Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (8): 24-34.DOI: 10.11686/cyxb2021299
Previous Articles Next Articles
Jian-tao ZHAO(), Ya-fei YUE(), Qian-bing ZHANG(), Chun-hui MA()
Received:
2021-08-03
Revised:
2021-10-18
Online:
2022-08-20
Published:
2022-07-01
Contact:
Qian-bing ZHANG,Chun-hui MA
Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang[J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34.
品种Variety | 秋眠级FDG | 秋眠类型FDC | 种子来源Seed source |
---|---|---|---|
驯鹿 AC Caribou | 1 | 高秋眠型 High-dormancy type | 北京克劳沃种业有限公司 Beijing Clover Seed Industry Co. , Ltd. |
康赛 Concept | 3 | 高秋眠型 High-dormancy type | 牧草青贮饲料研究所推广中心 Forage and Silage Research Development Center |
巨能551 Magnum 551 | 5 | 半秋眠型 Semi-dormancy type | 牧草青贮饲料研究所推广中心 Forage and Silage Research Development Center |
赛迪7 Sardi 7 | 7 | 非秋眠型 Non-dormancy type | 百绿国际草业(北京)有限公司 Barenbrug (Beijing) International Grass Co. , Ltd. |
WL656HQ | 9 | 非秋眠型 Non-dormancy type | 北京正道生态科技有限公司 Beijing Rytway Ecological Technology Co. , Ltd. |
Table 1 Fall dormancy grade and source of alfalfa varieties for test
品种Variety | 秋眠级FDG | 秋眠类型FDC | 种子来源Seed source |
---|---|---|---|
驯鹿 AC Caribou | 1 | 高秋眠型 High-dormancy type | 北京克劳沃种业有限公司 Beijing Clover Seed Industry Co. , Ltd. |
康赛 Concept | 3 | 高秋眠型 High-dormancy type | 牧草青贮饲料研究所推广中心 Forage and Silage Research Development Center |
巨能551 Magnum 551 | 5 | 半秋眠型 Semi-dormancy type | 牧草青贮饲料研究所推广中心 Forage and Silage Research Development Center |
赛迪7 Sardi 7 | 7 | 非秋眠型 Non-dormancy type | 百绿国际草业(北京)有限公司 Barenbrug (Beijing) International Grass Co. , Ltd. |
WL656HQ | 9 | 非秋眠型 Non-dormancy type | 北京正道生态科技有限公司 Beijing Rytway Ecological Technology Co. , Ltd. |
指标 Index | 采样日期 Sampling date (月-日Month-day) | 覆雪厚度 Snow thickness (cm) | 品种 Varieties | ||||
---|---|---|---|---|---|---|---|
驯鹿 AC Caribou | 康赛 Concept | 巨能551 Magnum 551 | 赛迪7 Sardi 7 | WL656HQ | |||
可溶性蛋白 Soluble protein (mg·g-1 FW) | 11-26 | 0 | 55.60±1.13Ab | 58.54±0.40Aa | 53.91±0.51Ac | 59.40±0.37Aa | 51.58±3.24Ad |
10 | 55.85±0.55Ab | 58.45±0.84Aa | 53.80±0.63Ac | 59.36±0.98Aa | 50.51±1.21Ad | ||
15 | 55.87±0.65Ab | 58.33±0.79Aa | 54.06±1.01Ac | 59.63±1.07Aa | 50.10±0.85Ad | ||
12-31 | 0 | 71.78±0.45Aa | 68.05±0.55Aa | 68.85±0.51Aa | 65.03±0.49Ab | 62.65±0.53Ac | |
10 | 74.49±0.86Aa | 70.81±0.77Aa | 62.90±0.87Ab | 70.29±0.65Aa | 61.85±1.10Ac | ||
15 | 72.70±0.73Aa | 76.94±0.83Aa | 68.76±0.71Ab | 76.16±0.66Aa | 56.58±1.25Ac | ||
03-02 | 0 | 52.24±0.43Ca | 48.81±1.54Ca | 56.69±0.63Ba | 35.19±0.55Cb | 41.15±0.71Cb | |
10 | 56.31±0.78Ba | 58.76±1.52Ba | 45.55±0.60Cb | 50.10±0.92Aa | 49.47±0.67Bb | ||
15 | 61.45±0.63Aa | 60.87±0.89Aa | 57.10±1.01Aa | 49.74±0.63Bb | 52.94±0.91Ab | ||
可溶性碳水 化合物 Water soluble carbohydrate (g·100 g-1 DM) | 11-26 | 0 | 19.60±0.59Ad | 28.38±1.51Aa | 21.10±0.53Ac | 27.55±1.50Bb | 27.75±0.54Ab |
10 | 19.55±0.66Ad | 28.78±1.05Aa | 21.22±0.70Ac | 27.30±0.92Ab | 27.98±1.32Ab | ||
15 | 19.65±0.72Ad | 28.46±0.39Aa | 21.19±1.46Ac | 27.41±0.85Ab | 28.02±0.86Ab | ||
12-31 | 0 | 17.41±0.56Bab | 19.52±1.23Aa | 16.50±0.65ABb | 16.62±1.47Bb | 12.42±0.52Bb | |
10 | 16.38±0.53Bab | 17.51±0.69ABa | 15.79±1.21Bb | 18.98±0.82ABa | 18.62±1.71Aa | ||
15 | 18.58±1.08Aab | 16.65±0.63Bb | 17.36±0.78Ab | 20.70±0.79Aa | 17.23±0.86Ab | ||
03-02 | 0 | 10.64±0.60Bab | 13.48±0.43Ba | 13.55±1.65Ba | 11.48±1.58Bab | 6.31±0.73Bb | |
10 | 12.28±0.89Ab | 16.31±0.97Aa | 16.51±0.73Aa | 13.69±0.59Ab | 14.48±0.46Ab | ||
15 | 16.45±0.83Aa | 13.74±0.58Aa | 14.16±0.56Aa | 12.17±0.88Ab | 14.48±0.55Aa | ||
丙二醛 Malondialdehyde (mmol·g-1 DM) | 11-26 | 0 | 32.02±0.83Ae | 48.43±0.52Ad | 49.05±1.56Ac | 78.19±1.74Aa | 52.11±0.61Ab |
10 | 31.99±1.02Ae | 48.23±0.99Ad | 49.27±0.45Ac | 78.09±0.53Aa | 52.30±1.81Ab | ||
15 | 32.02±0.79Ae | 48.33±1.23Ad | 48.91±0.93Ac | 78.28±0.47Aa | 52.28±1.25Ab | ||
12-31 | 0 | 76.68±1.71Bd | 114.47±2.54Ac | 76.33±0.85Ae | 236.47±2.98Aa | 163.69±1.54Bb | |
10 | 98.64±1.74Ad | 135.57±1.76Ac | 60.07±0.91Be | 164.45±1.10Bb | 179.14±1.96Aa | ||
15 | 84.25±1.58Bc | 75.09±0.57Bd | 60.95±0.99Be | 165.45±1.65Ba | 160.56±1.55Bb | ||
03-02 | 0 | 57.60±0.63Aab | 56.26±0.67Aab | 73.39±0.86Aab | 52.33±0.98Ab | 74.79±1.23Aa | |
10 | 37.90±0.94Bb | 53.08±0.92Bab | 41.20±1.11Bb | 49.90±0.93Bb | 60.20±1.01Ba | ||
15 | 65.41±0.65Aa | 52.53±0.76Bab | 51.72±0.63Bab | 47.45±0.58Bb | 45.69±0.83Bb |
Table 2 Analysis of cold resistance index of alfalfa at different fall dormancy levels under different snow cover thickness
指标 Index | 采样日期 Sampling date (月-日Month-day) | 覆雪厚度 Snow thickness (cm) | 品种 Varieties | ||||
---|---|---|---|---|---|---|---|
驯鹿 AC Caribou | 康赛 Concept | 巨能551 Magnum 551 | 赛迪7 Sardi 7 | WL656HQ | |||
可溶性蛋白 Soluble protein (mg·g-1 FW) | 11-26 | 0 | 55.60±1.13Ab | 58.54±0.40Aa | 53.91±0.51Ac | 59.40±0.37Aa | 51.58±3.24Ad |
10 | 55.85±0.55Ab | 58.45±0.84Aa | 53.80±0.63Ac | 59.36±0.98Aa | 50.51±1.21Ad | ||
15 | 55.87±0.65Ab | 58.33±0.79Aa | 54.06±1.01Ac | 59.63±1.07Aa | 50.10±0.85Ad | ||
12-31 | 0 | 71.78±0.45Aa | 68.05±0.55Aa | 68.85±0.51Aa | 65.03±0.49Ab | 62.65±0.53Ac | |
10 | 74.49±0.86Aa | 70.81±0.77Aa | 62.90±0.87Ab | 70.29±0.65Aa | 61.85±1.10Ac | ||
15 | 72.70±0.73Aa | 76.94±0.83Aa | 68.76±0.71Ab | 76.16±0.66Aa | 56.58±1.25Ac | ||
03-02 | 0 | 52.24±0.43Ca | 48.81±1.54Ca | 56.69±0.63Ba | 35.19±0.55Cb | 41.15±0.71Cb | |
10 | 56.31±0.78Ba | 58.76±1.52Ba | 45.55±0.60Cb | 50.10±0.92Aa | 49.47±0.67Bb | ||
15 | 61.45±0.63Aa | 60.87±0.89Aa | 57.10±1.01Aa | 49.74±0.63Bb | 52.94±0.91Ab | ||
可溶性碳水 化合物 Water soluble carbohydrate (g·100 g-1 DM) | 11-26 | 0 | 19.60±0.59Ad | 28.38±1.51Aa | 21.10±0.53Ac | 27.55±1.50Bb | 27.75±0.54Ab |
10 | 19.55±0.66Ad | 28.78±1.05Aa | 21.22±0.70Ac | 27.30±0.92Ab | 27.98±1.32Ab | ||
15 | 19.65±0.72Ad | 28.46±0.39Aa | 21.19±1.46Ac | 27.41±0.85Ab | 28.02±0.86Ab | ||
12-31 | 0 | 17.41±0.56Bab | 19.52±1.23Aa | 16.50±0.65ABb | 16.62±1.47Bb | 12.42±0.52Bb | |
10 | 16.38±0.53Bab | 17.51±0.69ABa | 15.79±1.21Bb | 18.98±0.82ABa | 18.62±1.71Aa | ||
15 | 18.58±1.08Aab | 16.65±0.63Bb | 17.36±0.78Ab | 20.70±0.79Aa | 17.23±0.86Ab | ||
03-02 | 0 | 10.64±0.60Bab | 13.48±0.43Ba | 13.55±1.65Ba | 11.48±1.58Bab | 6.31±0.73Bb | |
10 | 12.28±0.89Ab | 16.31±0.97Aa | 16.51±0.73Aa | 13.69±0.59Ab | 14.48±0.46Ab | ||
15 | 16.45±0.83Aa | 13.74±0.58Aa | 14.16±0.56Aa | 12.17±0.88Ab | 14.48±0.55Aa | ||
丙二醛 Malondialdehyde (mmol·g-1 DM) | 11-26 | 0 | 32.02±0.83Ae | 48.43±0.52Ad | 49.05±1.56Ac | 78.19±1.74Aa | 52.11±0.61Ab |
10 | 31.99±1.02Ae | 48.23±0.99Ad | 49.27±0.45Ac | 78.09±0.53Aa | 52.30±1.81Ab | ||
15 | 32.02±0.79Ae | 48.33±1.23Ad | 48.91±0.93Ac | 78.28±0.47Aa | 52.28±1.25Ab | ||
12-31 | 0 | 76.68±1.71Bd | 114.47±2.54Ac | 76.33±0.85Ae | 236.47±2.98Aa | 163.69±1.54Bb | |
10 | 98.64±1.74Ad | 135.57±1.76Ac | 60.07±0.91Be | 164.45±1.10Bb | 179.14±1.96Aa | ||
15 | 84.25±1.58Bc | 75.09±0.57Bd | 60.95±0.99Be | 165.45±1.65Ba | 160.56±1.55Bb | ||
03-02 | 0 | 57.60±0.63Aab | 56.26±0.67Aab | 73.39±0.86Aab | 52.33±0.98Ab | 74.79±1.23Aa | |
10 | 37.90±0.94Bb | 53.08±0.92Bab | 41.20±1.11Bb | 49.90±0.93Bb | 60.20±1.01Ba | ||
15 | 65.41±0.65Aa | 52.53±0.76Bab | 51.72±0.63Bab | 47.45±0.58Bb | 45.69±0.83Bb |
指标 Index | 成分1 PCA1 | 成分2 PCA2 |
---|---|---|
可溶性蛋白Soluble protein | 0.302 | 0.856 |
可溶性碳水化合物 Water soluble carbohydrate | 0.285 | 0.067 |
丙二醛Malondialdehyde | -0.244 | 0.868 |
越冬率Winter survival rate | 0.971 | -0.150 |
干草产量 Hay yield | 0.984 | -0.054 |
Table 3 Principal component score coefficient matrix
指标 Index | 成分1 PCA1 | 成分2 PCA2 |
---|---|---|
可溶性蛋白Soluble protein | 0.302 | 0.856 |
可溶性碳水化合物 Water soluble carbohydrate | 0.285 | 0.067 |
丙二醛Malondialdehyde | -0.244 | 0.868 |
越冬率Winter survival rate | 0.971 | -0.150 |
干草产量 Hay yield | 0.984 | -0.054 |
覆雪厚度 Snow thickness (cm) | 秋眠级 FDG | Y1 | Y2 | 综合得分 CS (Y) | 品种间排序 Ranking among varieties | 综合排序 Comprehensive ranking |
---|---|---|---|---|---|---|
0 | 1 | -0.667 | -0.174 | -0.328 | 3 | 13 |
3 | -0.539 | 0.021 | -0.217 | 1 | 11 | |
5 | -0.703 | 0.015 | -0.287 | 2 | 12 | |
7 | -2.871 | 0.620 | -1.005 | 4 | 14 | |
9 | -3.486 | 0.162 | -1.397 | 5 | 15 | |
10 | 1 | 0.457 | -0.119 | 0.154 | 4 | 9 |
3 | 0.600 | 0.291 | 0.336 | 2 | 5 | |
5 | 1.104 | -0.890 | 0.192 | 3 | 7 | |
7 | 1.091 | 0.313 | 0.546 | 1 | 2 | |
9 | 0.374 | -0.097 | 0.126 | 5 | 10 | |
15 | 1 | 0.642 | -0.015 | 0.262 | 4 | 6 |
3 | 0.896 | 0.166 | 0.421 | 3 | 4 | |
5 | 1.091 | 0.470 | 0.593 | 1 | 1 | |
7 | 1.329 | -0.415 | 0.427 | 2 | 3 | |
9 | 0.680 | -0.347 | 0.178 | 5 | 8 |
Table 4 Principal components, comprehensive scores (CS) and rankings of various fall dormancy grade alfalfa under different snow cover thickness
覆雪厚度 Snow thickness (cm) | 秋眠级 FDG | Y1 | Y2 | 综合得分 CS (Y) | 品种间排序 Ranking among varieties | 综合排序 Comprehensive ranking |
---|---|---|---|---|---|---|
0 | 1 | -0.667 | -0.174 | -0.328 | 3 | 13 |
3 | -0.539 | 0.021 | -0.217 | 1 | 11 | |
5 | -0.703 | 0.015 | -0.287 | 2 | 12 | |
7 | -2.871 | 0.620 | -1.005 | 4 | 14 | |
9 | -3.486 | 0.162 | -1.397 | 5 | 15 | |
10 | 1 | 0.457 | -0.119 | 0.154 | 4 | 9 |
3 | 0.600 | 0.291 | 0.336 | 2 | 5 | |
5 | 1.104 | -0.890 | 0.192 | 3 | 7 | |
7 | 1.091 | 0.313 | 0.546 | 1 | 2 | |
9 | 0.374 | -0.097 | 0.126 | 5 | 10 | |
15 | 1 | 0.642 | -0.015 | 0.262 | 4 | 6 |
3 | 0.896 | 0.166 | 0.421 | 3 | 4 | |
5 | 1.091 | 0.470 | 0.593 | 1 | 1 | |
7 | 1.329 | -0.415 | 0.427 | 2 | 3 | |
9 | 0.680 | -0.347 | 0.178 | 5 | 8 |
1 | Luo Z Z, Niu Y N, Li L L, et al. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Prataculturae Sinica, 2015, 24(1): 31-38. |
罗珠珠, 牛伊宁, 李玲玲, 等. 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应. 草业学报, 2015, 24(1): 31-38. | |
2 | Zhao Y H, Meng L D, Zhang X M, et al. Evaluation of physiological response and cold resistance of four alfalfa cultivars to low temperature stress. Pratacultural Science, 2021, 38(4): 683-692. |
赵一航, 孟令东, 张晓萌, 等. 4个紫花苜蓿品种对低温胁迫的生理响应及抗寒性评价. 草业科学, 2021, 38(4): 683-692. | |
3 | He Y, Liu Q W, Wang C Z, et al. The research on fall dormancy of alfalfa. Pratacultural Science, 2005, 22(11): 29-34. |
何云, 刘圈炜, 王成章, 等. 苜蓿秋眠性研究进展. 草业科学, 2005, 22(11): 29-34. | |
4 | Brummer E C, Shah M M, Luth D. Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 2000, 40(4): 971-977. |
5 | Li S S, Zhang Z Q, Wang Y F, et al. Effect of symbiotic rhizobium in alfalfa on physiological change under cold stress. Acta Agrestia Sinica, 2016, 24(2): 377-383. |
李莎莎, 张志强, 王亚芳, 等. 根瘤菌共生对低温胁迫下紫花苜蓿抗寒生理变化的影响. 草地学报, 2016, 24(2): 377-383. | |
6 | Anwar A, Bai L Q, Miao L, et al. 24-epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings.lnternational Journal of Molecular Sciences, 2018,19(9): 2497. |
7 | Zhou J J, Wei W, Sang D, et al. Comparison between physiological characteristics and cold resistance of wild poa root during the overwintering period in alpine regions in northern Tibet. Pratacultural Science, 2019, 36(8): 2008-2016. |
周娟娟, 魏巍, 桑旦, 等. 藏北高寒区越冬期间野生早熟禾根系生理特征及抗寒性比较. 草业科学, 2019, 36(8): 2008-2016. | |
8 | Li Q, Li C H, Sun Q Z, et al. Study on cold resistance of three alfalfas successfully overwintered in Menyuan county. Acta Agrestia Sinica, 2021, 29(3): 631-634. |
李倩, 李长慧, 孙启忠, 等. 门源县越冬成功的3种紫花苜蓿抗寒性研究. 草地学报, 2021, 29(3): 631-634. | |
9 | Shen X H, Jiang C, Li R L, et al. The study on the cold resistance and physiology change of root in meadow fescue-alfalfa mixture and monoculture in winter. Pratacultural Science, 2016, 33(2): 268-275. |
申晓慧, 姜成, 李如来, 等. 3种紫花苜蓿与草地羊茅单、混播越冬期根系生理变化及抗寒性. 草业科学, 2016, 33(2): 268-275. | |
10 | Li S M, Xu Q G, Yang Y, et al. Effects of low temperature stress on the antioxidant enzyme activities and fatty acid contents in zoysiagrass. Acta Agrestia Sinica, 2019, 27(4): 906-912. |
李双铭, 徐庆国, 杨勇, 等. 低温胁迫对结缕草抗氧化酶活性和脂肪酸含量的影响. 草地学报, 2019, 27(4): 906-912. | |
11 | Feng C J, Luo X Y, Sha W, et al. Effect of low temperature stress on SOD、POD activity and proline content of alfalfa. Pratacultural Science, 2005, 22(6): 29-32. |
冯昌军, 罗新义, 沙伟, 等. 低温胁迫对苜蓿品种幼苗SOD、POD活性和脯氨酸含量的影响. 草业科学, 2005, 22(6): 29-32. | |
12 | Shen Y P, Su H C, Wang G Y, et al. The responses of glaciers and snow cover to climate change in Xinjiang: Hazards effects. Journal of Glaciology and Geocryology, 2013, 35(6): 1355-1370. |
沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(Ⅱ): 灾害效应. 冰川冻土, 2013, 35(6): 1355-1370. | |
13 | Han C G. The characteristics of snow cover in Shihezi for past 58 years. Chinese Agricultural Science Bulletin, 2013, 29(32): 43-48. |
韩春光. 新疆石河子58年积雪变化特征. 中国农学通报, 2013, 29(32): 43-48. | |
14 | Su L H, Zhang F F, Wang X Z, et al. Effects of snow cover on the yield and nutritional quality of alfalfa with different fall-dormancy levels. Acta Agrestia Sinica, 2021, 29(2): 356-363. |
苏力合, 张凡凡, 王旭哲, 等. 积雪覆盖对不同秋眠型紫花苜蓿产草量及营养品质的影响. 草地学报, 2021, 29(2): 356-363. | |
15 | Leep R H, Andresen J A, Jeranyama P. Fall dormancy and snow depth effects on winterkill of alfalfa. Agronomy Journal, 2001, 93(5): 1142-1148. |
16 | Annicchiarico P, Pecetti L, Tava A. Physiological and morphological traits associated with adaptation of lucerne (Medicago sativa) to severely drought-stressed and to irrigated environments. Annals of Applied Biology, 2013, 162(1): 27-40. |
17 | Hai B W, Ming G, Hu X, et al. Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in Jatropha curcas seedlings. Physiology and Molecular Biology of Plants, 2018, 24(5): 857-865. |
18 | Yang Y Z, Chen G, Peng F R, et al. Differences in water and osmoregulation substance contents in Toona sinensis from different provenances under low temperature stress and their correlation to cold tolerance. Journal of Plant Resources and Environment, 2014, 23(4): 47-54. |
杨玉珍, 陈刚, 彭方仁, 等. 低温胁迫下不同种源香椿含水量和渗透调节物质含量差异及其与抗寒性的相关性.植物资源与环境学报, 2014, 23(4): 47-54. | |
19 | Niu Y, Liu Z J, He H, et al. Gene expression and metabolic changes of Momordica charantia L. seedlings in response to low temperature stress. Plos One, 2020, 15(5): e0233130. |
20 | Sun C Q, Yang Y J, Guo Z L, et al. Effects of fertilization and density on soluble sugar and protein and nitrate reductase of hybrid foxtail millet. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1169-1177. |
孙常青, 杨艳君, 郭志利, 等. 施肥和密度对杂交谷可溶性糖、可溶性蛋白及硝酸还原酶的影响. 植物营养与肥料学报, 2015, 21(5): 1169-1177. | |
21 | Qi C Y, Liu F Q, Liu J L, et al. Cluster analysis of antioxidant enzymes and soluble protein of alfalfa hybrid under low temperature stress. Chinese Journal of Grassland, 2017, 39(2): 53-58, 70. |
亓春宇, 刘凤歧, 刘杰淋, 等. 低温胁迫下紫花苜蓿杂交代抗氧化酶及可溶性蛋白的动态聚类分析. 中国草地学报, 2017, 39(2): 53-58, 70. | |
22 | Xue Z M, Xue Q, Gao J H. The relationship of stomatal movement and photosynthetic characteristics of alfalfa seedlings under osmotic stress. Acta Agrestia Sinica, 2018, 26(2): 420-426. |
薛泽民, 薛琪, 高景慧. 渗透胁迫下紫花苜蓿幼苗气孔运动与光合作用的关系. 草地学报, 2018, 26(2): 420-426. | |
23 | Li Y Y, Zhao J, Zhang J, et al. Change of soluble sugar in skin and flesh tissues of radish taproot with low temperature storage.Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1639-1646. |
李媛媛, 赵静, 张军, 等. 低温贮藏期间萝卜不同部位可溶性糖变化规律研究. 西北农业学报, 2019, 28(10): 1639-1646. | |
24 | Nan L L, Shi S L, Zhu X Q, et al. Physiological and biochemical characteristics of root in different root type alfalfa cultivars in field during overwintering period. Journal of Nuclear Agricultural Sciences, 2011, 25(2): 369-374. |
南丽丽, 师尚礼, 朱新强, 等. 田间越冬期不同根型苜蓿根系的生理生化特性. 核农学报, 2011, 25(2): 369-374. | |
25 | Xu H Y, Zhen L L, Li Y Y, et al. Effect of freeze-drying environment on freezing tolerance of alfalfa crowns.Acta Agrestia Sinica, 2021, 29(4): 724-733. |
徐洪雨, 甄莉丽, 李钰莹, 等. 低温干旱环境对紫花苜蓿根颈耐寒性的影响. 草地学报, 2021, 29(4): 724-733. | |
26 | Sun X C, Hu C X, Tan Q L. Effects of molybdenum on antioxidative defense system and membrane lipid peroxidation in winter wheat under low temperature stress. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 175-182. |
27 | Zhao T H, Sun J W, Fu Y. Advances of research on metabolism of plant reactive oxygen species and exogenous regulation under abiotic stress. Crops, 2008(3): 10-13. |
赵天宏, 孙加伟, 付宇. 逆境胁迫下植物活性氧代谢及外源调控机理的研究进展. 作物杂志, 2008(3): 10-13. | |
28 | Ullah A, Sun H, Yang X, et al. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal, 2017, 15(3): 271-284. |
29 | Pu Y Y, Sun W C. The relationship between cold resistance of winter turnip rape varieties and its physiological characteristics. Molecular Plant Breeding, 2010, 8(2): 335-339. |
蒲媛媛, 孙万仓. 白菜型冬油菜抗寒性与生理生化特性关系. 分子植物育种, 2010, 8(2): 335-339. | |
30 | Shen X H. Study on the effects of mix-sowing with Bromus inermis on changes of physiological parameters of alfalfa root in wintering period. Acta Agrestia Sinica, 2017, 25(4): 901-904. |
申晓慧. 不同品种苜蓿与无芒雀麦单、混播越冬期根系生理指标变化研究. 草地学报, 2017, 25(4): 901-904. | |
31 | Li R L, Shen X H, Jiang C, et al. Effects of snow cover on alfalfa over-wintering and turning green. Chinese Journal of Grassland, 2016, 38(1): 67-73, 92. |
李如来, 申晓慧, 姜成, 等. 积雪覆盖对苜蓿越冬及返青生长的影响. 中国草地学报, 2016, 38(1): 67-73, 92. | |
32 | Wang W D, Deng B, Wang X G, et al. Effect of the last harvest time on over-winter rate and root nutrient content of alfalfa in Horqin sandy land. Acta Agrestia Sinica, 2017, 25(4): 810-813. |
王伟东, 邓波, 王显国, 等. 末次刈割时间对科尔沁沙地苜蓿越冬率及根系营养物质含量的影响. 草地学报, 2017, 25(4): 810-813. | |
33 | Lu X S. The study on fall-dormancy of officially approved alfalfa cultivars in China. Grassland of China, 1998, 4(3): 2-6, 13. |
卢欣石. 中国苜蓿审定品种秋眠性研究. 中国草地, 1998, 4(3): 2-6, 13. | |
34 | Wang X L, Li H, Mi F G, et al. Comparison of production performance and winter survival rate of different fall dormancy alfalfa varieties. Acta Prataculturae Sinica, 2019, 28(6): 82-92. |
王晓龙, 李红, 米福贵, 等. 不同秋眠级苜蓿生产性能及越冬率评价. 草业学报, 2019, 28(6): 82-92. | |
35 | Gao T, Sun Q Z, Wang C, et al. Effect of harvesting time in fall on productivity of different dormancy alfalfa varieties. Chinese Journal of Grassland, 2017, 39(1): 27-34. |
高婷, 孙启忠, 王川, 等. 秋季刈割时期对不同秋眠性苜蓿品种生产性能的影响. 中国草地学报, 2017, 39(1): 27-34. | |
36 | Lu X Y, Hou C, Ji S R, et al. The yield difference and the relationship with shoot growth among alfalfa varieties varying in fall dormancy under a short-term cultivation system with spring sowing. Acta Agrestia Sinica, 2017, 25(2): 401-406. |
陆晓燕, 侯琛, 纪树仁, 等. 不同秋眠型紫花苜蓿春播短期栽培产量的差异及与地上部分枝的关系. 草地学报, 2017, 25(2): 401-406. |
[1] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[2] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[3] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[4] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[5] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[6] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[7] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[8] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
[9] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[10] | Bin WANG, Yu-qi YANG, Man-you LI, Wang NI, Yi-rui HAI, Shun-xiang ZHANG, Xiu DONG, Jian LAN. The effect of sowing rate and row spacing on the yield and quality of alfalfa in the Ningxia Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2022, 31(2): 147-158. |
[11] | Hui-hui ZHANG, Shang-li SHI, Bei WU, Zi-li LI, Xiao-long LI. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses [J]. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
[12] | Jie BAI, Zhen-feng ZANG, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Ke-zhen WANG, Yang QU, Shu-bin HE. Lipid peroxidation and carbon and nitrogen characteristics in leaves and roots of alfalfa (Medicago sativa) in response to water and nitrogen addition [J]. Acta Prataculturae Sinica, 2022, 31(2): 213-220. |
[13] | Bin WANG, Man-you LI, Xin-pan WANG, Xiu DONG, Jun-bao PANG, Jian LAN. Combined ploughing and tilling to improve degraded alfalfa (Medicago sativa) stands in a semi-arid region [J]. Acta Prataculturae Sinica, 2022, 31(1): 107-117. |
[14] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[15] | Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||