Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 118-128.DOI: 10.11686/cyxb2021340
Jun-wei ZHAO(), Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG()
Received:
2021-09-13
Revised:
2021-11-29
Online:
2022-09-20
Published:
2022-08-12
Contact:
Qian-bing ZHANG
Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels[J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128.
处理 Treatment | TFRB (cm·cm-3) | RSAD (cm2·cm-2) | FRB (cm·cm-3) | FRP (cm·cm-3) | FRM (cm·cm-3) | |||
---|---|---|---|---|---|---|---|---|
0~15 cm | 15~30 cm | 30~45 cm | 45~60 cm | |||||
茬次Cut | ||||||||
第一茬First cut | 1.639 | 1.524 | 1.162 | 2.128 | 1.777 | 1.488 | - | - |
第二茬Second cut | 1.471 | 1.611 | 0.909 | 1.847 | 1.664 | 1.465 | 0.114 | 0.282 |
第三茬Third cut | 1.136 | 1.690 | 0.739 | 1.431 | 1.318 | 1.057 | 0.125 | 0.460 |
第四茬Fourth cut | 0.968 | 1.889 | 0.836 | 1.164 | 1.096 | 0.777 | 0.261 | 0.429 |
SE | 0.135 | 0.265 | 0.157 | 0.371 | 0.271 | 0.297 | 0.067 | 0.078 |
氮Nitrogen (N) | ||||||||
N0 | 1.180 | 1.479 | 0.737 | 1.748 | 1.467 | 0.767 | 0.140 | 0.388 |
N1 | 1.428 | 1.877 | 1.086 | 1.537 | 1.460 | 1.627 | 0.193 | 0.392 |
SE | 0.124 | 0.199 | 0.175 | 0.105 | 0.003 | 0.430 | 0.027 | 0.002 |
磷Phosphorus (P) | ||||||||
P0 | 0.915 | 1.040 | 0.627 | 1.196 | 1.332 | 0.505 | 0.169 | 0.267 |
P1 | 1.684 | 1.813 | 0.756 | 2.429 | 1.892 | 1.657 | 0.151 | 0.461 |
P2 | 1.689 | 2.868 | 1.521 | 2.263 | 1.570 | 1.404 | 0.186 | 0.497 |
P3 | 0.927 | 0.992 | 0.741 | 0.682 | 1.061 | 1.221 | 0.161 | 0.336 |
SE | 0.383 | 0.760 | 0.356 | 0.729 | 0.306 | 0.428 | 0.013 | 0.093 |
P值P value | ||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
氮Nitrogen (N) | <0.001 | <0.001 | <0.001 | <0.001 | 0.339 | <0.001 | <0.001 | 0.037 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×氮Cut×N | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×磷Cut×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
氮×磷N×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×氮×磷Cut×N×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Table 1 Correlation analysis and statistical results of fine root growth of alfalfa
处理 Treatment | TFRB (cm·cm-3) | RSAD (cm2·cm-2) | FRB (cm·cm-3) | FRP (cm·cm-3) | FRM (cm·cm-3) | |||
---|---|---|---|---|---|---|---|---|
0~15 cm | 15~30 cm | 30~45 cm | 45~60 cm | |||||
茬次Cut | ||||||||
第一茬First cut | 1.639 | 1.524 | 1.162 | 2.128 | 1.777 | 1.488 | - | - |
第二茬Second cut | 1.471 | 1.611 | 0.909 | 1.847 | 1.664 | 1.465 | 0.114 | 0.282 |
第三茬Third cut | 1.136 | 1.690 | 0.739 | 1.431 | 1.318 | 1.057 | 0.125 | 0.460 |
第四茬Fourth cut | 0.968 | 1.889 | 0.836 | 1.164 | 1.096 | 0.777 | 0.261 | 0.429 |
SE | 0.135 | 0.265 | 0.157 | 0.371 | 0.271 | 0.297 | 0.067 | 0.078 |
氮Nitrogen (N) | ||||||||
N0 | 1.180 | 1.479 | 0.737 | 1.748 | 1.467 | 0.767 | 0.140 | 0.388 |
N1 | 1.428 | 1.877 | 1.086 | 1.537 | 1.460 | 1.627 | 0.193 | 0.392 |
SE | 0.124 | 0.199 | 0.175 | 0.105 | 0.003 | 0.430 | 0.027 | 0.002 |
磷Phosphorus (P) | ||||||||
P0 | 0.915 | 1.040 | 0.627 | 1.196 | 1.332 | 0.505 | 0.169 | 0.267 |
P1 | 1.684 | 1.813 | 0.756 | 2.429 | 1.892 | 1.657 | 0.151 | 0.461 |
P2 | 1.689 | 2.868 | 1.521 | 2.263 | 1.570 | 1.404 | 0.186 | 0.497 |
P3 | 0.927 | 0.992 | 0.741 | 0.682 | 1.061 | 1.221 | 0.161 | 0.336 |
SE | 0.383 | 0.760 | 0.356 | 0.729 | 0.306 | 0.428 | 0.013 | 0.093 |
P值P value | ||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
氮Nitrogen (N) | <0.001 | <0.001 | <0.001 | <0.001 | 0.339 | <0.001 | <0.001 | 0.037 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×氮Cut×N | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×磷Cut×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
氮×磷N×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×氮×磷Cut×N×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
处理 Treatments | 年细根生产量 Annual production of fine root (cm·cm-3·a-1) | 年细根死亡量 Annual mortality of fine root (cm·cm-3·a-1) | 年细根最大现存量 Maximum annual standing crop of fine root (cm·cm-3) | 周转率 Turnover rate (a-1) |
---|---|---|---|---|
N0P0 | 0.546±0.013B | 0.964±0.043E | 1.564±0.050D | 0.344±0.012C |
N0P1 | 0.415±0.010F | 1.402±0.063B | 1.916±0.060B | 0.213±0.010D |
N0P2 | 0.310±0.010G | 1.348±0.053C | 1.880±0.070C | 0.162±0.007E |
N0P3 | 0.436±0.010E | 0.944±0.043E | 0.817±0.030E | 0.526±0.022B |
N1P0 | 0.482±0.010D | 0.637±0.023F | 0.683±0.025F | 0.697±0.032A |
N1P1 | 0.504±0.010C | 1.365±0.043C | 2.330±0.085A | 0.214±0.010D |
N1P2 | 0.820±0.019A | 1.634±0.073A | 2.359±0.093A | 0.343±0.014C |
N1P3 | 0.545±0.013B | 1.069±0.043D | 1.562±0.050D | 0.344±0.015C |
N | ** | ns | ** | ** |
P | ** | ** | ** | ** |
N×P | ** | ** | ** | ** |
Table 2 Fine root turnover rate of alfalfa
处理 Treatments | 年细根生产量 Annual production of fine root (cm·cm-3·a-1) | 年细根死亡量 Annual mortality of fine root (cm·cm-3·a-1) | 年细根最大现存量 Maximum annual standing crop of fine root (cm·cm-3) | 周转率 Turnover rate (a-1) |
---|---|---|---|---|
N0P0 | 0.546±0.013B | 0.964±0.043E | 1.564±0.050D | 0.344±0.012C |
N0P1 | 0.415±0.010F | 1.402±0.063B | 1.916±0.060B | 0.213±0.010D |
N0P2 | 0.310±0.010G | 1.348±0.053C | 1.880±0.070C | 0.162±0.007E |
N0P3 | 0.436±0.010E | 0.944±0.043E | 0.817±0.030E | 0.526±0.022B |
N1P0 | 0.482±0.010D | 0.637±0.023F | 0.683±0.025F | 0.697±0.032A |
N1P1 | 0.504±0.010C | 1.365±0.043C | 2.330±0.085A | 0.214±0.010D |
N1P2 | 0.820±0.019A | 1.634±0.073A | 2.359±0.093A | 0.343±0.014C |
N1P3 | 0.545±0.013B | 1.069±0.043D | 1.562±0.050D | 0.344±0.015C |
N | ** | ns | ** | ** |
P | ** | ** | ** | ** |
N×P | ** | ** | ** | ** |
1 | Kumar A, Shahbaz M, Koirala M. Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. Journal of Plant Nutrition and Soil Science, 2019, 182(6): 1-8. |
2 | Yang W Z, Ma X, Yang W, et al. Seasonal dynamics of biomass, root turnover, and carbon, nitrogen and phosphorus storage in Zoige alpine marsh. Chinese Journal of Ecology, 2021, 40(5): 1285-1292. |
阳维宗, 马骁, 杨文, 等. 若尔盖草本沼泽生物量季节动态、根系周转及碳氮磷储量. 生态学杂志, 2021, 40(5): 1285-1292. | |
3 | Ji J J, Zhang Q F, Yang Z J, et al. Effects of simulated nitrogen deposition on root biomass of subtropical Chinese fir saplings.Acta Ecologica Sinica, 2020, 40(17): 6118-6125. |
纪娇娇, 张秋芳, 杨智杰, 等. 模拟氮沉降对中亚热带杉木幼树根系生物量的影响. 生态学报, 2020, 40(17): 6118-6125. | |
4 | Wang Y, Zhong Q L, Xu C B, et al. Effect of adding a combination of nitrogen and phosphorus on fine root morphology and soil microbes of Machilus pauhoi seedling. Acta Ecologica Sinica, 2018, 38(7): 2271-2278. |
王艳, 钟全林, 徐朝斌, 等. 短期氮磷配施对刨花楠细根形态及其土壤微生物的影响. 生态学报, 2018, 38(7): 2271-2278. | |
5 | Gao X M, Liu S R, Wang Y, et al. Effects of throughfall reduction and nitrogen addition on stoichiometry of leaf and fine root in Phyllostachys edulis forests. Acta Ecologica Sinica, 2021, 41(4): 1440-1450. |
高小敏, 刘世荣, 王一, 等. 穿透雨减少和氮添加对毛竹叶片和细根化学计量学的影响. 生态学报, 2021, 41(4): 1440-1450. | |
6 | Ding L Z, Xing Y J, Yan G Y, et al. Fine roots in northern forests: Response to atmospheric N deposition increase and temperature rise. Chinese Agricultural Science Bulletin, 2020, 36(11): 63-73. |
丁丽智, 邢亚娟, 闫国永, 等. 北方森林细根对大气N沉降增加和温度升高的响应. 中国农学通报, 2020, 36(11): 63-73. | |
7 | Zhao J J, Lu G. Response of fine root carbohydrate content to soil nitrogen addition and its relationship with soil factors in a schrenk (Picea schrenkiana) forest. Journal of Plant Growth Regulation, 2020, 40(3): 1-12. |
8 | Zhao J N, Liang Y, Liu Y, et al. Patterns and influence factors of fine root turnover in forest ecosystems. Chinese Bulletin of Botany, 2020, 55(3): 308-317. |
赵佳宁, 梁韵, 柳莹, 等. 森林生态系统细根周转规律及影响因素. 植物学报, 2020, 55(3): 308-317. | |
9 | Ji W P, Wang J J, Zhao X C, et al. Fine root production and turnover of Alhagi sparsifolia community in arid area of Xinjiang, Northwest China. Chinese Journal of Ecology, 2013, 32(10): 2635-2640. |
冀卫萍, 王健健, 赵学春, 等. 干旱区骆驼刺群落细根生产与周转. 生态学杂志, 2013, 32(10): 2635-2640. | |
10 | Tang L T, Mao R, Wang C T, et al. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
唐立涛, 毛睿, 王长庭, 等. 氮磷添加对高寒草甸植物群落根系特征的影响. 草业学报, 2021, 30(9): 105-116. | |
11 | Peng Q, He H H, Zhang X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293-300. |
彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理. 植物营养与肥料学报, 2021, 27(2): 293-300. | |
12 | Zeng W F, Li Y S, Cui X N, et al. Effects of nitrogen application on the distribution of photosynthates in roots, stems, leaves and alfalfa resistance to thrips. Plant Protection, 2021, 47(2): 109-115. |
曾文芳, 李亚姝, 崔晓宁, 等. 施氮对苜蓿根茎叶光合产物分配及抗蓟马的影响. 植物保护, 2021, 47(2): 109-115. | |
13 | Li D Z, Zeng N B, Zhang Z F, et al. Effects of waterlogging stress on the root growth of alfalfa under different phosphorus level. Acta Agrestia Sinica, 2020, 28(6): 1563-1571. |
李丹竹, 曾宁波, 张志飞, 等. 渍水胁迫对不同磷水平下紫花苜蓿根系生长的影响. 草地学报, 2020, 28(6): 1563-1571. | |
14 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
15 | Kong D N, Kang G D, Li P, et al. Effects of combined application of organic fertilizer on the active components of organic carbon in upland purple soil under reducing chemical fertilizer application. Chinese Journal of Ecology, 2021, 40(4): 1073-1080. |
孔德宁, 康国栋, 李鹏, 等. 化肥减施条件下配施有机肥对旱地紫色土有机碳活性组分的影响. 生态学杂志, 2021, 40(4): 1073-1080. | |
16 | Li W B, Jin C J, Guan D X, et al. The effects of simulated nitrogen deposition on plant root traits: A meta-analysis. Soil Biology and Biochemistry, 2015, 82(5): 112-118. |
17 | Guo D L, Fan P P. Four hypotheses about the effects of soil nitrogen availability on fine root production and turnover. Chinese Journal of Applied Ecology,2007, 18(10): 2354-2360. |
郭大立, 范萍萍. 关于氮有效性影响细根生产量和周转率的四个假说. 应用生态学报, 2007, 18(10): 2354-2360. | |
18 | Sun Y M, Miao X R, Liu J Y, et al. Fine root turnover and distribution characteristics in different soil layers of three alfalfa varieties under drip irrigation. Acta Prataculturae Sinica, 2019, 28(10): 91-100. |
孙艳梅, 苗晓茸, 刘俊英, 等. 滴灌条件下3种紫花苜蓿细根周转及不同土层分布特征. 草业学报, 2019, 28(10): 91-100. | |
19 | Kerstin P, Christoph L, Jürgen H. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytologist, 2020, 230(1): 129-138. |
20 | Zhang J F, Geng Q L, Liang Z, et al. Effects of drip fertigation around root zone on yield and quality of red jujube and utilization of nitrogen, phosphorus and potassium in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 65-71. |
张计峰, 耿庆龙, 梁智, 等. 根区孔下滴灌施肥对新疆红枣产量品质和氮磷钾利用影响. 农业工程学报, 2019, 35(12): 65-71. | |
21 | Li Q, Huang Y X, Zhou D W, et al. Mechanism of the trade-off between biological nitrogen fixation and phosphorus acquisition strategies of herbaceous legumes under nitrogen and phosphorus addition. Chinese Journal of Plant Ecology, 2021, 45(3): 286-297. |
李强, 黄迎新, 周道玮, 等. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制. 植物生态学报, 2021, 45(3): 286-297. | |
22 | Gao Y, Tian Q Y, Shi F L, et al. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil. Chinese Journal of Plant Ecology, 2011, 35(6): 632-640. |
高艳, 田秋英, 石凤翎, 等. 黄花苜蓿与蒺藜苜蓿对土壤低磷胁迫适应策略的比较研究. 植物生态学报, 2011, 35(6): 632-640. | |
23 | Fan X Y, Yang H S, Gao J L, et al. Effects of phosphorus application on root characteristics of super-high-yield spring maize. Plant Nutrition and Fertilizer Science, 2012, 18(3): 562-570. |
范秀艳, 杨恒山, 高聚林, 等. 超高产栽培下磷肥运筹对春玉米根系特性的影响. 植物营养与肥料学报, 2012, 18(3): 562-570. | |
24 | Yu X F, Gao J L, Ye J, et al. Effects of deep loosening with nitrogen deep placement on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize. Journal of Maize Sciences, 2013, 21(1): 114-119. |
于晓芳, 高聚林, 叶君, 等. 深松及氮肥深施对超高产春玉米根系生长、产量及氮肥利用效率的影响. 玉米科学, 2013, 21(1): 114-119. | |
25 | Zhang F S, Shen J B, Jing J Y, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. Advances in Agronomy, 2010, 107(5): 1-32. |
26 | Fernandes A M, Soratto R P, Gonsales J R. Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply. Scientia Horticulturae, 2014, 180(28): 190-198. |
27 | Wang W X, Sun M, Lin W, et al. Effects of phosphorus fertilizer on root characteristics, uptake and utilization of phosphorus and yield of dryland wheat with contrasting yearly rainfall pattern. Chinese Journal of Applied Ecology, 2021, 32(3): 895-905. |
王文翔, 孙敏, 林文, 等. 不同降雨年型磷肥对旱地小麦根系特征、磷素吸收利用和产量的影响. 应用生态学报, 2021, 32(3): 895-905. | |
28 | Niu Y F, Chai R S, Jin G L, et al. Responses of root architecture development to low phosphorus availability: A review. Annals of Botany, 2013, 112: 391-408. |
29 | Zou Y X, Zhong Q L, You Y L, et al. Short-term effects of nitrogen and water treatments on fine root order morphology of Machilus pauhoi seedlings. Chinese Journal of Applied Ecology, 2018, 29(7): 2323-2329. |
邹宇星, 钟全林, 游雅玲, 等. 短期氮-水处理对刨花楠幼苗细根根序形态的影响. 应用生态学报, 2018, 29(7): 2323-2329. | |
30 | Su Z T, Wu C Y, He T H, et al. Soil nutrient characteristics and plant response in meadow wetland in the Yinchuan plain. Arid Zone Research, 2019, 36(4): 816-823. |
苏芝屯, 吴春燕, 何彤慧, 等. 银川平原草甸湿地土壤养分特征与植物响应. 干旱区研究, 2019, 36(4): 816-823. | |
31 | Yu L Z, Ding G Q, Zhu J J, et al. Effects of fertilization on nutrient concentrations of different root orders’ fine roots in Larix kaempferi plantation. Chinese Journal of Applied Ecology, 2009, 20(4): 747-753. |
于立忠, 丁国泉, 朱教君, 等. 施肥对日本落叶松不同根序细根养分浓度的影响. 应用生态学报, 2009, 20(4): 747-753. | |
32 | Chen L N, Liu X C, Sun Z X, et al. Effects of different nitrogen application rates on dry matter accumulation, distribution and yield of grape under alternate partial root-zone drip irrigation. Chinese Journal of Applied Ecology, 2021, 32(5): 1807-1815. |
陈丽楠, 刘秀春, 孙占祥, 等. 交替根区滴灌下不同施氮量对葡萄干物质积累、分配和产量的影响. 应用生态学报, 2021, 32(5): 1807-1815. | |
33 | Yu M, Cai J H, Xue L. Responses of fine root morphology of Cinnamomum camphora seedlings to nitrogen and phosphorus additions and planting density. Acta Ecologica Sinica, 2019, 39(20): 7641-7648. |
余明, 蔡金桓, 薛立. 樟树(Cinnamomum camphora)幼苗细根形态对氮磷添加和幼苗密度的响应. 生态学报, 2019, 39(20): 7641-7648. | |
34 | Li J, Pan P, Wang C T, et al. Root dynamics of artificial grassland for swards of differing ages in the “Three-River Source” region. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
李洁, 潘攀, 王长庭, 等. 三江源区不同建植年限人工草地根系动态特征. 草业学报, 2021, 30(3): 28-40. | |
35 | Zhang X P, Yin Y, Yu L Z, et al. Influence of water and soil nutrients on biomass and productivity of fine tree roots: A review. Journal of Zhejiang Forestry College, 2010, 27(4): 606-613. |
张小朋, 殷有, 于立忠, 等. 土壤水分与养分对树木细根生物量及生产力的影响. 浙江林学院学报, 2010, 27(4): 606-613. | |
36 | Zhang J Y, Wang W, Zeng H. Fine root productivity and turnover rate respond nonlinearly to increased nitrogen availability. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(4): 828-838. |
张江勇, 王娓, 曾辉. 樟子松人工林细根生产、周转和碳归还对施氮的响应. 北京大学学报(自然科学版), 2018, 54(4): 828-838. | |
37 | Zi H B, Chen Y, Hu L, et al. Effects of nitrogen addition on root dynamics in an alpine meadow, Northwestern Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 38-49. |
字洪标, 陈焱, 胡雷, 等. 氮肥添加对川西北高寒草甸植物群落根系动态的影响. 植物生态学报, 2018, 42(1): 38-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||