Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (6): 221-234.DOI: 10.11686/cyxb2021156
Jiao-yun LU(), He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU()
Received:
2021-04-26
Revised:
2021-07-15
Online:
2022-06-20
Published:
2022-05-11
Contact:
Yang LIU
Jiao-yun LU, He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems[J]. Acta Prataculturae Sinica, 2022, 31(6): 221-234.
氮循环过程 N cycling process | 指标 Index | 参考文献References | ||
---|---|---|---|---|
促进 Accelerate | 抑制 Reduce | 无变化 No change | ||
生物固氮 Biology N fixation | 根瘤共生固氮Symbiotic N fixation in nodule | [ | [ | - |
土壤微生物固氮Soil N-fixing microorganisms | [ | [ | [ | |
硝化作用 Nitrification | 硝化速率Nitrification rate | [ | [ | - |
氨氧化细菌Ammonia oxidizing bacteria | [ | [ | [ | |
氨氧化古菌Ammonia oxidizing archaea | [ | [ | [ [ | |
反硝化作用 Denitrification | N2O排放 N2O emission | [ | - | [ |
反硝化功能基因Denitrification function gene | [ | [ | [ | |
矿化作用 Mineralization | 矿化速率 Mineralization rate | [ | [ | [ |
氨化速率Ammonification rate | [ | [ | [ |
Table 1 Effects of nitrogen addition on soil nitrogen cycling
氮循环过程 N cycling process | 指标 Index | 参考文献References | ||
---|---|---|---|---|
促进 Accelerate | 抑制 Reduce | 无变化 No change | ||
生物固氮 Biology N fixation | 根瘤共生固氮Symbiotic N fixation in nodule | [ | [ | - |
土壤微生物固氮Soil N-fixing microorganisms | [ | [ | [ | |
硝化作用 Nitrification | 硝化速率Nitrification rate | [ | [ | - |
氨氧化细菌Ammonia oxidizing bacteria | [ | [ | [ | |
氨氧化古菌Ammonia oxidizing archaea | [ | [ | [ [ | |
反硝化作用 Denitrification | N2O排放 N2O emission | [ | - | [ |
反硝化功能基因Denitrification function gene | [ | [ | [ | |
矿化作用 Mineralization | 矿化速率 Mineralization rate | [ | [ | [ |
氨化速率Ammonification rate | [ | [ | [ |
1 | Zhu G B. Novel nitrogen cycles in terrestrial and freshwater ecosystems. Acta Microbiologica Sinica, 2020, 60(9): 1972-1984. |
祝贵兵. 陆地和淡水生态系统新型微生物氮循环研究进展. 微生物学报, 2020, 60(9): 1972-1984. | |
2 | Chen J, Cao J J, Liu Y, et al. Research progress and prospect of nitrogen fertilization on soil respiration. Grassland and Turf, 2013, 33(6): 87-93. |
陈骥, 曹军骥, 刘玉, 等. 氮素添加对土壤呼吸影响的研究进展. 草原与草坪, 2013, 33(6): 87-93. | |
3 | Wang X. Response of nitrogen fixation of several legumes to different environmental factors. Jinan: Shandong University, 2018. |
王骁. 几种豆科植物固氮作用对不同环境因子的响应研究. 济南: 山东大学, 2018. | |
4 | Chen Z L, Huang T, Huang X H, et al. Characteristics, sources and environmental implications of atmospheric wet nitrogen and sulfur deposition in Yangtze River Delta. Atmospheic Environment, 2019, 219(18): 116904. |
5 | Liu J T, Liao Y C, Xie Y, et al. A review of the effects of nitrogen deposition on soil nutrients. Soil and Water Conservation in China, 2019(9): 63-65. |
刘佳婷, 廖迎春, 谢越, 等. 氮沉降对土壤养分影响研究综述. 中国水土保持, 2019(9): 63-65. | |
6 | Dentener F, Drevet J, Lamarque J F, et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20(4): GB4003. |
7 | Guo R Q, Xiong D C, Song T T, et al. Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 2018, 38(17): 6101-6110. |
郭润泉, 熊德成, 宋涛涛, 等. 模拟氮沉降对杉木幼苗细根化学计量学特征的影响. 生态学报, 2018, 38(17): 6101-6110. | |
8 | Jefferies R L, Maron J L. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. Trends in Ecology & Evolution, 1997, 12(2): 74-78. |
9 | Freedman Z, Eisenlord S D, Zak D R, et al. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biology & Biochemistry, 2013, 66: 130-138. |
10 | Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462. |
11 | Song X Z, Zhou G M, Gu H H, et al. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant and Soil, 2015, 395(1/2): 391-400. |
12 | Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522. |
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 2019, 27(5): 500-522. | |
13 | Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293-296. |
14 | Xiao Z, Rasmann S, Yue L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 2019, 696: 133984. |
15 | Ma M. Research on soil nitrogen turnover and its response to warming in alpine grassland. Chengdu: Sichuan Normal University, 2020. |
马茂. 高寒草地土壤氮周转及对增温的响应研究. 成都: 四川师范大学, 2020. | |
16 | Han X, Sistla S A, Zhang Y H, et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 2014, 38(1/2): 175-187. |
17 | Lin G G, Zhao Q, Zhao L, et al. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land. Chinese Journal of Applied Ecology, 2012, 23(5): 1188-1194. |
林贵刚, 赵琼, 赵蕾, 等. 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响. 应用生态学报, 2012, 23(5): 1188-1194. | |
18 | Wang B, Chen Y M, Zhou Z Y. Study of soil nitrogen mineralization at different altitudes on western slopes of Helan Mountains, China. Journal of Desert Research, 2007, 27(3): 483-490. |
王斌, 陈亚明, 周志宇. 贺兰山西坡不同海拔梯度上土壤氮素矿化作用的研究. 中国沙漠, 2007, 27(3): 483-490. | |
19 | Li D J, Mo J M, Fang Y T, et al. Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 2003, 23(9): 1891-1900. |
李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响. 生态学报, 2003, 23(9): 1891-1900. | |
20 | Aber J D, Mcdowell W H, Nadelhoffer K J, et al. Nitrogen saturation in temperate forest ecosystems. BioScience, 1998, 48(11): 921-934. |
21 | Luo W, Xing Y J, Wang Q G. Effect of nitrogen deposition on soil nitrogen budget in boreal forests: Research progress. Chinese Agricultural Science Bulletin, 2018, 24(12): 98-107. |
罗维, 邢亚娟, 王庆贵. 氮沉降对北方森林土壤氮收支的影响研究进展. 中国农学通报, 2018, 24(12): 98-107. | |
22 | Chen L X, Duan W B. Effects of simulated nitrogen deposition on soil available nitrogen forms and their contents in typical temperate forest stands. Chinese Journal of Applied Ecology, 2011, 22(8): 2005-2012. |
陈立新, 段文标. 模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响. 应用生态学报, 2011, 22(8): 2005-2012. | |
23 | Tian Q Y, Liu N N, Bai W M, et al. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 2016, 97(1): 65-74. |
24 | Gilliam F S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 2006, 94(6): 1176-1191. |
25 | Zhou Z H, Wang C K, Zhen M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 2017, 115: 433-441. |
26 | Chen D M, Xing W, Lan Z C, et al. Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 2019, 33(1): 175-187. |
27 | Chen H, Tang Y, Tong Y W, et al. Responses of soil carbon and nitrogen mineralization to nitrogen deposition in tundra zone of the Changbai Mountain, China. Chinese Journal of Applied Ecology, 2019, 30(5): 1536-1542. |
陈红, 唐杨, 童跃伟, 等. 长白山苔原带土壤碳、氮矿化对氮沉降的响应. 应用生态学报, 2019, 30(5): 1536-1542. | |
28 | Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. |
付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44(5): 475-493. | |
29 | Mitchell R, Allen V, Waller J, et al. A mobile classroom approach to graduate education in forage and range sciences. Journal of Natural Resources and Life Sciences Educations, 2004, 33(1): 117-120. |
30 | Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 2011, 159(10): 2251-2264. |
31 | Zhong L, Wang Y Z, Li M. Research progress of nitrifying and denitrifying microbial communities in grasslands. Chinese Agricultural Science Bulletin, 2018, 34(3): 128-133. |
钟磊, 王一喆, 李鸣. 草地硝化和反硝化微生物功能群研究进展. 中国农学通报, 2018, 34(3): 128-133. | |
32 | Lin Y, Hong M, Han G, et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agriculture, Ecosystems & Environment, 2010, 138(3): 282-292. |
33 | Jiang W, Guan X Q, Yu J Z. Biological nitrogen fixation and intensive grassland livestock husbandry. Acta Prataculturae Sinica, 2003, 12(6): 42-46. |
姜薇, 关秀清, 于井朝. 生物固氮在集约化草地畜牧业中的作用. 草业学报, 2003, 12(6): 42-46. | |
34 | Lu J L. Plant nutrition. Beijing: China Agricultural University Press, 2003: 23-34. |
陆景凌. 植物营养学. 北京: 中国农业大学出版社, 2003: 23-34. | |
35 | Chen Y, Xu Z, Hu H, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68(3): 36-45. |
36 | Wang Y, Diao H J, Dong K H, et al. Effect of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province. Chinese Journal of Applied Ecology, 2021, 32(7): 2389-2396. |
王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响. 应用生态学报, 2021, 32(7): 2389-2396. | |
37 | Gao S Q, Song Y Y, Song C C, et al. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil. Acta Ecologica Sinica, 2020, 40(13): 4617-4627. |
高思齐, 宋艳宇, 宋长春, 等. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响. 生态学报, 2020, 40(13): 4617-4627. | |
38 | Ollivier J, Töwe S, Bannert A, et al. Nitrogen turnover in soil and global change. FEMS Microbiology Ecology, 2011, 78(1): 3-16. |
39 | Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environmental Microbiology, 2003, 5(7): 539-554. |
40 | Gao T G, Yuan H L, Hou H Y, et al. The role of humic acids in nitrogen cycle: A review. Humic Acid, 2020(3): 11-18. |
高同国, 袁红莉, 侯慧云, 等. 腐植酸类物质在氮循环中作用的研究进展. 腐植酸, 2020(3): 11-18. | |
41 | Zuo Y M, Liu Y X, Zhang F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut. Journal of Physiology and Molecular Biology, 2003, 29(1): 33-38. |
左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响. 植物生理与分子生物学报, 2003, 29(1): 33-38. | |
42 | Escuredo P R. Involvement of activated oxygen in nitrate induced senescence of pea root nodules. Plant Physiology, 1996, 110(4): 1187-1195. |
43 | Liu L, Zhou J C, Chen H K. The effect of the compound nitrogen concentration on the nodulation and nitrogen fixation in soybean. Scientia Agricultural Sinica, 1998, 31(4): 87-89. |
44 | Yang Q B. Effect of pH and combined nitrogen factors on alfalfa bunching and nitrogen fixation. Harbin: Northeast Agricultural University, 2007. |
杨琼博. pH值和化合态氮对紫花苜蓿结瘤和固氮效果的影响. 哈尔滨: 东北农业大学, 2007. | |
45 | Yan J. Effect of the soil environmental inorganic nitrogen content on nitrogen fixation and growth of soybean (Glycine max L.). Harbin: Northeast Agricultural University, 2011. |
严君. 大豆结瘤固氮及生长发育对土壤环境无机氮含量的影响. 哈尔滨: 东北农业大学, 2011. | |
46 | Yang Z W, Shen Y Y, Xie T L, et al. Biological nitrogen fixation efficiency in soybean under different levels of nitrogen supply. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 574-579. |
杨子文, 沈禹颖, 谢田玲, 等. 外源供氮水平对大豆生物固氮效率的影响. 西北植物学报, 2009, 29(3): 574-579. | |
47 | Chen W X. Soil and environmental microbiology. Beijing: Beijing Agricultural University Press, 1996: 172-174. |
陈文新. 土壤和环境微生物学. 北京: 北京农业大学出版社, 1996: 172-174. | |
48 | Wang D Y, Wang Z Q. Effect of planting date, plant density and nitrogen application rate on yield and quality of vegetable soybean. Journal of Zhejiang University, 2001, 27(1): 69-72. |
王丹英, 汪自强. 播期、密度、氮肥用量对菜用大豆产量和品质的效应. 浙江大学学报, 2001, 27(1): 69-72. | |
49 | Zeng Q F, Jia Z K, Han Q F, et al. Review on the effect of fertilization on the production and quality of alfalfa. Pratacultural Science, 2005, 22(7): 8-15. |
曾庆飞, 贾志宽, 韩清芳, 等. 施肥对苜蓿生产性能及品质影响的研究综述. 草业科学, 2005, 22(7): 8-15. | |
50 | Lu J Y. Effect of N and P fertilizations on leaf nutrient resorption of alfalfa at different growth stages in the Loess Plateau. Lanzhou: Lanzhou University, 2019. |
陆姣云. 施氮磷肥对黄土高原不同生长阶段紫花苜蓿叶片养分重吸收的影响. 兰州: 兰州大学, 2019. | |
51 | Reed S C, Cleveland C C, Townsend A R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology Evolution & Systematics, 2011, 42(1): 489-512. |
52 | Pogoreutz C, Rädecker N, Cárdenas A, et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Frontiers in Microbiology, 2017, 8: 1187. |
53 | Zhang X M, Liu W, Schloter M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One, 2013, 8(10): e76500. |
54 | Limmer C, Drake H L. Effects of carbon, nitrogen, and electron acceptor availability on anaerobic N2-fixation in a beech forest soil. Soil Biology and Biochemistry, 1998, 30(2): 153-158. |
55 | Berthrong S T, Yeager C M, Gallegos-Graves L, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Applied and Environmental Microbiology, 2014, 80(10): 3103-3112. |
56 | Qin J. Mechanisms of influence of long-term nitrogen deposition on soil microbiomes in Stipa baicalensis steppe. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
秦洁. 长期氮沉降对贝加尔针茅草原土壤微生物群落的影响机制. 北京: 中国农业科学院, 2021. | |
57 | Hou H J, Qin H L, Chen C L, et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling. Research of Agricultural Modernization, 2014, 35(5): 588-594. |
侯海军, 秦红灵, 陈春兰, 等. 土壤氮循环微生物过程的分子生态学研究进展. 农业现代化研究, 2014, 35(5): 588-594. | |
58 | Orr C H, Leifert C, Cummings S P, et al. Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One, 2012, 7(12): 483-496. |
59 | Ogilvie L A, Hirsch P R, Johnston A W. Bacterial diversity of the broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microbial Ecology, 2008, 56(3): 525-537. |
60 | Liu H M. Effect of nitrogen deposition on soil carbon and nitrogen transformation and microbial characteristics in Stipa baicalensis steppe. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
刘红梅. 氮沉降对贝加尔针茅草原土壤碳氮转化及微生物学特性的影响. 北京: 中国农业科学院, 2019. | |
61 | Chen J, Shen W J, Xu H, et al. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Frontiers in Microbiology, 2019, 10: 508. |
62 | Xu Y D, Wang T, Li H, et al. Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the Loess Plateau of China. Catena, 2019, 174: 316-323. |
63 | Liu P F. Effects of agricultural fertilizer and fertilizer application on the diversity of soybean rhizobium bacteria and soil nitrogen-fixing bacteria. Harbin: Northeast Agricultural University, 2012. |
刘朴方. 农肥和化肥使用对大豆根瘤菌和土壤固氮菌多样性的影响. 哈尔滨: 东北农业大学, 2012. | |
64 | Lindsay E A, Colloff M J, Gibb N L, et al. The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied and Environmental Microbiology, 2010, 76(16): 5547-5555. |
65 | Liu H M, Zhang H F, Qin J, et al. Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-Environment Science, 2019, 38(10): 2386-2394. |
刘红梅, 张海芳, 秦洁, 等. 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 2019, 38(10): 2386-2394. | |
66 | Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant and Soil, 2001, 230(1): 145-160. |
67 | Wakelin S A, Colloff M J, Harvey P R, et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. Microbiology Ecology, 2010(3): 661-670. |
68 | Wang J, Zhang D, Zhang L, et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agriculture, Ecosystems and Environment, 2016, 216: 116-124. |
69 | Xu P X, Han L L, He J Z, et al. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chinese Journal of Applied Ecology, 2017, 28(10): 3440-3450. |
徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物生物分子生态学研究进展. 应用生态学报, 2017, 28(10): 3440-3450. | |
70 | Li Z L, Zeng Z Q, Tian D S, et al. Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 2020, 26(7): 4147-4157. |
71 | Li M. Effect of nitrogen addition on carbon, nitrogen, phosphorus and microbial characteristics of soil aggregates in Stipa baicalensis grassland. Hohhot: Inner Mongolia Normal University, 2020. |
李明. 氮素添加对贝加尔针茅草原土壤团聚体碳氮磷和微生物特性的影响. 呼和浩特: 内蒙古师范大学, 2020. | |
72 | Lu M, Yang Y H, Luo Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189(4): 1040-1050. |
73 | Luo Q P, Gong J R, Xu S, et al. Effects of N and P additions on net nitrogen mineralization in temperate typical grassland in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(5): 480-492. |
罗亲普, 龚吉蕊, 徐沙, 等. 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 2016, 40(5): 480-492. | |
74 | Lv Y, Zhou L, Long G Q, et al. Effect of different nitrogen rates on the nitrification potential and abundance of ammonia-oxidizer in intercropping maize soils. Environmental Science, 2016, 37(8): 3229-3236. |
吕玉, 周龙, 龙光强, 等. 不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响. 环境科学, 2016, 37(8): 3229-3236. | |
75 | Ke X B, Angel R, Lu Y H, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology, 2013, 15(8): 2275-2292. |
76 | Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2(9): 621-624. |
77 | Verhamme D T, Prosser J I, Nicol G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME Journal, 2011, 5(6): 1067-1071. |
78 | Ning Q S, Gu Q, Shen J P, et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of Northern China. Journal of Soil and Sediments, 2015, 15(3): 694-704. |
79 | Gutknecht J L M, Field C B, Balser T C. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology, 2012, 18(7): 2256-2269. |
80 | Shen X Y, Zhang L M, Shen J P, et al. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11(7): 1243-1252. |
81 | Shi Y J. Response of soil nitrogen cycling related microbial groups to global environmental change and fire disturbance. Harbin: Northeast Normal University, 2019. |
石玉杰. 土壤氮循环主要微生物对全球环境变化及火灾干扰的响应. 哈尔滨: 东北师范大学, 2019. | |
82 | Di H J, Cameron K C, Shen J P, et al. Ammonia oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394. |
83 | Alves R J E, Minh B Q, Urich T, et al. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9(1): 1517. |
84 | Wang J C. Effects of long-term different fertilization regimes on soil bacterial and nitrogen-cycling related communities in a rice-wheat rotation system. Nanjing: Nanjing Agricultural University, 2018. |
王继琛. 长期施肥对稻麦轮作系统土壤细菌及氮转化微生物群落影响的研究. 南京: 南京农业大学, 2018. | |
85 | Könneke M, Schubert D M, Brown P C, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proceeding of the National Academy of Sciences, 2014, 111(22): 8239-8244. |
86 | Liu Z H, Li D H. Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: A review. Microbiology China, 2015, 42(4): 774-782. |
刘正辉, 李德豪. 氨氧化古菌及其对氮循环贡献的研究进展. 微生物学通报, 2015, 42(4): 774-782. | |
87 | Lage M D, Reed H E, Weihe C, et al. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. The ISME Journal, 2010, 4(7): 933-944. |
88 | Wang C H, Zhu F, Zhao X, et al. The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China. Geoderma, 2014, 213(1): 419-425. |
89 | Zhou J, Guan D, Zhou B K, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China. Soil Biology and Biochemistry, 2015, 90: 42-51. |
90 | Yin C, Fan F L, Song A L, et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS- and nirK-denitrifying bacterial community. European Journal of Soil Biology, 2014, 65: 47-56. |
91 | Houghton J T, Ding Y, Griggs D J, et al. Climate change 2001: The scientific basis. Cambridge, England: The Press Syndicate of the University of Cambridge, 2001. |
92 | Pachauri P K, Allen M R, Barros V R, et al. Climate change 2014: Synthesis report. Contrivution of working group Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change. Geneva: Intergovernmental Panel on Climate Change (IPCC), 2014. |
93 | Crutzen P J, Mosier A R, Smith K A, et al. N2O release from agro-biofuel production nagates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 2008, 8(2): 389-395. |
94 | Rochette P, Angers D A, CôTé D, et al. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: Ⅱ. Nitrous oxide fluxes and mineral nitrogen. Soil Science Society of America Journal, 2000, 64(4): 1389. |
95 | Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied Environmental Microbiology, 2005, 71(12): 8335-8343. |
96 | Cardenasa L M, Thormanc R, Ashleee N, et al. Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertilizer nitrogen inputs. Agriculture, Ecosystems & Environment, 2010, 136(3/4): 218-226. |
97 | Mosiera A R, Delgadoa J A, Keller M. Methane and nitrous oxide fluxes in grasslands in western Puerto Rieo. Chemosphere, 1997, 35(9): 2050-2082. |
98 | Zhang X D, Wang J Z, Yan L, et al. Effects of water table and nitrogen addition on the rate of non-symbiotic nitrogen fixation in an alpine wetland of Zoige. Acta Ecologica Sinica, 2020, 40(21): 7630-7637. |
张骁栋, 王金枝, 颜亮, 等. 水位和施氮对若尔盖高寒湿地土壤非共生固氮的影响. 生态学报, 2020, 40(21): 7630-7637. | |
99 | Stephan G, Karl S. Methane and nitrous oxide exchange in differently fertilized grassland in Southern Germany. Plant and Soil, 2001, 231(1): 21-35. |
100 | Yan Z Q, Qi Y C, Dong Y S, et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. | |
101 | Yan Z Q, Qi Y C, Dong Y S, et al. Effects of changing precipitation regime and increasing nitrogen deposition on key process of nitrogen cycle in grassland ecosystem. China Environmental Science, 2016, 36(4): 1189-1197. |
闫钟清, 齐玉春, 董云社, 等. 降水与氮沉降变化对草地关键氮过程的影响研究进展. 中国环境科学, 2016, 36(4): 1189-1197. | |
102 | Yang C, Hamel C, Gan Y T. Incongruous variation of denitrifying bacterial communities as soil N level rises in Canadian canola fields. Applied Soil Ecology, 2015, 89: 93-101. |
103 | Xie Z, Roux X L, Wang C P, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing associated soil environmental drivers in Tibetan alpine meadows. Soil Biology and Biochemistry, 2014, 77(7): 89-99. |
104 | Hallin S, Jones C M, Schloter M, et al. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. The ISME Journal, 2009, 3(5): 597-605. |
105 | Tian X F, Hu H W, Ding Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biology and Fertility of Soils, 2014, 50(4): 703-713. |
106 | Chen X B, Hu Y J, Qin H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review. Chinese Journal of Applied Ecology, 2020, 31(3): 1033-1042. |
陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制. 应用生态学报, 2020, 31(3): 1033-1042. | |
107 | Brenner R E, Boone R D, Ruess R W. Nitrogen additions to pristine, high-latitude, forest ecosystems: Consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry, 2005, 72(2): 257-282. |
108 | Kowaljow E, Mazzarino M J. Soil restoration in semiarid Patagonia: Chemical and biological response to different compost quality. Soil Biology & Biochemistry, 2007, 39(7): 1580-1588. |
109 | Chen L X, Huang L Y, Qiao L, et al. Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands. Journal of Soil and Water Conservation, 2012, 26(6): 141-148. |
陈立新, 黄兰英, 乔璐, 等. 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响. 水土保持学报, 2012, 26(6): 141-148. | |
110 | Liu X C. Impacts of simulated nitrogen deposition on soil nitrogen mineralization rate in Betula platyphylla secondary forest in Southern of Daxing’an Mountains. Hohhot: Inner Mongolia Agricultural University, 2014. |
刘星岑. 模拟氮沉降对大兴安岭南段白桦次生林土壤氮矿化速率的初期影响. 呼和浩特: 内蒙古农业大学, 2014. | |
111 | Liu B R. Effects of nitrogen addition on soil gross nitrogen mineralization in typical grassland of Inner Mongolia. Jinzhong: Shanxi Agricultural University, 2014. |
刘碧荣. 氮素添加对内蒙古典型草地土壤氮矿化的影响. 晋中: 山西农业大学, 2014. | |
112 | Yu Z Y, Zeng D H, Ai G Y, et al. Effect of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 2007, 26(11): 1894-1897. |
于占源, 曾德慧, 艾桂艳, 等. 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 2007, 26(11): 1894-1897. | |
113 | Jiang X J. Three kinds of herb community response to exogenous nitrogen of soil nitrogen mineralization and microbial structure in Al forest-steppe area. Shenyang: Shenyang Agricultural University, 2016. |
姜雪姣. 辽西北草地群落土壤氮素矿化对氮添加的响应及微生物结构. 沈阳: 沈阳农业大学, 2016. | |
114 | Zhang L, Huang J H, Bai Y F, et al. Effect of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2009, 33(3): 563-569. |
张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 2009, 33(3): 563-569. | |
115 | Liu H M, Zhang H F, Qin J, et al. Characteristics and coupling relationship of soil carbon and nitrogen transformation during in-situ mineralization cultivation in Stipa baicalensis steppe. Agricultural Research in the Arid Areas, 2020, 38(2): 232-242. |
刘红梅, 张海芳, 秦洁, 等. 贝加尔针茅草原土壤原位矿化过程中碳氮转化耦合特征. 干旱地区农业研究, 2020, 38(2): 232-242. | |
116 | Cheng M M. Effects of different nitrogen addition on soil net nitrogen mineralization in grassland ecosystem of northern agro-pastoral transitional zone. Jinzhong: Shanxi Agricultural University, 2019. |
程苗苗. 不同梯度氮添加对北方农牧交错带草地生态系统土壤净氮矿化的影响. 晋中: 山西农业大学, 2019. | |
117 | Ren Y J, Liu X L, Wang H L, et al. Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral ecotone of Northern China. Acta Agrestia Sinica, 2020, 28(2): 328-337. |
任雨佳, 刘夏琳, 王慧玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 2020, 28(2): 328-337. | |
118 | Aber J D. Nitrogen saturation in temperate forest ecosystems: Current theory, remaining questions and recent advances. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, 2002, 98: 179-188. |
[1] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
[2] | Yan-xia GUO, Meng-wei LI, Zhen-hua TANG, Li-juan PENG, Kai-ping PENG, Fang XIE, Hua-de XIE, Cheng-jian YANG. Effects of different doses of sodium nitrate on fatty acid composition and microbial population in in vitro simulation of buffalo rumen fermentation with added linoleic acid [J]. Acta Prataculturae Sinica, 2021, 30(9): 159-167. |
[3] | Juan-shan ZHENG, KAO Ren-qing DING, Xin-pu LI, Ze-yi LIANG, Jian-bo ZHANG, Mei DU, Xue-zhi DING. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource [J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192. |
[4] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[5] | Hua-fang SUN, Xi-lai LI, Li-qun JIN, Cheng-yi LI, Jing ZHANG. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone [J]. Acta Prataculturae Sinica, 2021, 30(2): 46-58. |
[6] | Da-cheng SONG, Li-de WANG, Hao WU, Chun-rong WU, He-ran ZHAO, Sheng-hui HAN, Bao-yi XU. A study of change in soil characteristics with recovery time in degraded grassland in Minqin [J]. Acta Prataculturae Sinica, 2021, 30(2): 59-68. |
[7] | Xiao-wen MA, Fa-di LI, Fei LI, Long GUO. Effect of dietary barley particle size on rumen microflora and muscle fatty acids in Hu sheep [J]. Acta Prataculturae Sinica, 2021, 30(12): 202-211. |
[8] | Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
[9] | LI Jing, HONG Mei, YAN Jin, ZHANG Yu-chen, LIANG Zhi-wei, YE He, GAO Hai-yan, ZHAO Bayinnamula. The response of vegetation community structure and biomass in Stipa breviflora desert steppe to water and nitrogen [J]. Acta Prataculturae Sinica, 2020, 29(9): 38-48. |
[10] | ZONG Wen-zhen, GUO Jia-hao, JIA Yun-long, ZHENG Yong-xing, YANG Xu, HU Fang-di, WANG Jing. Advances in research on the roles of tannins in plant-soil nitrogen cycling [J]. Acta Prataculturae Sinica, 2020, 29(7): 174-183. |
[11] | YUE Ke-xin, GONG Ji-rui, YU Shang-yuan, BAOYIN Taogetao, YANG Bo, WANG Biao, ZHU Chen-chen, ZHANG Zi-he, SHI Jia-yu. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition [J]. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
[12] | YANG Nai-rui, HU Yu-fu, SHU Xiang-yang, ZENG Jian, ZHANG Xiang-lin, SHENTU Yu-cheng, HE Jia, CHENG Qi, LI Jie, LI Zhi, YU Ying. Meta-analysis of the response to nitrogen deposition of soil nitrogen fractions, grassland soil C∶N∶P stoichiometry and microbial respiration [J]. Acta Prataculturae Sinica, 2020, 29(5): 1-12. |
[13] | XU Qi-wen, MA Shu-min, ZHU Bo, ZHANG Xiao-duan, XING Yi, DUAN Mei-chun, WANG Long-chang. Effects of the combined application of biochar and chemical fertilizer on fertility and microbial characteristics of purple soil and yield and quality of oilseed rape [J]. Acta Prataculturae Sinica, 2020, 29(5): 121-131. |
[14] | SUN Si-si, WU Zhan-ping, XIAO Qi-tao, YU Fei, GU Shu-hong, FANG Di, LI Lang, ZHAO Xing-bing. Factors influencing CO2 fluxes of a grassland ecosystem on the Yunnan-Guizhou Plateau, China [J]. Acta Prataculturae Sinica, 2020, 29(4): 184-191. |
[15] | MA Yuan, ZHANG De-gang. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review [J]. Acta Prataculturae Sinica, 2020, 29(11): 172-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||