Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (6): 112-126.DOI: 10.11686/cyxb2021154
Yi-ting JIN(), Wen-hui LIU(), Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA
Received:
2021-04-21
Revised:
2021-07-07
Online:
2022-06-20
Published:
2022-05-11
Contact:
Wen-hui LIU
Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period[J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126.
处理Treatments | 胁迫程度Stress degree | 胁迫时期Stress period |
---|---|---|
T1 | 75%FWC | 对照 Normal water supply throughout growth period, CK |
T2 | 60%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T3 | 45%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T4 | 30%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T5 | 60%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T6 | 45%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T7 | 30%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T8 | 60%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T9 | 45%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T10 | 30%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T11 | 60%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T12 | 45%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T13 | 30%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
Table 1 Treatments code of drought stress
处理Treatments | 胁迫程度Stress degree | 胁迫时期Stress period |
---|---|---|
T1 | 75%FWC | 对照 Normal water supply throughout growth period, CK |
T2 | 60%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T3 | 45%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T4 | 30%FWC | 苗期-拔节期干旱 Drought stress at the seedling-jointing stage, SJ |
T5 | 60%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T6 | 45%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T7 | 30%FWC | 苗期-抽穗期干旱 Drought stress at the seedling-heading stage, SH |
T8 | 60%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T9 | 45%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T10 | 30%FWC | 苗期-开花期干旱 Drought stress at the seedling-flowering stage, SF |
T11 | 60%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T12 | 45%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
T13 | 30%FWC | 苗期-乳熟期干旱 Drought stress at the seedling-milking stage, SM |
因素 Factor | F0 | Fm | F0′ | Fm′ |
---|---|---|---|---|
胁迫程度Stress degree (Sd) | 9.590** | 6.032** | 16.739** | 16.402** |
胁迫时期Stress period (Sp) | 3.698* | 10.686** | 3.309* | 5.083** |
胁迫程度×胁迫时期Sd×Sp | 109.858** | 1427.625** | 82.080** | 101.082** |
Table 2 Variance analysis of the F0, Fm, F0′ and Fm′ of ‘Qingyan No.1’ oat under drought stress
因素 Factor | F0 | Fm | F0′ | Fm′ |
---|---|---|---|---|
胁迫程度Stress degree (Sd) | 9.590** | 6.032** | 16.739** | 16.402** |
胁迫时期Stress period (Sp) | 3.698* | 10.686** | 3.309* | 5.083** |
胁迫程度×胁迫时期Sd×Sp | 109.858** | 1427.625** | 82.080** | 101.082** |
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
F0 | CK1 | 300.78±5.84bA | 281.36±6.87aB | 253.03±3.49aC | 278.39±5.40a |
SJ | 317.96±9.68aA | 191.45±6.68cdC | 227.23±8.54bB | 245.55±8.30b | |
SH | 238.83±6.62cA | 183.45±5.34dB | 152.77±3.92dC | 191.68±5.29c | |
SF | 216.84±6.29dB | 270.14±9.55bA | 185.50±4.56cC | 224.16±6.80bc | |
SM | 217.48±4.22dA | 199.28±2.98cB | 157.83±2.51dC | 191.53±3.24c | |
平均Average | 258.38±6.53A | 222.79±6.26B | 192.87±4.65C | ||
Fm | CK1 | 1351.44±4.87aA | 1246.89±4.56aB | 1193.09±4.39aC | 1263.81±4.61a |
SJ | 1203.78±2.81bA | 926.16±12.78cC | 1103.96±2.02bB | 1077.97±5.87b | |
SH | 1059.93±10.08cA | 898.85±2.88dB | 775.83±8.26cC | 857.12±4.23c | |
SF | 895.11±4.25eB | 1049.90±4.85bA | 626.34±3.58dC | 911.54±7.07c | |
SM | 946.76±10.00dA | 470.52±3.00eB | 312.83±15.56eC | 576.70±9.52d | |
平均Average | 1091.40±6.42A | 918.46±5.61B | 802.41±6.76C | ||
F0′ | CK1 | 247.50±1.89aA | 206.58±1.23aB | 188.71±1.71aC | 214.26±1.61a |
SJ | 227.80±4.00bA | 147.27±3.23cC | 168.80±1.20bB | 181.29±2.81b | |
SH | 219.93±9.39bA | 143.00±0.40cB | 112.27±4.51dC | 155.86±5.26bc | |
SF | 162.20±3.86cB | 182.87±7.43bA | 122.50±4.50cC | 158.40±4.77bc | |
SM | 156.33±1.60cA | 130.27±7.91dB | 100.40±4.80eC | 129.00±4.77c | |
平均Average | 202.75±4.15A | 162.00±4.04B | 138.54±3.34C | ||
Fm′ | CK1 | 499.19±3.49aA | 410.82±3.17aB | 379.21±2.88aC | 429.74±3.18a |
SJ | 393.74±3.85cA | 289.92±7.30bC | 329.47±3.77bB | 337.71±4.97b | |
SH | 436.98±9.95bA | 256.47±3.12cB | 240.86±17.99cB | 311.44±10.36bc | |
SF | 296.22±3.45eA | 293.66±6.39bA | 202.31±2.02dB | 264.06±3.95cd | |
SM | 309.30±5.33dA | 214.06±11.08dB | 144.12±4.35eC | 222.49±6.92d | |
平均Average | 387.09±5.41A | 292.99±6.21B | 259.19±6.20C |
Table 3 Effects of different stress degrees and stress periods on F0, Fm, F0′ and Fm′ of ‘Qingyan No.1’ oat
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
F0 | CK1 | 300.78±5.84bA | 281.36±6.87aB | 253.03±3.49aC | 278.39±5.40a |
SJ | 317.96±9.68aA | 191.45±6.68cdC | 227.23±8.54bB | 245.55±8.30b | |
SH | 238.83±6.62cA | 183.45±5.34dB | 152.77±3.92dC | 191.68±5.29c | |
SF | 216.84±6.29dB | 270.14±9.55bA | 185.50±4.56cC | 224.16±6.80bc | |
SM | 217.48±4.22dA | 199.28±2.98cB | 157.83±2.51dC | 191.53±3.24c | |
平均Average | 258.38±6.53A | 222.79±6.26B | 192.87±4.65C | ||
Fm | CK1 | 1351.44±4.87aA | 1246.89±4.56aB | 1193.09±4.39aC | 1263.81±4.61a |
SJ | 1203.78±2.81bA | 926.16±12.78cC | 1103.96±2.02bB | 1077.97±5.87b | |
SH | 1059.93±10.08cA | 898.85±2.88dB | 775.83±8.26cC | 857.12±4.23c | |
SF | 895.11±4.25eB | 1049.90±4.85bA | 626.34±3.58dC | 911.54±7.07c | |
SM | 946.76±10.00dA | 470.52±3.00eB | 312.83±15.56eC | 576.70±9.52d | |
平均Average | 1091.40±6.42A | 918.46±5.61B | 802.41±6.76C | ||
F0′ | CK1 | 247.50±1.89aA | 206.58±1.23aB | 188.71±1.71aC | 214.26±1.61a |
SJ | 227.80±4.00bA | 147.27±3.23cC | 168.80±1.20bB | 181.29±2.81b | |
SH | 219.93±9.39bA | 143.00±0.40cB | 112.27±4.51dC | 155.86±5.26bc | |
SF | 162.20±3.86cB | 182.87±7.43bA | 122.50±4.50cC | 158.40±4.77bc | |
SM | 156.33±1.60cA | 130.27±7.91dB | 100.40±4.80eC | 129.00±4.77c | |
平均Average | 202.75±4.15A | 162.00±4.04B | 138.54±3.34C | ||
Fm′ | CK1 | 499.19±3.49aA | 410.82±3.17aB | 379.21±2.88aC | 429.74±3.18a |
SJ | 393.74±3.85cA | 289.92±7.30bC | 329.47±3.77bB | 337.71±4.97b | |
SH | 436.98±9.95bA | 256.47±3.12cB | 240.86±17.99cB | 311.44±10.36bc | |
SF | 296.22±3.45eA | 293.66±6.39bA | 202.31±2.02dB | 264.06±3.95cd | |
SM | 309.30±5.33dA | 214.06±11.08dB | 144.12±4.35eC | 222.49±6.92d | |
平均Average | 387.09±5.41A | 292.99±6.21B | 259.19±6.20C |
因素 Factor | Fs | Fv | Fv/Fm | ΦPSⅡ | ETR |
---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 14.981** | 4.728* | 2.764 | 6.874** | 7.288** |
胁迫时期Stress period (Sp) | 3.813* | 12.264** | 14.473** | 8.727** | 9.736** |
胁迫程度×胁迫时期Sd×Sp | 234.897** | 597.722** | 96.198** | 11.405** | 56.692** |
Table 4 Variance analysis of the Fs, Fv, Fv/Fm, ΦPSⅡand ETR of ‘Qingyan No.1’oat under drought stress
因素 Factor | Fs | Fv | Fv/Fm | ΦPSⅡ | ETR |
---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 14.981** | 4.728* | 2.764 | 6.874** | 7.288** |
胁迫时期Stress period (Sp) | 3.813* | 12.264** | 14.473** | 8.727** | 9.736** |
胁迫程度×胁迫时期Sd×Sp | 234.897** | 597.722** | 96.198** | 11.405** | 56.692** |
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
Fs | CK1 | 355.79±1.87aA | 310.01±2.44aB | 289.67±1.17aC | 318.49±1.83a |
SJ | 297.99±0.37cA | 213.43±0.53cC | 257.55±2.31bB | 256.32±1.07b | |
SH | 330.45±5.77bA | 199.80±0.24dB | 189.53±7.33cC | 239.93±4.45b | |
SF | 228.55±1.63eB | 247.10±4.89bA | 167.86±1.34dC | 214.50±2.62bc | |
SM | 238.75±2.53dA | 179.94±8.88eB | 133.19±4.09eC | 183.96±0.99c | |
平均Average | 290.31±2.43A | 230.06±3.40B | 207.56±3.25C | ||
Fv | CK1 | 1109.55±7.59aA | 1007.19±5.07aB | 967.13±8.92aC | 1027.96±7.19a |
SJ | 885.16±4.89bA | 734.71±2.46cC | 868.06±3.42bB | 829.31±3.59b | |
SH | 821.09±16.14cA | 713.73±14.38dB | 623.07±10.36cC | 719.30±13.63bc | |
SF | 678.61±3.25eB | 779.76±14.26bA | 439.88±12.26dC | 632.75±9.92c | |
SM | 729.28±13.89dA | 271.24±0.02eB | 155.00±16.70eC | 385.17±10.20d | |
平均Average | 844.74±9.15A | 701.33±7.24B | 521.50±10.33C | ||
Fv/Fm | CK1 | 0.82±0.01aA | 0.80±0.00aAB | 0.80±0.01aB | 0.81±0.01a |
SJ | 0.79±0.00bA | 0.79±0.01aA | 0.79±0.00abA | 0.79±0.01ab | |
SH | 0.77±0.01cB | 0.79±0.01aA | 0.77±0.00bAB | 0.78±0.03ab | |
SF | 0.76±0.00dA | 0.74±0.01bA | 0.70±0.02cB | 0.73±0.01b | |
SM | 0.77±0.01cdA | 0.58±0.00cB | 0.49±0.03dC | 0.61±0.14c | |
平均Average | 0.78±0.01A | 0.74±0.01B | 0.71±0.01C | ||
ΦPSⅡ | CK1 | 0.34±0.01aA | 0.30±0.01aB | 0.26±0.00aC | 0.30±0.01a |
SJ | 0.26±0.00bA | 0.26±0.02bA | 0.22±0.02bB | 0.25±0.01b | |
SH | 0.24±0.03bA | 0.22±0.01cA | 0.21±0.03bA | 0.23±0.02b | |
SF | 0.23±0.01bA | 0.16±0.00dB | 0.17±0.00cB | 0.19±0.04c | |
SM | 0.23±0.02bA | 0.16±0.00dB | 0.08±0.00dC | 0.15±0.08c | |
平均Average | 0.26±0.01A | 0.22±0.01B | 0.19±0.01B | ||
ETR | CK1 | 157.21±1.59aA | 144.43±1.72aB | 129.87±0.53aC | 143.84±1.28a |
SJ | 125.01±1.56cAB | 133.27±10.12bA | 113.64±4.21bB | 123.97±5.29b | |
SH | 131.68±4.38bA | 114.33±2.63cB | 115.44±3.30bB | 120.48±3.44b | |
SF | 112.45±5.16dA | 80.18±0.87dB | 72.05±2.78cC | 88.23±2.94c | |
SM | 121.49±1.57cA | 80.57±1.68dB | 38.37±0.24dC | 80.14±1.16c | |
平均Average | 129.57±2.85A | 110.56±3.04B | 93.84±2.21C |
Table 5 Effects of different stress degrees and stress periods on Fs, Fv, Fv/Fm, ΦPSⅡand ETR of ‘Qingyan No.1’ oat
指标 Index | 胁迫时期 Stress period | 胁迫程度 Stress degree | |||
---|---|---|---|---|---|
60%FWC | 45%FWC | 30%FWC | 平均Average | ||
Fs | CK1 | 355.79±1.87aA | 310.01±2.44aB | 289.67±1.17aC | 318.49±1.83a |
SJ | 297.99±0.37cA | 213.43±0.53cC | 257.55±2.31bB | 256.32±1.07b | |
SH | 330.45±5.77bA | 199.80±0.24dB | 189.53±7.33cC | 239.93±4.45b | |
SF | 228.55±1.63eB | 247.10±4.89bA | 167.86±1.34dC | 214.50±2.62bc | |
SM | 238.75±2.53dA | 179.94±8.88eB | 133.19±4.09eC | 183.96±0.99c | |
平均Average | 290.31±2.43A | 230.06±3.40B | 207.56±3.25C | ||
Fv | CK1 | 1109.55±7.59aA | 1007.19±5.07aB | 967.13±8.92aC | 1027.96±7.19a |
SJ | 885.16±4.89bA | 734.71±2.46cC | 868.06±3.42bB | 829.31±3.59b | |
SH | 821.09±16.14cA | 713.73±14.38dB | 623.07±10.36cC | 719.30±13.63bc | |
SF | 678.61±3.25eB | 779.76±14.26bA | 439.88±12.26dC | 632.75±9.92c | |
SM | 729.28±13.89dA | 271.24±0.02eB | 155.00±16.70eC | 385.17±10.20d | |
平均Average | 844.74±9.15A | 701.33±7.24B | 521.50±10.33C | ||
Fv/Fm | CK1 | 0.82±0.01aA | 0.80±0.00aAB | 0.80±0.01aB | 0.81±0.01a |
SJ | 0.79±0.00bA | 0.79±0.01aA | 0.79±0.00abA | 0.79±0.01ab | |
SH | 0.77±0.01cB | 0.79±0.01aA | 0.77±0.00bAB | 0.78±0.03ab | |
SF | 0.76±0.00dA | 0.74±0.01bA | 0.70±0.02cB | 0.73±0.01b | |
SM | 0.77±0.01cdA | 0.58±0.00cB | 0.49±0.03dC | 0.61±0.14c | |
平均Average | 0.78±0.01A | 0.74±0.01B | 0.71±0.01C | ||
ΦPSⅡ | CK1 | 0.34±0.01aA | 0.30±0.01aB | 0.26±0.00aC | 0.30±0.01a |
SJ | 0.26±0.00bA | 0.26±0.02bA | 0.22±0.02bB | 0.25±0.01b | |
SH | 0.24±0.03bA | 0.22±0.01cA | 0.21±0.03bA | 0.23±0.02b | |
SF | 0.23±0.01bA | 0.16±0.00dB | 0.17±0.00cB | 0.19±0.04c | |
SM | 0.23±0.02bA | 0.16±0.00dB | 0.08±0.00dC | 0.15±0.08c | |
平均Average | 0.26±0.01A | 0.22±0.01B | 0.19±0.01B | ||
ETR | CK1 | 157.21±1.59aA | 144.43±1.72aB | 129.87±0.53aC | 143.84±1.28a |
SJ | 125.01±1.56cAB | 133.27±10.12bA | 113.64±4.21bB | 123.97±5.29b | |
SH | 131.68±4.38bA | 114.33±2.63cB | 115.44±3.30bB | 120.48±3.44b | |
SF | 112.45±5.16dA | 80.18±0.87dB | 72.05±2.78cC | 88.23±2.94c | |
SM | 121.49±1.57cA | 80.57±1.68dB | 38.37±0.24dC | 80.14±1.16c | |
平均Average | 129.57±2.85A | 110.56±3.04B | 93.84±2.21C |
因素 Factor | qP | NPQ | Y(NO) | Y (NPQ) | α | β |
---|---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 10.881** | 0.729 | 1.134 | 1.381 | 10.554** | 10.554** |
胁迫时期Stress period (Sp) | 7.005** | 8.117** | 14.587** | 6.684** | 6.759** | 6.759** |
胁迫程度×胁迫时期Sd×Sp | 5.734** | 54.668** | 168.400** | 12.428** | 8.121** | 8.121** |
Table 6 Effects of different stress degrees and stress periods on qP, NPQ, Y(NO), Y(NPQ), α and β of ‘Qingyan No.1’ oat
因素 Factor | qP | NPQ | Y(NO) | Y (NPQ) | α | β |
---|---|---|---|---|---|---|
胁迫程度Stress degree (Sd) | 10.881** | 0.729 | 1.134 | 1.381 | 10.554** | 10.554** |
胁迫时期Stress period (Sp) | 7.005** | 8.117** | 14.587** | 6.684** | 6.759** | 6.759** |
胁迫程度×胁迫时期Sd×Sp | 5.734** | 54.668** | 168.400** | 12.428** | 8.121** | 8.121** |
指标Index | 处理代码Treatments code | 胁迫时期Stress period | 胁迫程度Stress degree | 最大增量? Increment (%) | 影响最大的相对值Relative value |
---|---|---|---|---|---|
Y(NO) | T9 | SF | 45%FWC | 85.52 | 0.82 |
NPQ | T12 | SM | 45%FWC | 65.21 | 0.75 |
Y(NPQ) | T9 | SF | 45%FWC | 33.76 | 1.01 |
β | T13 | SM | 30%FWC | 26.60 | 1.00 |
Fv | T13 | SM | 30%FWC | -84.86 | 0.15 |
Fm | T13 | SM | 30%FWC | -75.41 | 0.25 |
ΦPSⅡ | T13 | SM | 30%FWC | -75.03 | 0.25 |
ETR | T13 | SM | 30%FWC | -75.00 | 0.25 |
Fm′ | T13 | SM | 30%FWC | -70.89 | 0.29 |
Fs | T13 | SM | 30%FWC | -61.38 | 0.39 |
F0′ | T13 | SM | 30%FWC | -57.73 | 0.42 |
qP | T13 | SM | 30%FWC | -57.06 | 0.43 |
F0 | T7 | SH | 30%FWC | -48.86 | 0.51 |
α | T13 | SM | 30%FWC | -45.61 | 0.54 |
Fv/Fm | T13 | SM | 30%FWC | -38.50 | 0.62 |
Table 7 Effects of drought stress on fluorescence parameters of ‘Qingyan No. 1’ oat
指标Index | 处理代码Treatments code | 胁迫时期Stress period | 胁迫程度Stress degree | 最大增量? Increment (%) | 影响最大的相对值Relative value |
---|---|---|---|---|---|
Y(NO) | T9 | SF | 45%FWC | 85.52 | 0.82 |
NPQ | T12 | SM | 45%FWC | 65.21 | 0.75 |
Y(NPQ) | T9 | SF | 45%FWC | 33.76 | 1.01 |
β | T13 | SM | 30%FWC | 26.60 | 1.00 |
Fv | T13 | SM | 30%FWC | -84.86 | 0.15 |
Fm | T13 | SM | 30%FWC | -75.41 | 0.25 |
ΦPSⅡ | T13 | SM | 30%FWC | -75.03 | 0.25 |
ETR | T13 | SM | 30%FWC | -75.00 | 0.25 |
Fm′ | T13 | SM | 30%FWC | -70.89 | 0.29 |
Fs | T13 | SM | 30%FWC | -61.38 | 0.39 |
F0′ | T13 | SM | 30%FWC | -57.73 | 0.42 |
qP | T13 | SM | 30%FWC | -57.06 | 0.43 |
F0 | T7 | SH | 30%FWC | -48.86 | 0.51 |
α | T13 | SM | 30%FWC | -45.61 | 0.54 |
Fv/Fm | T13 | SM | 30%FWC | -38.50 | 0.62 |
1 | Nemani R R, Keeling C D, Hashimoto H, et al. Climate-Driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563. |
2 | Cao Y. Simulation of maize and wheat yield influenced by potential drought in China during 1961-2010. Beijing: Chinese Academy of Agricultural Sciences, 2014. |
曹阳. 1961-2010年潜在干旱对中国玉米、小麦产量影响的模拟. 北京: 中国农业科学院, 2014. | |
3 | Liu F, Stützel H. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 2004, 102(1): 15-27. |
4 | Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. Journal of Experimental Botany, 2004, 55(407): 2365-2384. |
5 | Yang F, Miao L F, Xu X, et al. Progress in research of plant responses to drought stress. Chinese Journal of Applied and Environmental Biology, 2007(4): 586-591. |
杨帆, 苗灵凤, 胥晓, 等. 植物对干旱胁迫的响应研究进展. 应用与环境生物学报, 2007(4): 586-591. | |
6 | Bréda N, Huc R, André G, et al. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 2006, 63(6): 625-644. |
7 | Cui X M, Liu X B, Li Z H, et al. Effects of salicylic acid on growth and photosynthetic characteristics of Melilotoides ruthenica in branching stage under different water stress. Acta Prataculturae Sinica, 2012, 21(6): 82-93. |
崔秀妹, 刘信宝, 李志华, 等. 不同水分胁迫下水杨酸对分枝期扁蓿豆生长及光合生理的影响. 草业学报, 2012, 21(6): 82-93. | |
8 | Wen C P, Li W, Qi Z P, et al. Effect of water stress on the growth of kinggrass. Acta Prataculturae Sinica, 2012, 21(4): 72-78. |
温翠平, 李威, 漆智平, 等. 水分胁迫对王草生长的影响. 草业学报, 2012, 21(4): 72-78. | |
9 | Dai Y J, Shen Z G, Liu Y, et al. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 2008, 65(2): 177-182. |
10 | Mohsenzadeh S, Malboobi M A, Razavi K, et al. Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 2005, 56(3): 314-322. |
11 | Baum M, Grando S, Ceccarelli S. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China, 2006(10): 751-757. |
12 | Zheng S H, Yan C R. The ecophysiological and morphological characteristics of maize in seedling stage under water stress. Acta Ecologica Sinica, 2006(4): 1138-1143. |
郑盛华, 严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报, 2006(4): 1138-1143. | |
13 | Yang W Q, Gu M Y, Kou J C, et al. Effects of drought and rewatering on the photosynthesis and chlorophyll fluorescence of Coronilla varia. Acta Agrestia Sinica, 2013, 21(6): 1130-1135. |
杨文权, 顾沐宇, 寇建村, 等. 干旱及复水对小冠花光合及叶绿素荧光参数的影响.草地学报, 2013, 21(6): 1130-1135. | |
14 | Chen Y E, Liu W J, Su Y Q, et al. Different response of photosystem Ⅱ to short and long-term drought stress in Arabidopsis thaliana. Physiologia Plantarum, 2016, 158(2): 225-235. |
15 | Wang Y C, Zhang Y L, Yan D L, et al. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
王泳超, 张颖蕾, 闫东良, 等. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应. 草业学报, 2020, 29(6): 191-203. | |
16 | Cui X X, Hou F J, Chang S H, et al. Comparison of yield and nutritional quality of two oat (Avena sativa) varieties grown in the alpine pastoral region of China. Pratacultural Science, 2018, 35(6): 1489-1495. |
崔雄雄, 侯扶江, 常生华, 等.高寒牧区两个燕麦品种的产量与品质比较. 草业科学, 2018, 35(6): 1489-1495. | |
17 | Yang J, Liu W H, Liang G L, et al. Traits correlated with lodging resistance of oat strains in the alpine region. Acta Prataculturae Sinica, 2020, 29(12): 50-60. |
杨晶, 刘文辉, 梁国玲, 等. 高寒地区不同燕麦品系抗倒伏相关性状分析. 草业学报, 2020, 29(12): 50-60. | |
18 | Liang G L, Qin Y, Wei X X, et al. Evaluation on productivity and quality of oat strain I-D in the alpine regions of the Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 2018, 26(4): 917-927. |
梁国玲, 秦燕, 魏小星, 等. 青藏高原高寒区I-D燕麦品系饲草生产性能及品质评价. 草地学报, 2018, 26(4): 917-927. | |
19 | Liu K Q, Liu W H, Jia Z F, et al. Effects of water stress on organ growth and water use efficiency of Avena sativa ‘Qingyan No.1’. Acta Agrestia Sinica, 2020, 28(6): 1552-1562. |
刘凯强, 刘文辉, 贾志锋, 等. 干旱胁迫对’青燕1号’燕麦器官生长及水分利用效率的影响. 草地学报, 2020, 28(6): 1552-1562. | |
20 | Liu K Q. Effects of water stress on growth and yield components of oat. Xining: Qinghai University, 2020. |
刘凯强. 水分胁迫对燕麦生长发育及产量构成的影响. 西宁: 青海大学, 2020. | |
21 | Liu W H. Effects of planting dates on the growth characteristics of three naked oats varieties. Acta Agrestia Sinica, 2016, 24(5): 1032-1040. |
刘文辉. 播期对三种裸燕麦品种生长特性的影响. 草地学报, 2016, 24(5): 1032-1040. | |
22 | Liu W H, Liu Y, Ma X, et al. Effect of fertilizer and xixture on the oat cultivation grassland plant carbon storage on alpine plateau. Acta Agrestia Sinica, 2018, 26(5): 1150-1158. |
刘文辉, 刘勇, 马祥, 等. 高寒区施肥和混播对燕麦人工草地生物碳储量影响的研究. 草地学报, 2018, 26(5): 1150-1158. | |
23 | Liu K Q, Liu W H, Jia Z F, et al. Effect of different sowing rates and row spacings on seed yield of Avena sativa cv. Qingyan No.1. Acta Agrestia Sinica, 2019, 27(4): 1060-1067. |
刘凯强, 刘文辉, 贾志锋, 等.不同播量、行距及播种方式对青燕1号燕麦饲草产量的影响. 草地学报, 2019, 27(4): 1060-1067. | |
24 | Jia Z F, Ma X, Ju Z L, et al. Effects of nitrogen application rate and sowing rate and sowing rate on photosynthetic characteristics, phytohormone content and grain yield of oat. Acta Agrestia Sinica, 2021, 29(2): 293-302. |
贾志锋, 马祥, 琚泽亮, 等.施氮量和播种量对燕麦光合特性、激素含量及种子产量的影响.草地学报, 2021, 29(2): 293-302. | |
25 | Zhang X. Mechanisms with leaf traits in alfalfa responding to drought stress. Lanzhou: Lanzhou University, 2015. |
张曦. 紫花苜蓿响应干旱胁迫的叶性状机制研究. 兰州: 兰州大学, 2015. | |
26 | Jia S J, Li H W, Jiang Y P, et al. Effects of drought on photosynthesis and ear development characteristics of maize. Acta Ecologica Sinica, 2020, 40(3): 854-863. |
贾双杰, 李红伟, 江艳平, 等. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响. 生态学报, 2020, 40(3): 854-863. | |
27 | Du W L, Gao J, Hu F L, et al. Responses of drought stress on photosynthetic trait and osmotic adjustment in two maize cultivars. Acta Agronomica Sinica, 2013, 39(3): 530-536. |
杜伟莉, 高杰, 胡富亮, 等. 玉米叶片光合作用和渗透调节对干旱胁迫的响应. 作物学报, 2013, 39(3): 530-536. | |
28 | Guo Y Y, Liu J, Zhu Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress. Plant Physiology Journal, 2018, 54(12): 1839-1846. |
郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应. 植物生理学报, 2018, 54(12): 1839-1846. | |
29 | Ding G H, Ma D R, Yang G, et al. Responses of the photosynthetic system of drought-tolerance weedy rice to drought stress at the seedling stage. Acta Ecologica Sinica, 2016, 36(1): 226-234. |
丁国华, 马殿荣, 杨光, 等. 耐旱杂草稻幼苗光合系统对干旱胁迫的响应. 生态学报, 2016, 36(1): 226-234. | |
30 | Zhang J Z, Zhang Q Y, Sun G F, et al. Effects of drought stress and re-watering on growth and photosynthesis of Hosta. Acta Prataculturae Sinica, 2014, 23(1): 167-176. |
张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23(1): 167-176. | |
31 | Wang Z X, Chen L, Ai J, et al. Effects of different drought stress on photosynthesis and activity of photosystem Ⅱ in leaves of amur grape (Vitis amurensis). Plant Physiology Journal, 2014, 50(8): 1171-1176. |
王振兴, 陈丽, 艾军, 等. 不同干旱胁迫对山葡萄的光合作用和光系统Ⅱ活性的影响. 植物生理学报, 2014, 50(8): 1171-1176. | |
32 | Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba. Acta Ecologica Sinica, 2012, 32(23): 7492-7500. |
魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ 荧光特性的影响. 生态学报, 2012, 32(23): 7492-7500. | |
33 | Ji W Q, Yang Z, Wang H, et al. Response of oat to drought stress at different growth stages. Chinese Journal of Grassland, 2021, 43(1): 58-67. |
姬文琴, 杨智, 汪辉, 等. 不同生育阶段燕麦对干旱胁迫的响应.中国草地学报, 2021, 43(1): 58-67. | |
34 | Li J X, Ou X B, Wang J C. Effects of exogenous hydrogen peroxide on chlorophyll fluorescence parameters and photosynthetic carbon assimilation enzymes activities in naked oat seedlings under lanthanum stress. Acta Ecologica Sinica, 2019, 39(8): 2833-2841. |
刘建新, 欧晓彬, 王金成. 镧胁迫下外源H2O2对裸燕麦幼苗叶绿素荧光参数和光合碳同化酶活性的影响. 生态学报, 2019, 39(8): 2833-2841. | |
35 | Zhang R H, Zheng Y J, Ma G S, et al. Effects of drought stress on photosynthetic traits and protective enzyme activity in maize seeding. Acta Ecologica Sinica, 2011, 31(5): 1303-1311. |
张仁和, 郑友军, 马国胜, 等. 干旱胁迫对玉米苗期叶片光合作用和保护酶的影响. 生态学报, 2011, 31(5): 1303-1311. | |
36 | Zhang X H, Gao J, Du W L, et al. Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agronomica Sinica, 2015, 41(1): 154-159. |
张兴华, 高杰, 杜伟莉, 等. 干旱胁迫对玉米品种苗期叶片光合特性的影响. 作物学报, 2015, 41(1): 154-159. | |
37 | Zhao B P, Ren P, Xu Z S, et al. Effects of water stress on photosynthetic characteristics and yield formation in oats (Avena sativa L.) with different drought resistance. Journal of Triticeae Crops, 2020(11): 1-9. |
赵宝平, 任鹏, 徐忠山, 等. 水分胁迫对不同抗旱性燕麦品种光合及产量形成的影响. 麦类作物学报, 2020(11): 1-9. | |
38 | Demmig-Adams B, Adams Ⅲ W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98(2): 253-264. |
39 | Wu Q. Effect of drought stress and nitrogen on root morphology, physiological characteristics and yield formation of sorghum. Shenyang: Shenyang Agricultural University, 2017. |
吴奇. 干旱胁迫及氮素对高粱根系形态、生理特性及产量形成的影响. 沈阳: 沈阳农业大学, 2017. | |
40 | Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 2004, 82(1): 73-81. |
41 | Havaux M, Tardy F. Temperature-dependent adjustment of the thermal stability of photosystem Ⅱ in vivo: Possible involvement of xanthophyll-cycle pigments. Planta, 1996, 198(3): 324-333. |
42 | Weis E, Berry J A. Plants and high temperature stress. Symposia of the Society for Experimental Biology, 1988, 42: 329-346. |
43 | Zhang G S, Hao L, Yan Z J, et al. The responses of chlorophyll fluorescence kinetics parameters of six tree species to soil moisture changes. Chinese Journal of Ecology, 2017, 36(11): 3079-3085. |
张国盛, 郝蕾, 闫子娟, 等.6种树种叶片叶绿素荧光动力学参数对土壤水分变化的响应.生态学杂志, 2017, 36(11): 3079-3085. | |
44 | Song H, Jiang Y L, Xu Z Z, et al. Response of photosynthetic physiological parameters of maize to drought during the whole growth period and after the jointing stage. Acta Ecologica Sinica, 2019, 39(7): 2405-2415. |
宋贺, 蒋延玲, 许振柱, 等.玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应.生态学报, 2019, 39(7): 2405-2415. | |
45 | Baker N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 2008, 59: 89-113. |
46 | Yuan X K, Yang Z Q, Li Y X, et al. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica, 2016, 54(1): 28-39. |
47 | Jean-David R. Regulation and dynamics of the light-harvesting system. Annual Review of Plant Biology, 2014, 65: 287-309. |
48 | Cui Z H, Wang Y P, Zhang A, et al. Regulation of reversible dissociation of LHCII from PSII by phosphorylation in plants. American Journal of Plant Sciences, 2014, 5(2): 241-249. |
[1] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[2] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
[3] | Cheng-zhen ZHAO, Qiang LI, Rong-zhen ZHONG. Effect of mowing in different phenological growth stages on shoot regrowth, root morphology and forage yield of Leymus chinensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 92-100. |
[4] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[5] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[6] | Lu-yao WU, Jian-guo ZHANG, Wen-qian CHANG, Shao-lei ZHANG, Qing CHANG. Diurnal change in chlorophyll fluorescence parameters in three desert plants [J]. Acta Prataculturae Sinica, 2021, 30(9): 203-213. |
[7] | Jun-nian LI, Shao-hua KANG, Dong-mei YANG, Qian HE, Shuang LI, Shuang-lun TAO. Effects of substituting dietary alfalfa meal with kudzu vine (Pueraria lobata) meal on serum biochemical indexes, apparent nutrient digestibility and growth performance in Boer crossbred goats [J]. Acta Prataculturae Sinica, 2021, 30(8): 146-153. |
[8] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[9] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[10] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[11] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[12] | Mang-li XIONG, Xu-jin WU, Xiao-fu ZHU, Wen-juan ZHANG. Effects of different apple pomace levels on lactation performance, nutrient apparent digestibility, serum biochemical indices and the rumen pH of Guanzhong dairy goats [J]. Acta Prataculturae Sinica, 2021, 30(3): 81-88. |
[13] | Ji-qing WANG, Ji-yuan SHEN, Xiu LIU, Shao-bin LI, Yu-zhu LUO, Meng-li ZHAO, Zhi-yun HAO, Na KE, Yi-ze SONG, Li-rong QIAO. Comparative analysis of meat production traits, meat quality, and muscle nutrient and fatty acid contents between Ziwuling black goats and Liaoning cashmere goats [J]. Acta Prataculturae Sinica, 2021, 30(2): 166-177. |
[14] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
[15] | Chen WU, Zhi-hao YAO, Wen-qing MEI, Yu-yan FENG, Qu CHEN, Ying-dong NI. Effects of vitamin B complex on intestinal microflora composition and gut epithelial structure in growing goats [J]. Acta Prataculturae Sinica, 2021, 30(11): 170-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||