of Agriophyllum squarrosum in different habitats of east section of Hexi Corridor. Agricultural Research in the Arid Areas, 2023, 41(3): 248-256. |
姜生秀, 赵鹏. 河西走廊东段不同生境对沙米形态结构及生物量分配的影响. 干旱地区农业研究, 2023, 41(3): 248-256. | |
33 | Ma J L, Hao J T, Zhang Y Q, et al. Response of Macleaya cordata biomass and its distribution characteristics to nitrogen in reclamation area of coal mine. Pratacultural Science, 2024, 41(5): 1039-1047. |
马嘉丽, 郝嘉湉, 张永清, 等. 煤矿复垦区博落回生物量及其分配特征对氮的响应. 草业科学, 2024, 41(5): 1039-1047. | |
34 | Shaviv A, Mikkelsen R L. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review. Fertilizer Research, 1993, 35(1/2): 1-12. |
35 | Wang Y L, Li C H, Wang J, et al. Application and prospect of slow/controlled release fertilizers in maize production. Chinese Agricultural Science Bulletin, 2009, 25(24): 254-257. |
王宜伦, 李潮海, 王瑾, 等. 缓/控释肥在玉米生产中的应用与展望. 中国农学通报, 2009, 25(24): 254-257. | |
36 | Zhou L P, Yang L P, Bai Y L, et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1449-1457. |
周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响. 植物营养与肥料学报, 2016, 22(6): 1449-1457. | |
37 | Liu Z H, Zhang X, Xia Q, et al. Effects of phosphate fertilizer application and sowing rate on the dry matter content of multiple-cropping forage rape after wheat and soil fertility. Journal of Shanxi Agricultural Sciences, 2022, 50(10): 1446-1454. |
刘振华, 张霞, 夏清, 等. 磷肥与播量对麦后复种饲料油菜干物质量及土壤肥力的影响. 山西农业科学, 2022, 50(10): 1446-1454. | |
38 | Fang X M, Li Y S, Nie J, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 2018, 219: 160-168. |
39 | Yang W Y, Li T F, Dong B, et al. Effects of seeding rate on rapeseed biological yield and soil nutrient in wheat stubble multiple cropping rape. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(4): 583-587. |
杨文元, 李腾飞, 董博, 等. 播量对麦后复种油菜生物产量及耕层土壤养分的影响. 西北农业学报, 2017, 26(4): 583-587. | |
40 | Bai D S. Ecological reconstruction model and driving factors of soil hydrological properties optimization in gangue accumulation area. Mianyang: Southwest University of Science and Technology, 2022. |
白东升. 煤矸石堆积区生态重构模式与土壤水文性质优化的驱动要素. 绵阳: 西南科技大学, 2022. | |
41 | Zhang R C. Effects of the improvement measures of coal gangue matrix on plant growth and heavy metal enrichment. Beijing: Beijing Forestry University, 2018. |
张汝翀. 煤矸石基质改良措施对植物生长及重金属富集影响研究. 北京: 北京林业大学, 2018. | |
42 | Zhang Y G. Study on fertilization effect of mature Ziziphus jujuba ‘Junzao’ in Aksu. Urumqi: Xinjiang Agricultural University, 2015. |
张亚鸽. 阿克苏成龄骏枣施肥效应研究. 乌鲁木齐: 新疆农业大学, 2015. | |
43 | Ding J N, Li D P, Wu Z J, et al. Responses of soil physicochemical properties and biological activity to continuous application of slow/controlled releasing urea. Chinese Journal of Ecology, 2014, 33(7): 1769-1778. |
丁济娜, 李东坡, 武志杰, 等. 土壤理化性质与生物活性对持续施用缓/控释尿素肥料的响应. 生态学杂志, 2014, 33(7): 1769-1778. | |
44 | Zhang Y H, Song Z L, Kong T, et al. Amelioration effect of coal gangue on physical and chemical properties of saline-alkaline soil. Ecology and Environmental Sciences, 2021, 30(1): 195-204. |
张宇航, 宋子岭, 孔涛, 等. 煤矸石对盐碱土壤理化性质的改良效果. 生态环境学报, 2021, 30(1): 195-204. | |
45 | Ke K E, Dong X Y, Zhou J X, et al. Evaluation of the formula for coal gangue ecological substrate and its fertility indexes. Soils and Fertilizers Sciences in China, 2021(4): 308-317. |
柯凯恩, 董晓芸, 周金星, 等. 煤矸石生态基质的制备配方及其肥力特征研究. 中国土壤与肥料, 2021(4): 308-317. | |
46 | Kong T, Ma Y, Liu M, et al. Effect of applying biological organic fertilizer on soil nutrients and soil microbes. Arid Zone Research, 2016, 33(4): 884-891. |
孔涛, 马瑜, 刘民, 等. 生物有机肥对土壤养分和土壤微生物的影响. 干旱区研究, 2016, 33(4): 884-891. | |
47 | Zhang J Z, Wang Q C, Bian M W, et al. Effects of different planting years on soil nutrient evolution and variation characteristics of greenhouse vegetables. Agricultural Engineering Technology, 2022, 42(1): 77-82. |
张敬智, 王青川, 边明文, 等. 不同种植年限对设施蔬菜土壤养分演变规律及其变异特征的影响. 农业工程技术, 2022, 42(1): 77-82. | |
48 | Wander M M, Bollero G A. Soil quality assessment of tillage impacts in Illinois. Soil Science Society of America Journal, 1999, 63(4): 961-971. |
49 | Zhang W X, Wang S X, Liu Z B, et al. Evaluating soil fertility improvement effects of chemical fertilizer combined with organic fertilizers in a red paddy soil using the soil fertility index. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 777-790. |
张文学, 王少先, 刘增兵, 等. 基于土壤肥力质量综合指数评价化肥与有机肥配施对红壤稻田肥力的提升作用. 植物营养与肥料学报, 2021, 27(5): 777-790. |
[1] | Shu-qi LIU, Dong CUI, Wen-xin LIU, Hai-jun YANG, Yan-cheng YANG, Zhi-cheng JIANG, Jiang-chao YAN, Jiang-hui LIU. Effects of short-term nitrogen addition, watering, and mowing on plant community characteristics and soil physicochemical properties in Sophora alopecuroides degraded grassland [J]. Acta Prataculturae Sinica, 2025, 34(3): 41-55. |
[2] | Wen-hu WANG, Guo-ling LIANG, Wen-hui LIU, Feng-yu WANG, Wen LI. Comprehensive evaluation of agronomic traits and yield of eight Elymus sibiricus varieties in the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2025, 34(2): 123-132. |
[3] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
[4] | Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics [J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105. |
[5] | Ying LUO, Cong LI, Pei WANG, Li-hua TIAN, Hui WANG, Qing-ping ZHOU, Ying-xia LEI. Responses of different oat cultivars to low-nitrogen stress [J]. Acta Prataculturae Sinica, 2024, 33(2): 164-184. |
[6] | Yong-liang ZHANG, Ze TENG, Feng HAO, Tie-feng YU, Yu-xia ZHANG. Effects of different mixed sowing patterns and sowing ratios of alfalfa on grassland productivity and community stability in grass-legume mixtures [J]. Acta Prataculturae Sinica, 2024, 33(2): 185-197. |
[7] | Jin-lan WANG, Xiao-jun WANG, Qi-lin LIU, Guo-ling LIANG, Ze-liang JU, Hong-mei SHI, Xiao-bing WANG, Pei WEN, Qingmeiranding, Wen LI. A multi-trait evaluation of production performance and nutritional quality of different oat varieties in the Sanjiangyuan area [J]. Acta Prataculturae Sinica, 2024, 33(10): 83-95. |
[8] | Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China [J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78. |
[9] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[10] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[11] | Huan LIU, Kai DONG, Zeng-wangdui REN, Jing-long WANG, Yun-fei LIU, Gui-qin ZHAO. Effects of co-sowing of Artemisia wellbyi and perennial grasses on the characteristics of vegetation and soil fungal communities in desertified grasslands in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(6): 45-57. |
[12] | Zong-chang XU, Xue-li LU, Yun-chong WEI, Chen MENG, Meng-chao ZHANG, Yuan-yang ZHANG, Meng WANG, Ju-ying WANG, Cheng-sheng ZHANG, Yi-qiang LI. Salt tolerance identification and evaluation of a population of wild soybean SP1 mutants at the seedling stage [J]. Acta Prataculturae Sinica, 2023, 32(11): 168-178. |
[13] | Rong RONG, Bin SUN, Zhi-tao WU, Zhi-hai GAO, Zi-qiang DU, Si-han TENG. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
[14] | Li-fang CHANG, Xin LI, Hui-juan GUO, Lin-yi QIAO, Shu-wei ZHANG, Fang CHEN, Zhi-jian CHANG, Xiao-jun ZHANG. Genetic diversity analysis and comprehensive evaluation of octoploid Tritipyrum-derived wheat breeding lines based on agronomic traits [J]. Acta Prataculturae Sinica, 2022, 31(11): 61-74. |
[15] | Xu-mei JIN, Ying-ying WANG, Chong-yi LIU, Xin-yi CHEN, Ming-xiu LONG, Shu-bin HE. Effects on soil nutrients and bacterial communities of different cover crops in an organic kiwifruit orchard in the Guanzhong region of China [J]. Acta Prataculturae Sinica, 2022, 31(10): 53-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||