Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 197-208.DOI: 10.11686/cyxb2021198
Xue-meng WANG(), Xin HE(), Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA()
Received:
2021-05-11
Revised:
2021-08-30
Online:
2022-07-20
Published:
2022-06-01
Contact:
Shan-gang JIA
Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis[J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208.
特征 Feature | CK | A3 | A6 | A14 |
---|---|---|---|---|
面积 Area (mm2) | 3.05±0.43 | 3.40±0.50** | 3.54±0.56** | 3.48±0.54** |
长度 Length (mm) | 2.49±0.24 | 2.64±0.25** | 2.70±0.26** | 2.68±0.29** |
宽度 Width (mm) | 1.62±0.12 | 1.70±0.14** | 1.73±0.16** | 1.71±0.14** |
长宽比 Ratio of width and length | 0.66±0.07 | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.63±0.06 | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01** | 0.99±0.01 | 0.99±0.01** |
形状参数a Beta shape_a | 1.51±0.12 | 1.47±0.15* | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.44±0.12 | 1.40±0.13* | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 48.50±4.99 | 46.65±4.25** | 45.98±4.55** | 45.46±4.90** |
颜色参数A* CIELab A* | 9.50±2.00 | 11.90±2.82** | 12.79±2.87** | 13.38±3.18** |
颜色参数B* CIELab B* | 30.39±3.44 | 29.14±2.83** | 28.85±2.53** | 29.21±2.82* |
饱和度 Saturation | 31.73±2.92 | 31.46±2.29 | 31.55±1.97 | 32.26±1.87 |
色调 Hue | 1.26±0.09 | 1.18±0.10** | 1.15±0.10** | 1.14±0.11** |
Table 1 Morphological features of aged seeds and non-aged seeds
特征 Feature | CK | A3 | A6 | A14 |
---|---|---|---|---|
面积 Area (mm2) | 3.05±0.43 | 3.40±0.50** | 3.54±0.56** | 3.48±0.54** |
长度 Length (mm) | 2.49±0.24 | 2.64±0.25** | 2.70±0.26** | 2.68±0.29** |
宽度 Width (mm) | 1.62±0.12 | 1.70±0.14** | 1.73±0.16** | 1.71±0.14** |
长宽比 Ratio of width and length | 0.66±0.07 | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.63±0.06 | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01** | 0.99±0.01 | 0.99±0.01** |
形状参数a Beta shape_a | 1.51±0.12 | 1.47±0.15* | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.44±0.12 | 1.40±0.13* | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 48.50±4.99 | 46.65±4.25** | 45.98±4.55** | 45.46±4.90** |
颜色参数A* CIELab A* | 9.50±2.00 | 11.90±2.82** | 12.79±2.87** | 13.38±3.18** |
颜色参数B* CIELab B* | 30.39±3.44 | 29.14±2.83** | 28.85±2.53** | 29.21±2.82* |
饱和度 Saturation | 31.73±2.92 | 31.46±2.29 | 31.55±1.97 | 32.26±1.87 |
色调 Hue | 1.26±0.09 | 1.18±0.10** | 1.15±0.10** | 1.14±0.11** |
特征 Feature | A3 | A6 | A14 |
---|---|---|---|
面积 Area (mm2) | 3.40±0.50 | 3.54±0.56 | 3.48±0.54 |
长度 Length (mm) | 2.64±0.25 | 2.70±0.26 | 2.68±0.29 |
宽度 Width (mm) | 1.70±0.14 | 1.73±0.16 | 1.71±0.14 |
长宽比 Ratio of width and length | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01 | 0.99±0.01 |
形状参数a Beta shape_a | 1.47±0.15 | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.40±0.13 | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 46.65±4.25 | 45.98±4.55 | 45.46±4.90* |
颜色参数A* CIELab A* | 11.90±2.82 | 12.79±2.87* | 13.38±3.18** |
颜色参数B* CIELab B* | 29.14±2.83 | 28.85±2.53 | 29.21±2.82 |
饱和度 Saturation | 31.46±2.29 | 31.55±1.97 | 32.26±1.87** |
色调 Hue | 1.18±0.10 | 1.15±0.10 | 1.14±0.11** |
Table 2 Morphological features of aged seeds for different days
特征 Feature | A3 | A6 | A14 |
---|---|---|---|
面积 Area (mm2) | 3.40±0.50 | 3.54±0.56 | 3.48±0.54 |
长度 Length (mm) | 2.64±0.25 | 2.70±0.26 | 2.68±0.29 |
宽度 Width (mm) | 1.70±0.14 | 1.73±0.16 | 1.71±0.14 |
长宽比 Ratio of width and length | 0.65±0.06 | 0.64±0.06 | 0.64±0.08 |
紧实度圆 Compactness circle | 0.62±0.07 | 0.62±0.06 | 0.62±0.09 |
紧实度椭圆 Compactness ellipse | 0.99±0.01 | 0.99±0.01 | 0.99±0.01 |
形状参数a Beta shape_a | 1.47±0.15 | 1.49±0.13 | 1.48±0.16 |
形状参数b Beta shape_b | 1.40±0.13 | 1.41±0.12 | 1.41±0.15 |
垂直偏度 Vertical skewness | -0.04±0.03 | -0.04±0.04 | -0.04±0.03 |
颜色参数L* CIELab L* | 46.65±4.25 | 45.98±4.55 | 45.46±4.90* |
颜色参数A* CIELab A* | 11.90±2.82 | 12.79±2.87* | 13.38±3.18** |
颜色参数B* CIELab B* | 29.14±2.83 | 28.85±2.53 | 29.21±2.82 |
饱和度 Saturation | 31.46±2.29 | 31.55±1.97 | 32.26±1.87** |
色调 Hue | 1.18±0.10 | 1.15±0.10 | 1.14±0.11** |
模型 Model | 指标 Index | CK vs A3 | CK vs A6 | CK vs A14 | A3 vs A6 | A3 vs A14 | A6 vs A14 | G vs NG |
---|---|---|---|---|---|---|---|---|
SVM | 准确度Accuracy | 94.9 | 92.4 | 92.4 | 78.8 | 71.1 | 68.7 | 92.1 |
敏感性Sensitivity | 97.0 | 95.2 | 96.0 | 84.6 | 66.5 | 72.4 | 94.8 | |
特异性Specificity | 92.8 | 89.7 | 88.7 | 73.2 | 75.6 | 64.6 | 89.5 | |
LDA | 准确度Accuracy | 97.7 | 93.0 | 97.3 | 91.7 | 82.8 | 75.3 | 98.7 |
敏感性Sensitivity | 99.3 | 95.6 | 98.0 | 94.4 | 79.7 | 73.0 | 98.0 | |
特异性Specificity | 96.1 | 90.5 | 96.8 | 88.3 | 86.0 | 78.2 | 99.3 |
Table 3 Discrimination of aged and germinated seeds based on multivariate analysis (%)
模型 Model | 指标 Index | CK vs A3 | CK vs A6 | CK vs A14 | A3 vs A6 | A3 vs A14 | A6 vs A14 | G vs NG |
---|---|---|---|---|---|---|---|---|
SVM | 准确度Accuracy | 94.9 | 92.4 | 92.4 | 78.8 | 71.1 | 68.7 | 92.1 |
敏感性Sensitivity | 97.0 | 95.2 | 96.0 | 84.6 | 66.5 | 72.4 | 94.8 | |
特异性Specificity | 92.8 | 89.7 | 88.7 | 73.2 | 75.6 | 64.6 | 89.5 | |
LDA | 准确度Accuracy | 97.7 | 93.0 | 97.3 | 91.7 | 82.8 | 75.3 | 98.7 |
敏感性Sensitivity | 99.3 | 95.6 | 98.0 | 94.4 | 79.7 | 73.0 | 98.0 | |
特异性Specificity | 96.1 | 90.5 | 96.8 | 88.3 | 86.0 | 78.2 | 99.3 |
样品 Sample | 不发芽种子数 Non-germinated seeds (No.) | 预测的不发芽种子数 Non-germinated seeds predicted by nCDA (No.) | 预测正确种子数 Correctly predicted seeds (No.) | 预测不发芽种子准确度 Accuracy of predicting non-germinated seeds (%) | 预测老化种子准确度 Accuracy of predicting aged seeds (%) |
---|---|---|---|---|---|
CK | 5 | 4 | 4 | 99 | / |
A3 | 14 | 16 | 13 | 96 | 94 |
A6 | 34 | 36 | 34 | 98 | 88 |
A14 | 62 | 68 | 60 | 90 | 90 |
Table 4 The prediction of aged and germinated seeds in aged seeds based on nCDA
样品 Sample | 不发芽种子数 Non-germinated seeds (No.) | 预测的不发芽种子数 Non-germinated seeds predicted by nCDA (No.) | 预测正确种子数 Correctly predicted seeds (No.) | 预测不发芽种子准确度 Accuracy of predicting non-germinated seeds (%) | 预测老化种子准确度 Accuracy of predicting aged seeds (%) |
---|---|---|---|---|---|
CK | 5 | 4 | 4 | 99 | / |
A3 | 14 | 16 | 13 | 96 | 94 |
A6 | 34 | 36 | 34 | 98 | 88 |
A14 | 62 | 68 | 60 | 90 | 90 |
1 | Yang W M, Liu G, Ou Q H, et al. Infrared spectroscopy of naturally aged legume seeds. Laser and Optoelectronics Progress, 2018, 55(12): 513-522. |
杨卫梅, 刘刚, 欧全宏, 等. 豆类种子自然老化过程的红外光谱研究. 激光与光电子学进展, 2018, 55(12): 513-522. | |
2 | Xia F, Cheng H, Chen L, et al. Influence of exogenous ascorbic acid and glutathione priming on mitochondrial structural and functional systems to alleviate aging damage in oat seeds. BMC Plant Biology, 2020, 20(1): 104. |
3 | Neelesh K, Arvind A, Siddiqui M A, et al. Physiological and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.). American Journal of Plant Physiology, 2011, 6(1): 28-35. |
4 | McDonald M B. Seed deterioration: Physiology, repair and assessment. Seed Science and Technology, 1999, 27(1): 177-237. |
5 | Liu J, Liu G, Li S J, et al. Study on artificial aged rice seed based on infrared spectroscopy. Seed, 2021, 40(1): 17-22. |
刘杰, 刘刚, 李姝洁, 等. 人工老化水稻种子的红外光谱研究. 种子, 2021, 40(1): 17-22. | |
6 | Jin T, Liu W, Liu C H. Research on rapid nondestructive detection of moisture content of beef jerky based on multispectral imaging technology. Journal of Anhui Agricultural Sciences, 2021, 49(2): 204-205. |
金涛, 刘伟, 刘长虹. 基于多光谱成像技术的牛肉干水分含量快速无损检测研究. 安徽农业科学, 2021, 49(2): 204-205. | |
7 | ElMasry G, Mandour N, Rejaie S, et al. Recent applications of multispectral imaging in seed phenotyping and quality monitoring-an overview. Sensors, 2019, 19(5): 1-32. |
8 | Xu X, Ma H, Wang Y, et al. Rapid and nondestructive identification of wheat varieties with multispectral imaging technology. Chinese Agricultural Science Bulletin, 2019, 35(15): 14-19. |
许学, 马卉, 王钰, 等. 基于多光谱成像技术的小麦品种快速无损鉴定. 中国农学通报, 2019, 35(15): 14-19. | |
9 | Hu X, Yang L, Zhang Z, et al. Differentiation of alfalfa and sweet clover seeds via multispectral imaging. Seed Science and Technology, 2020, 48(1): 83-99. |
10 | Olesen M H, Nikneshan P, Shrestha S, et al. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging. Sensors, 2015, 15(2): 4592-4604. |
11 | Baek I, Kusumaningrum D, Kandpal L M, et al. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors, 2019, 19(2): 271. |
12 | Rego C H Q, Franca S F, Gomes J F G, et al. Using multispectral imaging for detecting seed-borne fungi in cowpea. Agriculture, 2020, 10(8): 361. |
13 | Vresak M, Olesen M H, Gislum R, et al. The use of image-spectroscopy technology as a diagnostic method for seed health testing and variety identification. PLoS One, 2016, 11(3): 1-10. |
14 | National Animal Husbandry General Station. Regional specialization of forage seed production. Beijing: China Agriculture Press, 2018. |
全国畜牧总站. 牧草种子专业化生产的地域性. 北京: 中国农业出版社, 2018. | |
15 | Shi F L, Shi F L, Gao C P, et al. Vigor change of artificial aging alfalfa seeds and ISSR markers. Chinese Journal of Grassland, 2015, 37(6): 30-34. |
石凤玲, 石凤翎, 高翠萍, 等. 人工老化紫花苜蓿种子活力变化与ISSR标记. 中国草地学报, 2015, 37(6): 30-34. | |
16 | Qu Y Y, Huang X, Xu Q H, et al. Effects of artificial aging on physiological and biochemical characteristics of Brassica alboglabra bailey seeds. Seed, 2020, 39(8): 24-29. |
屈煜莹, 黄鑫, 徐强辉, 等. 人工老化处理对芥蓝种子生理生化特性的影响. 种子, 2020, 39(8): 24-29. | |
17 | Ji J H, Meng C M, He Q F. Influence of different aging times on physiological and biochemical characteristics of cotton. Seed, 2017, 36(11): 14-17. |
姬俊华, 孟超敏, 何庆飞. 不同老化处理时间对棉花种子生理生化的影响. 种子, 2017, 36(11): 14-17. | |
18 | Hu X, Yang L, Zhang Z. Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods, 2020, 16(1): 116. |
19 | Yang Z S, Guo L, Luo X, et al. A PCA based band selection algorithm of hyperspectral image. Microelectronics and Computer, 2006, 12(21): 72-74. |
杨诸胜, 郭雷, 罗欣, 等. 一种基于主成分分析的高光谱图像波段选择算法. 微电子学与计算机, 2006, 12(21): 72-74. | |
20 | Hu R, Zhu X, Zhu Y, et al. Robust SVM with adaptive graph learning. World Wide Web, 2020, 23(3SI): 1945-1968. |
21 | Pornpanomchai C, Jongsriwattanaporn S, Pattanakul T, et al. Image analysis on color and texture for chili (Capsicum frutescence) seed germination. Science, Engineering and Health Studies, 2020, 14(3): 169-183. |
22 | Lurstwut B, Pornpanomchai C. Image analysis based on color, shape and texture for rice seed (Oryza sativa L.) germination evaluation. Agriculture and Natural Resources, 2017, 51(5): 383-389. |
23 | Boelt B, Shrestha S, Salimi Z, et al. Multispectral imaging-a new tool in seed quality assessment. Seed Science Research, 2018, 28(3): 222-228. |
24 | Li Z H, Chen Y, Ye D Y, et al. CIELAB colour space quantification-based evaluation of capsule development and seed vigour in Nicotiana tabacum L. Chinese Tobacco Science, 2015, 36(4): 24-28. |
李振华, 陈尧, 叶定勇, 等. 基于CIELAB颜色空间判别烤烟蒴果发育与种子活力变化. 中国烟草科学, 2015, 36(4): 24-28. | |
25 | Cong X X. Study on the determination of seed vigour of perennial ryegrass using multispectral imaging technology. Beijing: China Agricultural University, 2020. |
丛晓翔. 利用多光谱成像技术测定多年生黑麦草种子活力的研究. 北京: 中国农业大学, 2020. | |
26 | Yang L, Zhang Z, Hu X. Cultivar discrimination of single alfalfa (Medicago sativa L.) seed via multispectral imaging combined with multivariate analysis. Sensors, 2020, 20(22): 6575. |
27 | Lei X, Liu W, Zhao J, et al. Comparative physiological and proteomic analysis reveals different involvement of proteins during artificial aging of Siberian wildrye seeds. Plants, 2020, 9(10): 1370. |
28 | Shrestha S, Deleuran L C, Gislum R. Classification of different tomato seed cultivars by multispectral visible-near infrared spectroscopy and chemometrics. Journal of Spectral Imaging, 2016, a1(5): 1-9. |
29 | ElMasry G, Mandour N, Wagner M, et al. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods, 2019, 15(1): 24. |
30 | Salimi Z, Boelt B. Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors, 2019, 19(10): 2360. |
31 | Weng H, Tian Y, Wu N, et al. Development of a low-cost narrow band multispectral imaging system coupled with chemometric analysis for rapid detection of rice false smut in rice seed. Sensors, 2020, 20(4): 1209. |
32 | Martins B V D J, Mascarin G M, Aparecida S S L C, et al. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality. Plant Methods, 2021, 17(1): 1-24. |
33 | Franca S F, Queiroz R C H, Guilhien G J F, et al. Detection of Drechslera avenae (Eidam) sharif [Helminthosporium avenae (Eidam)] in black oat seeds (Avena strigosa Schreb) using multispectral imaging. Sensors, 2020, 20(12): 3343-3353. |
34 | Liu C, Liu W, Lu X, et al. Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods. The Journal of Agricultural Science, 2016, 154(1): 1-12. |
35 | Galletti P A, Carvalho M E A, Hirai W Y, et al. Integrating optical imaging tools for rapid and non-invasive characterization of seed quality: Tomato (Solanum lycopersicum L.) and carrot (Daucus carota L.) as study cases. Frontiers in Plant Science, 2020, 11: 577851. |
36 | Witjes H, Rijpkema M, van der Graaf M, et al. Multispectral magnetic resonance image analysis using principal component and linear discriminant analysis. Journal of Agnetic Resonance Imaging, 2003, 17(2): 261-269. |
37 | Mortensen A K, Gislum R, Jørgensen J R, et al. The use of multispectral imaging and single seed and bulk near-infrared spectroscopy to characterize seed covering structures: Methods and applications in seed testing and research. Agriculture, 2021, 11(4): 301. |
38 | Wang X Z, Lu Q, Zhang X D, et al. Non-destructive detection of cucumber seeds vigor based on hyperspectral imaging. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1197-1202. |
王新忠, 卢青, 张晓东, 等. 基于高光谱图像的黄瓜种子活力无损检测. 江苏农业学报, 2019, 35(5): 1197-1202. | |
39 | Rahman A, Cho B. Assessment of seed quality using non-destructive measurement techniques: A review. Seed Science Research, 2016, 26(4): 285-305. |
40 | Wu J Z, Li H, Zhang H D, et al. Nondestructive determination of natural aging stage of wheat seeds using near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2019, 39(3): 751-755. |
吴静珠, 李慧, 张鹤冬, 等. 小麦种子自然老化程度的近红外光谱无损识别. 光谱学与光谱分析, 2019, 39(3): 751-755. | |
41 | Chen L L, Xia F S, Mao P S, et al. Application of near infrared spectroscopy (NIR) technique in hard seed testing research. Infrared Technology, 2015, 37(9): 793-798. |
陈玲玲, 夏方山, 毛培胜, 等. 近红外光谱技术在种子硬实检测中的研究进展. 红外技术, 2015, 37(9): 793-798. | |
42 | Turki A, Baskin C C. Determination of seed viability of eight wild Saudi Arabian species by germination and X-ray tests. Saudi Journal of Biological Sciences, 2017, 24(4): 822-829. |
43 | He X, Feng X, Sun D, et al. Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging. Molecules, 2019, 24(12): 2227. |
44 | Kandpal L M, Lohumi S, Kim M S, et al. Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors and Actuators B: Chemical, 2016, 229: 534-544. |
[1] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[2] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[3] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[4] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[5] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[6] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[7] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
[8] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[9] | Bin WANG, Yu-qi YANG, Man-you LI, Wang NI, Yi-rui HAI, Shun-xiang ZHANG, Xiu DONG, Jian LAN. The effect of sowing rate and row spacing on the yield and quality of alfalfa in the Ningxia Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2022, 31(2): 147-158. |
[10] | Hui-hui ZHANG, Shang-li SHI, Bei WU, Zi-li LI, Xiao-long LI. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses [J]. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
[11] | Jie BAI, Zhen-feng ZANG, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Ke-zhen WANG, Yang QU, Shu-bin HE. Lipid peroxidation and carbon and nitrogen characteristics in leaves and roots of alfalfa (Medicago sativa) in response to water and nitrogen addition [J]. Acta Prataculturae Sinica, 2022, 31(2): 213-220. |
[12] | Bin WANG, Man-you LI, Xin-pan WANG, Xiu DONG, Jun-bao PANG, Jian LAN. Combined ploughing and tilling to improve degraded alfalfa (Medicago sativa) stands in a semi-arid region [J]. Acta Prataculturae Sinica, 2022, 31(1): 107-117. |
[13] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[14] | Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144. |
[15] | Jia-ju ZHANG, Jie YU, Ming-na LI, Jun-mei KANG, Qing-chuan YANG, Rui-cai LONG. Identification and functional analysis of lncRNA167 and its cleavage product miR167c in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 164-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||