Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (4): 29-41.DOI: 10.11686/cyxb2025176
Previous Articles Next Articles
Chao-rong LIU1(
), Yong-cheng CHEN1, Ying CHEN1, Xu-dong ZHANG1, Tian-yu HU1, Li-he SU1, Fan-fan ZHANG1, Xu-zhe WANG1, Kun YAO2, Chun-hui MA1(
)
Received:2025-05-07
Revised:2025-06-25
Online:2026-04-20
Published:2026-02-07
Contact:
Chun-hui MA
Chao-rong LIU, Yong-cheng CHEN, Ying CHEN, Xu-dong ZHANG, Tian-yu HU, Li-he SU, Fan-fan ZHANG, Xu-zhe WANG, Kun YAO, Chun-hui MA. Differences in saline-alkali tolerance of five Leymus chinensis cultivars grown in saline-alkali soil from Xinjiang[J]. Acta Prataculturae Sinica, 2026, 35(4): 29-41.
处理 Treatment | 农田土壤含量 Content of farmland soil (%) | pH | 电导率 Electrical conductivity (dS·m-1) | 总盐 Total salt (%) | Cl- (g·kg-1) | HCO3- (g·kg-1) | SO42- (g·kg-1) |
|---|---|---|---|---|---|---|---|
| CK | 100 | 7.42 | 0.71 | 0.1 | 0.16 | 0.08 | 1.23 |
| S1 | 90 | 7.63 | 1.49 | 0.2 | 0.27 | 0.12 | 3.32 |
| S2 | 70 | 7.87 | 2.84 | 0.4 | 0.48 | 0.17 | 6.54 |
| S3 | 50 | 8.06 | 4.04 | 0.8 | 0.73 | 0.23 | 12.87 |
| S4 | 0 | 8.34 | 6.99 | 1.2 | 1.03 | 0.32 | 19.91 |
Table 1 Soil physical and chemical properties
处理 Treatment | 农田土壤含量 Content of farmland soil (%) | pH | 电导率 Electrical conductivity (dS·m-1) | 总盐 Total salt (%) | Cl- (g·kg-1) | HCO3- (g·kg-1) | SO42- (g·kg-1) |
|---|---|---|---|---|---|---|---|
| CK | 100 | 7.42 | 0.71 | 0.1 | 0.16 | 0.08 | 1.23 |
| S1 | 90 | 7.63 | 1.49 | 0.2 | 0.27 | 0.12 | 3.32 |
| S2 | 70 | 7.87 | 2.84 | 0.4 | 0.48 | 0.17 | 6.54 |
| S3 | 50 | 8.06 | 4.04 | 0.8 | 0.73 | 0.23 | 12.87 |
| S4 | 0 | 8.34 | 6.99 | 1.2 | 1.03 | 0.32 | 19.91 |
材料 Material | 处理 Treatment | 农艺性状 Agronomic character | 光合特性 Photosynthetic characteristics | 生理特性 Physiological characteristics | 营养品质 Nutritional quality | 综合平均值 Composite average value | 耐盐碱性排序 Order of saline-alkali tolerance | ||
|---|---|---|---|---|---|---|---|---|---|
| HS | CK | 0.79 | 0.72 | 0.37 | 0.46 | 0.58Ac | 0.59 | 4 | 1 |
| S1 | 0.94 | 0.91 | 0.40 | 0.54 | 0.69Aa | 1 | |||
| S2 | 0.65 | 0.73 | 0.50 | 0.63 | 0.63Ab | 2 | |||
| S3 | 0.38 | 0.50 | 0.68 | 0.79 | 0.59Ac | 3 | |||
| S4 | 0.21 | 0.36 | 0.63 | 0.52 | 0.43Ad | 5 | |||
| ZK | CK | 0.81 | 0.76 | 0.37 | 0.43 | 0.59Ab | 0.55 | 2 | 3 |
| S1 | 0.93 | 0.94 | 0.39 | 0.51 | 0.69Aa | 1 | |||
| S2 | 0.62 | 0.69 | 0.48 | 0.59 | 0.59Bb | 2 | |||
| S3 | 0.32 | 0.41 | 0.57 | 0.73 | 0.51Cc | 3 | |||
| S4 | 0.14 | 0.25 | 0.51 | 0.51 | 0.35Bd | 4 | |||
| HGL | CK | 0.82 | 0.72 | 0.35 | 0.45 | 0.58Ac | 0.58 | 3 | 2 |
| S1 | 0.93 | 0.85 | 0.39 | 0.54 | 0.68Aa | 1 | |||
| S2 | 0.69 | 0.68 | 0.47 | 0.66 | 0.63Ab | 2 | |||
| S3 | 0.38 | 0.46 | 0.66 | 0.78 | 0.57Bd | 4 | |||
| S4 | 0.24 | 0.31 | 0.62 | 0.55 | 0.43Ae | 5 | |||
| CF | CK | 0.75 | 0.59 | 0.32 | 0.29 | 0.49Bb | 0.45 | 3 | 4 |
| S1 | 0.87 | 0.72 | 0.33 | 0.45 | 0.59Ba | 1 | |||
| S2 | 0.54 | 0.52 | 0.41 | 0.53 | 0.50Cb | 2 | |||
| S3 | 0.24 | 0.29 | 0.47 | 0.64 | 0.41Dc | 4 | |||
| S4 | 0.06 | 0.14 | 0.40 | 0.42 | 0.26Cd | 5 | |||
| DB | CK | 0.76 | 0.59 | 0.32 | 0.28 | 0.49Bb | 0.43 | 2 | 5 |
| S1 | 0.88 | 0.76 | 0.33 | 0.44 | 0.60Ba | 1 | |||
| S2 | 0.55 | 0.46 | 0.41 | 0.49 | 0.48Db | 3 | |||
| S3 | 0.25 | 0.18 | 0.47 | 0.66 | 0.39Ec | 4 | |||
| S4 | 0.06 | 0.03 | 0.31 | 0.39 | 0.20Dd | 5 | |||
Table 2 Comprehensive evaluation and ranking of five L. chinensis under saline-alkali stress
材料 Material | 处理 Treatment | 农艺性状 Agronomic character | 光合特性 Photosynthetic characteristics | 生理特性 Physiological characteristics | 营养品质 Nutritional quality | 综合平均值 Composite average value | 耐盐碱性排序 Order of saline-alkali tolerance | ||
|---|---|---|---|---|---|---|---|---|---|
| HS | CK | 0.79 | 0.72 | 0.37 | 0.46 | 0.58Ac | 0.59 | 4 | 1 |
| S1 | 0.94 | 0.91 | 0.40 | 0.54 | 0.69Aa | 1 | |||
| S2 | 0.65 | 0.73 | 0.50 | 0.63 | 0.63Ab | 2 | |||
| S3 | 0.38 | 0.50 | 0.68 | 0.79 | 0.59Ac | 3 | |||
| S4 | 0.21 | 0.36 | 0.63 | 0.52 | 0.43Ad | 5 | |||
| ZK | CK | 0.81 | 0.76 | 0.37 | 0.43 | 0.59Ab | 0.55 | 2 | 3 |
| S1 | 0.93 | 0.94 | 0.39 | 0.51 | 0.69Aa | 1 | |||
| S2 | 0.62 | 0.69 | 0.48 | 0.59 | 0.59Bb | 2 | |||
| S3 | 0.32 | 0.41 | 0.57 | 0.73 | 0.51Cc | 3 | |||
| S4 | 0.14 | 0.25 | 0.51 | 0.51 | 0.35Bd | 4 | |||
| HGL | CK | 0.82 | 0.72 | 0.35 | 0.45 | 0.58Ac | 0.58 | 3 | 2 |
| S1 | 0.93 | 0.85 | 0.39 | 0.54 | 0.68Aa | 1 | |||
| S2 | 0.69 | 0.68 | 0.47 | 0.66 | 0.63Ab | 2 | |||
| S3 | 0.38 | 0.46 | 0.66 | 0.78 | 0.57Bd | 4 | |||
| S4 | 0.24 | 0.31 | 0.62 | 0.55 | 0.43Ae | 5 | |||
| CF | CK | 0.75 | 0.59 | 0.32 | 0.29 | 0.49Bb | 0.45 | 3 | 4 |
| S1 | 0.87 | 0.72 | 0.33 | 0.45 | 0.59Ba | 1 | |||
| S2 | 0.54 | 0.52 | 0.41 | 0.53 | 0.50Cb | 2 | |||
| S3 | 0.24 | 0.29 | 0.47 | 0.64 | 0.41Dc | 4 | |||
| S4 | 0.06 | 0.14 | 0.40 | 0.42 | 0.26Cd | 5 | |||
| DB | CK | 0.76 | 0.59 | 0.32 | 0.28 | 0.49Bb | 0.43 | 2 | 5 |
| S1 | 0.88 | 0.76 | 0.33 | 0.44 | 0.60Ba | 1 | |||
| S2 | 0.55 | 0.46 | 0.41 | 0.49 | 0.48Db | 3 | |||
| S3 | 0.25 | 0.18 | 0.47 | 0.66 | 0.39Ec | 4 | |||
| S4 | 0.06 | 0.03 | 0.31 | 0.39 | 0.20Dd | 5 | |||
| [1] | Lyu H, Zhao Y, Gong X L, et al. Review of techniques and case studies for saline-alkali land amelioration in the coastal regions of China. Hydrogeology and Engineering Geology, 2025, 52(2): 25-43. |
| 吕航, 赵月, 龚绪龙, 等. 我国滨海盐碱地改良技术综述及案例研究. 水文地质工程地质, 2025, 52(2): 25-43. | |
| [2] | Yang J S, Yao R J, Wang X P, et al. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedologica Sinica, 2022, 59(1): 10-27. |
| 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59(1): 10-27. | |
| [3] | Zhang Y F, Li W Y, Hu H, et al. Research status and prospect of saline-alkaline land improvement. Jiangsu Agricultural Sciences, 2017, 45(18): 7-10. |
| 张翼夫, 李问盈, 胡红, 等. 盐碱地改良研究现状及展望. 江苏农业科学, 2017, 45(18): 7-10. | |
| [4] | Lyu N, Shi L, Dai Y Y, et al. Reclamation of saline-alkali soils in Xinjiang: A review. Journal of Irrigation and Drainage, 2024, 43(12): 1-10. |
| 吕宁, 石磊, 戴昱余, 等. 新疆盐碱地治理利用研究回顾与启示. 灌溉排水学报, 2024, 43(12): 1-10. | |
| [5] | Zhu J F, Cui Z R, Wu C H, et al. Research advances and prospect of saline and alkali land greening in China. World Forestry Research, 2018, 31(4): 70-75. |
| 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望. 世界林业研究, 2018, 31(4): 70-75. | |
| [6] | Zhu T C. Bio-ecology of Leymus chinensis. Changchun: Jilin Science and Technology Press, 2004. |
| 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004. | |
| [7] | Liang R F, Wu Z N, Li Z Y, et al. Effects of low-temperature and light on seed germination of Leymus chinensis. Chinese Journal of Grassland, 2021, 43(12): 33-39. |
| 梁润芳, 武自念, 李志勇, 等. 低温和光照对羊草种子萌发的影响. 中国草地学报, 2021, 43(12): 33-39. | |
| [8] | Mu L L, Zhuang X, You J, et al. Evaluation of saline-alkali tolerance of 35 Leymus chinensis germplasm during germination. Heilongjiang Animal Science and Veterinary Medicine, 2024(18): 91-96. |
| 牟林林, 庄煦, 尤佳, 等. 35份羊草种质材料萌发期耐盐碱性评价. 黑龙江畜牧兽医, 2024(18): 91-96. | |
| [9] | Liang X, Hou X Y, Wang Y R, et al. Comprehensive evaluation on saline-alkali tolerance of Leymus chinensis germplasm resources. Chinese Journal of Grassland, 2019, 41(3): 1-9. |
| 梁潇, 侯向阳, 王艳荣, 等. 羊草种质资源耐盐碱性综合评价. 中国草地学报, 2019, 41(3): 1-9. | |
| [10] | Ren J J, Wang F, Li Y L, et al. Effects of delinting treatment with hydrochloric acid on oxidation resistance of Bothriochloa ischaemum. Acta Agrestia Sinica, 2025, 33(6): 1862-1868. |
| 任建军, 王菲, 李尹琳, 等. 盐酸脱绒处理对白羊草种子抗氧化性能的影响. 草地学报, 2025, 33(6): 1862-1868. | |
| [11] | Huang L H, Liang Z W, Ma H Y, et al. Effects of saline-sodic stress on the photosynthesis rate, transpiration rate and water use efficiency of Leymus chinensis. Acta Prataculturae Sinica, 2009, 18(5): 25-30. |
| 黄立华, 梁正伟, 马红媛, 等. 苏打盐碱胁迫对羊草光合、蒸腾速率及水分利用效率的影响. 草业学报, 2009, 18(5): 25-30. | |
| [12] | Wang X. The physiological response of the atioxidant system in Leymus chinensis to different alkali-saline stress. Changchun: Jilin University, 2015. |
| 王鑫. 羊草抗氧化系统对盐碱胁迫的响应特征. 长春: 吉林大学, 2015. | |
| [13] | Xu Y Q. The response of rhizosphere effect and photosynthetic physiology of gray green and yellow green ecotypes of Leymus chinensis to salt-alkaline stress. Changchun: Northeast Normal University, 2019. |
| 徐月乔. 盐碱胁迫下灰绿型与黄绿型羊草根际效应和光合生理响应. 长春: 东北师范大学, 2019. | |
| [14] | Yao Y, Xu Y Q, Wang G, et al. Salt-alkalinze stress induced rhizosphere effects and photosynthetic physiological response of two ecotypes of Leymus chinensis in Songnen meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2584-2594. |
| 姚远, 徐月乔, 王贵, 等. 盐碱胁迫下松嫩草地2种生态型羊草根际效应及光合生理响应. 中国农业科学, 2020, 53(13): 2584-2594. | |
| [15] | Bai W Y, Hou X Y, Wu Z N, et al. Advances in studies on morphological plasticity of Leymus chinensis rhizome. Pratacultural Science, 2019, 36(3): 821-834. |
| 白乌云, 侯向阳, 武自念, 等. 羊草根茎克隆形态可塑性研究进展. 草业科学, 2019, 36(3): 821-834. | |
| [16] | Li H Z. Study on dynamic changes of the oasis soil salinization in the lower reaches of Kaidu River Basin, Xinjiang based on RS and GIS. Urumqi: Xinjiang Normal University, 2010. |
| 李会志. 基于RS/GIS的开都河流域下游绿洲土壤盐渍化动态变化研究. 乌鲁木齐: 新疆师范大学, 2010. | |
| [17] | Song W X. Evaluation of salt-tolerant accessions and analysis on the transcriptome of endure salt stress in Bromus inermis Lyess. Yinchuan: Ningxia University, 2024. |
| 宋文学. 无芒雀麦耐盐性评价与耐盐转录组学分析. 银川: 宁夏大学, 2024. | |
| [18] | Flowers T J, Colmer T D. Salinity tolerance in halophytes. New Phytologist, 2008, 179(4): 945-963. |
| [19] | Song J X, Anjum S A, Zong X F, et al. Combined foliar application of nutrients and 5-aminolevulinic acid (ALA) improved drought tolerance in Leymus chinensis by modulating its morpho-physiological characteristics. Crop and Pasture Science, 2017, 68(5): 474-482. |
| [20] | Song W Z, Loik M E, Cui H Y, et al. Effect of nitrogen addition on leaf photosynthesis and water use efficiency of the dominant species Leymus chinensis (Trin.) Tzvelev in a semi-arid meadow steppe. Plant Growth Regulation, 2022, 98(1): 91-102. |
| [21] | Bao F X, Chen N, Wang N, et al. Identification of soda saline-alkali tolerance of cold-resistant alfalfa germplasm at seedling stage based on membership function method. Acta Agrestia Sinica, 2024, 32(12): 3827-3835. |
| 包凤轩, 陈宁, 王楠, 等. 基于隶属函数法鉴定抗寒苜蓿种质苗期耐苏打盐碱性. 草地学报, 2024, 32(12): 3827-3835. | |
| [22] | Luo J J, Xiao Y Z, Hou M L, et al. Effects of different additives on quality and vitamin content of mixed silage of alfalfa and Leymus chinensis. Acta Agrestia Sinica, 2025, 33(3): 992-1000. |
| 罗俊杰, 肖燕子, 侯美玲, 等. 不同添加剂对苜蓿与羊草混合青贮品质及维生素含量的影响. 草地学报, 2025, 33(3): 992-1000. | |
| [23] | Nasr S M, Parsakhoo A, Naghavi H, et al. Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.). New Forests, 2012, 43(1): 45-55. |
| [24] | Wang Z Q, Wu C Y, Yang Z, et al. Effect of saline-alkali stress on growth, physiological and biochemical characteristics of wild jujube seedlings. Agricultural Research in the Arid Areas, 2018, 36(2): 153-160. |
| 王志强, 吴翠云, 杨哲, 等. 盐碱胁迫对酸枣幼苗生长及生理生化特性的影响. 干旱地区农业研究, 2018, 36(2): 153-160. | |
| [25] | Xiong X, Gui W Y, Liu M H, et al. Evaluation of salt tolerance in different alfalfa varieties under uniform and non-uniform salt stress. Acta Prataculturae Sinica, 2018, 27(9): 67-76. |
| 熊雪, 桂维阳, 刘沫含, 等. 不同紫花苜蓿品种在均匀与不均匀盐胁迫下的耐盐性评价. 草业学报, 2018, 27(9): 67-76. | |
| [26] | Calabrese E J, Baldwin L A. Hormesis: The dose-response revolution. Annual Review of Pharmacology and Toxicology, 2003(43): 175-197. |
| [27] | Li J K. Proteomic and physiological responses to salt (NaCl) stress in Leymus chinensis. Harbin: Northeast Agricultural University, 2018. |
| 李佶恺. 盐(NaCl)胁迫对羊草生理及蛋白质组变化的影响. 哈尔滨: 东北农业大学, 2018. | |
| [28] | Huang L H, Liang Z W, Ma H Y, et al. Biological characteristics and physiological responses of Leymus chinensis seeded in soils with different pH. Chinese Journal of Ecology, 2008, 27(7): 1084-1088. |
| 黄立华, 梁正伟, 马红媛, 等. 直播羊草在不同pH土壤环境下的生物学特性和生理反应. 生态学杂志, 2008, 27(7): 1084-1088. | |
| [29] | Chen Y Y, Li Y Y, Sun P, et al. Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient (N, P) removal performance of Ruppia maritima. Ecological Engineering, 2017(104): 177-183. |
| [30] | Yan G. Physiological and metabolic mechanisms underlying the effects of salt and alkali stress on the growth of Leymus chinensis at the seedling stage and adult stage and their differences. Changchun: Northeast Normal University, 2024. |
| 闫阁. 盐碱胁迫影响幼苗期与成株期羊草生长的生理代谢机制及其差异. 长春: 东北师范大学, 2024. | |
| [31] | Zhou C, Yang Y F. Physiological response to salt-alkali stress in experimental populations in two ecotypes of Leymus chinensis in the Songnen Plains of China. Chinese Journal of Applied Ecology, 2003, 14(11): 1842-1846. |
| 周婵, 杨允菲. 松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应. 应用生态学报, 2003, 14(11): 1842-1846. | |
| [32] | Yan H, Zhao W, Yin S J, et al. Different physiological responses of Leymus chinensis to NaCl and Na2CO3. Acta Prataculturae Sinica, 2006, 15(6): 49-55. |
| 颜宏, 赵伟, 尹尚军, 等. 羊草对不同盐碱胁迫的生理响应. 草业学报, 2006, 15(6): 49-55. | |
| [33] | Peng Y L, Gao Z W, Gao Y, et al. Eco-physiological characteristics of alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Integrative Plant Biology, 2008, 50(1): 29-39. |
| [34] | Yang C N, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2): 263-276. |
| [35] | Anjum S A, Niu J H, Wang R, et al. Regulation mechanism of exogenous 5-aminolevulinic acid on growth and physiological characters of Leymus chinensis (Trin.) under high temperature stress. Philippine Agricultural Scientist, 2016, 99(3): 253-259. |
| [36] | Tourajzadeh O, Piri H, Naserin A. Effect of nano biochar addition and deficit irrigation on growth, physiology and water productivity of quinoa plants under salinity conditions. Environmental and Experimental Botany, 2023, 217: 105564. |
| [37] | Niu X Y, Ma R. The response of physiological characteristics of leaves of red sand seedlings to drought stress. Pratacultural Science, 2023, 40(10): 2483-2492. |
| 牛欣益, 马瑞. 红砂幼苗叶片生理特性对干旱胁迫的响应. 草业科学, 2023, 40(10): 2483-2492. | |
| [38] | Liu A R, Zhao K F. Osmotica accumulation and its role in osmotic adjustment in Thellungiella halophila under salt stress. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 389-395. |
| 刘爱荣, 赵可夫. 盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用. 植物生理与分子生物学学报, 2005, 31(4): 389-395. | |
| [39] | Liu B S, Kang C L, Wang X, et al. Physiological and biochemical response characteristics of Leymus chinensis to saline-alkali stress. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 166-173. |
| 刘滨硕, 康春莉, 王鑫, 等. 羊草对盐碱胁迫的生理生化响应特征. 农业工程学报, 2014, 30(23): 166-173. | |
| [40] | Li S J, Huang Y J, Li Y F. Homeostatic responses and growth of Leymus chinensis under incrementally increasing saline-alkali stress. PeerJ, 2021(9): 10768. |
| [41] | Sa D W. Study on the characteristics of nutritional quality changes and fungal community structure of alfalfa after cutting in saline-alkali soil. Hohhot: Inner Mongolia Agricultural University, 2021. |
| 撒多文. 盐碱地紫花苜蓿刈割后营养品质变化特征与真菌群落结构研究. 呼和浩特: 内蒙古农业大学, 2021. | |
| [42] | Wang Y K, Yang Y R, Wang D L. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
| 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用. 草业学报, 2020, 29(12): 95-104. | |
| [43] | Yu H R, Jia Y S, Jia P F, et al. Comprehensive evaluation of growth, yield and quality of alfalfa in different saline-alkali soil. Chinese Journal of Grassland, 2019, 41(4): 143-149. |
| 于浩然, 贾玉山, 贾鹏飞, 等. 不同盐碱度对紫花苜蓿产量及品质的影响. 中国草地学报, 2019, 41(4): 143-149. | |
| [44] | Cao M. Effects of saline-alkali stress on the individual and clonal growth traits of Leymus chinensis. Changchun: Northeast Normal University, 2017. |
| 曹明. 盐碱胁迫对羊草个体生长及克隆繁殖性状的影响. 长春: 东北师范大学, 2017. |
| [1] | Ping MA, Zhi-guo LIU, Yu-shu SHA, Ya-ling LIU, Xiao-mei TUO, Bing-zhe FU, Xue-qing GAO. Nitrogen utilization characteristics of alfalfa at the seedling stage and screening of nitrogen-efficient varieties [J]. Acta Prataculturae Sinica, 2026, 35(4): 112-123. |
| [2] | Jian-jian LI, Xi-wen XU, Yuan ZHANG, Huan WANG, Hao-ran WANG, Xiao-hui LI, Hui-quan SHEN, Shao-bin SHEN, Jun-qin ZONG, Hai-lin GUO. Evaluation of major agronomic traits and nutritional quality of forage barley varieties in the Nanjing region [J]. Acta Prataculturae Sinica, 2026, 35(3): 114-127. |
| [3] | Yi-xin LIU, Xiao-qing SUI, Xin-yao WANG, Meng-qing LANG, Ling-zi-yin SUN, Er-ge JIER. Mitigating effects of exogenous melatonin on alfalfa under salt stress [J]. Acta Prataculturae Sinica, 2025, 34(9): 206-214. |
| [4] | Liang GUO, Yu-tong HU, Yu LIAO, Cheng-yu GONG, Xiao-yan YANG, Shang-qi GUAN, Cheng-qi JU. The impact of phosphorus addition and arbuscular mycorrhizal fungi on root architecture and nutrient utilization in Leymus chinensis [J]. Acta Prataculturae Sinica, 2025, 34(8): 165-178. |
| [5] | Xiao-hong BAI, Wen-yan CHEN, Qin LI, Yi-xuan WANG, Xue ZHANG, Lei WANG, Wen-jie QU, Lin ZHU. Seed germination and seedling growth characteristics of Glycyrrhiza uralensis from different provenances [J]. Acta Prataculturae Sinica, 2025, 34(7): 196-209. |
| [6] | Li-li MA, Fu-zhen JIANG, Yu-shou MA, Kai-bin QI, Shun-bin JIA, Zheng-peng LI. Effect of particle size ratio, fertilizer application amount, and seeding rate combinations coal gangue matrix properties in restoration of a mining area [J]. Acta Prataculturae Sinica, 2025, 34(3): 71-84. |
| [7] | Wen-hu WANG, Guo-ling LIANG, Wen-hui LIU, Feng-yu WANG, Wen LI. Comprehensive evaluation of agronomic traits and yield of eight Elymus sibiricus varieties in the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2025, 34(2): 123-132. |
| [8] | Hao GUAN, Duo XU, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Xin-yang LI, Yan-ling HUANG, Qing-ping ZHOU, Shi-yong CHEN. A study of nutritional quality and rumen degradation characteristics of 17 oat varieties in high cold regions [J]. Acta Prataculturae Sinica, 2024, 33(9): 185-198. |
| [9] | Zhao ZHANG, Ying-ying FU, Hao-wen SUN, Feng-xue SUN, Hui-fang YAN. Identification of seed vigor and evaluation of seed storability in different varieties of oat [J]. Acta Prataculturae Sinica, 2024, 33(6): 165-174. |
| [10] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
| [11] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
| [12] | Chen MENG, Xue-li LU, Yi-ru SONG, Cheng-sheng ZHANG, Yi-qiang LI, Hai-qin XIANG, Zong-chang XU. Evaluation and identification of salt tolerance of 11 Leonurus germplasm lines at the seedling stage [J]. Acta Prataculturae Sinica, 2024, 33(5): 196-203. |
| [13] | Xin-yu CHENG, Ji-lian WANG, Mairiyangu·Yasheng, Ming-yuan LI. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum [J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121. |
| [14] | Ying LUO, Cong LI, Pei WANG, Li-hua TIAN, Hui WANG, Qing-ping ZHOU, Ying-xia LEI. Responses of different oat cultivars to low-nitrogen stress [J]. Acta Prataculturae Sinica, 2024, 33(2): 164-184. |
| [15] | Yong-liang ZHANG, Ze TENG, Feng HAO, Tie-feng YU, Yu-xia ZHANG. Effects of different mixed sowing patterns and sowing ratios of alfalfa on grassland productivity and community stability in grass-legume mixtures [J]. Acta Prataculturae Sinica, 2024, 33(2): 185-197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||