Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 63-75.DOI: 10.11686/cyxb2021343
Previous Articles Next Articles
Yan-liang SUN(), Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG(), Qian-bing ZHANG()
Received:
2021-09-13
Revised:
2022-01-25
Online:
2022-09-20
Published:
2022-08-12
Contact:
Xu-zhe WANG,Qian-bing ZHANG
Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage[J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75.
处理Treatment | 叶面积Leaf area (cm2) | 叶长Leaf length (mm) | 叶宽Leaf width (mm) | 比叶重SLW (g·m-2) |
---|---|---|---|---|
CK | 1.80±0.01d | 25.12±0.18c | 10.62±0.40c | 52.40±0.30c |
N1 | 1.85±0.01c | 25.80±0.18b | 11.42±0.28b | 53.11±0.13b |
N2 | 1.95±0.01a | 26.33±0.46a | 12.10±0.25a | 54.15±0.09a |
N3 | 1.90±0.02b | 26.27±0.32a | 11.94±0.45a | 53.54±0.27b |
F值F-value | 36.855** | 19.725** | 18.934** | 32.175** |
Table 1 Changes in morphological structure of alfalfa leaves under different levels of nitrogen application
处理Treatment | 叶面积Leaf area (cm2) | 叶长Leaf length (mm) | 叶宽Leaf width (mm) | 比叶重SLW (g·m-2) |
---|---|---|---|---|
CK | 1.80±0.01d | 25.12±0.18c | 10.62±0.40c | 52.40±0.30c |
N1 | 1.85±0.01c | 25.80±0.18b | 11.42±0.28b | 53.11±0.13b |
N2 | 1.95±0.01a | 26.33±0.46a | 12.10±0.25a | 54.15±0.09a |
N3 | 1.90±0.02b | 26.27±0.32a | 11.94±0.45a | 53.54±0.27b |
F值F-value | 36.855** | 19.725** | 18.934** | 32.175** |
处理 Treatment | 干物质产量 Dry matter yield (t·hm-2) | 叶干重 Leaf dry weight (t·hm-2) | 茎干重 Stem dry weight (t·hm-2) | 茎叶比 Stem/leaf | 叶片氮含量 Nitrogen content of leaf (%) | 淀粉 Starch (% DM) | 可溶性糖 Soluble sugar (% DM) |
---|---|---|---|---|---|---|---|
CK | 4.67±0.07c | 2.17±0.03c | 2.50±0.04b | 1.16±0.01a | 4.06±0.02c | 5.46±0.04c | 5.59±0.03c |
N1 | 4.98±0.02ab | 2.37±0.03ab | 2.61±0.02a | 1.10±0.02b | 4.28±0.10b | 5.80±0.13b | 6.00±0.13ab |
N2 | 5.09±0.07a | 2.43±0.04a | 2.66±0.03a | 1.10±0.01b | 4.57±0.04a | 5.99±0.17a | 6.12±0.12a |
N3 | 4.93±0.02b | 2.34±0.02b | 2.59±0.03a | 1.11±0.02b | 4.28±0.03b | 5.58±0.03c | 5.71±0.21bc |
F值F-value | 26.411** | 29.828** | 9.913** | 7.044* | 34.330** | 18.909** | 7.483* |
Table 2 Dry matter yield components, photosynthetic products and nitrogen content of leaves of alfalfa at different nitrogen application levels
处理 Treatment | 干物质产量 Dry matter yield (t·hm-2) | 叶干重 Leaf dry weight (t·hm-2) | 茎干重 Stem dry weight (t·hm-2) | 茎叶比 Stem/leaf | 叶片氮含量 Nitrogen content of leaf (%) | 淀粉 Starch (% DM) | 可溶性糖 Soluble sugar (% DM) |
---|---|---|---|---|---|---|---|
CK | 4.67±0.07c | 2.17±0.03c | 2.50±0.04b | 1.16±0.01a | 4.06±0.02c | 5.46±0.04c | 5.59±0.03c |
N1 | 4.98±0.02ab | 2.37±0.03ab | 2.61±0.02a | 1.10±0.02b | 4.28±0.10b | 5.80±0.13b | 6.00±0.13ab |
N2 | 5.09±0.07a | 2.43±0.04a | 2.66±0.03a | 1.10±0.01b | 4.57±0.04a | 5.99±0.17a | 6.12±0.12a |
N3 | 4.93±0.02b | 2.34±0.02b | 2.59±0.03a | 1.11±0.02b | 4.28±0.03b | 5.58±0.03c | 5.71±0.21bc |
F值F-value | 26.411** | 29.828** | 9.913** | 7.044* | 34.330** | 18.909** | 7.483* |
Fig.9 Integrated analysis of the relationship between major environmental factors and net photosynthetic rate and transpiration rate based on structural equation model
Fig.10 Integrated analysis of leaf nitrogen content, major photosynthetic properties and leaf morphological indicators in relation to dry matter yield based on structural equation model
1 | Gao Y, Sun S N, Xing F, et al. Nitrogen addition interacted with salinity-alkalinity to modify plant diversity, microbial plfas and soil coupled elements: A 5-year experiment. Applied Soil Ecology, 2019, 137(5): 78-86. |
2 | Liu X J, Zhao Y J, Hao F, et al. Detection and characterization of nitrogen efficiency in alfalfa. Acta Prataculturae Sinica, 2021, 30(12): 90-102. |
刘晓静, 赵雅姣, 郝凤, 等. 紫花苜蓿氮效率及其类型特征研究. 草业学报, 2021, 30(12): 90-102. | |
3 | Weigelt A, Bol R, Bardgett R D. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005, 142(4): 627-635. |
4 | Kuypers M M M, Boran K H M. The microbial nitrogen-cycling network. Nature Reviews Microbiology, 2018, 16(5): 263-276. |
5 | Erisman J W, Bleeker A, Galloway J, et al. Reduced nitrogen in ecology and the environment. Environmental Pollution, 2007, 150(1): 140-149. |
6 | Xiao Z X, Wang Y, Liu G F, et al. Effects of fertilizing time in early spring on alfalfa (Medicago sativa) production performance and nutritional quality in mollisol area in cold region. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677. |
肖知新, 王洋, 刘国富, 等. 寒地黑土区春季施肥期对紫花苜蓿生产性能及营养品质的影响. 中国农业科学, 2020, 53(13): 2668-2677. | |
7 | Zheng Q, Wang H J, Lv X, et al. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang, China. Chinese Journal of Applied Ecology, 2018, 29(4): 1291-1301. |
郑琦, 王海江, 吕新, 等. 新疆棉田土壤质量综合评价方法. 应用生态学报, 2018, 29(4): 1291-1301. | |
8 | Oikawa S, Ainsworth E A. Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient. Environmental Pollution, 2016, 215(8): 347-355. |
9 | Zhang Q Y, Peng S L. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara. Acta Ecologica Sinica, 2018, 38(18): 6670-6676. |
张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响. 生态学报, 2018, 38(18): 6670-6676. | |
10 | Zhang X L, Liu L T, Sun H C, et al. Hyperspectral estimation of the maximum carboxylation rate of cotton leaves under different nitrogen levels. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 166-173. |
张鑫磊, 刘连涛, 孙红春, 等. 不同施氮水平下棉花叶片最大羧化速率的高光谱估测. 农业工程学报, 2020, 36(11): 166-173. | |
11 | Wang S L. Study on the response of different rice varieties to light and nitrogen and its mechanism. Nanchang: Jiangxi Agricultural University, 2016. |
王盛亮. 不同双季稻品种对光氮的响应差异及其机理研究. 南昌: 江西农业大学, 2016. | |
12 | Lizana C, Wentworth M, Martinez J P, et al. Differential adaptation of two varieties of common bean to abiotic stress: Effects of drought on yield and photosynthesis. Journal of Experimental Botany, 2006, 57(3): 685-697. |
13 | Kunelius H T. Effects of weed control and N fertilization at establishment on the growth and nodulation of alfalfa. Agronomy Journal, 1974, 66(6): 806-809. |
14 | Badr M A, Abou-hussein S D, El-tohamy W A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region. Agricultural Water Management, 2016, 169(5): 90-97. |
15 | Li H S. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
16 | Stewart K J, Grogan P, Coxson D S, et al. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology and Biochemistry, 2014, 70(2): 96-112. |
17 | Jiang H X, Liu D, Zhai G Y, et al. Effect of fertilizer combinations of nitrogen, phosphorus and potassium on the forage yield of Medicago sativa. Pratacultural Science, 2012, 29(9): 1441-1445. |
姜慧新, 刘栋, 翟桂玉, 等. 氮、磷、钾配合施肥对紫花苜蓿产草量的影响. 草业科学, 2012, 29(9): 1441-1445. | |
18 | Wang Y Q, Shen Y, Qian J, et al. Effect of nitrogen forms on plant growth, expression of nitrate transporter gene MtNRT1.3, and nitrogen absorption in Medicago sativa L. Acta Agrestia Sinica, 2019, 27(5): 1172-1180. |
王玉强, 沈宇, 钱进, 等. 不同形态氮肥对紫花苜蓿生长、硝酸盐转运蛋白基因MtNRT1.3表达及氮吸收的影响. 草地学报, 2019, 27(5): 1172-1180. | |
19 | Husson O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 2013, 362(1): 389-417. |
20 | Bailey-serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109-118. |
21 | Welschmeyer N A, Lorenzen C J. Chlorophyll-specific photosynthesis and quantum efficiency at subsaturating light intensities. Journal of Phycology, 2010, 17(4): 283-293. |
22 | Kumari S. Effects of nitrogen levels on anatomy, growth, and chlorophyll content in sunflower (Helianthus annuus L.) leaves. Journal of Agricultural Science, 2017, 9(8): 208-219. |
23 | Wang X, Cai J, Zhou Q, et al. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. |
王笑, 蔡剑, 周琴, 等. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54(11): 2287-2301. | |
24 | Han Q F, Jia Z K, Wang J P, et al. Study on diurnal photosynthesis characteristics in different alfalfa leaf layers in Loess Plateau. Acta Agrestia Sinica, 2009, 17(5): 558-563. |
韩清芳, 贾志宽, 王俊鹏, 等. 黄土高原地区紫花苜蓿不同叶位光合日变化特征研究. 草地学报, 2009, 17(5): 558-563. | |
25 | Hu S L, Wan S M, Jia Z K, et al. A study on photosynthetic characteristics of alfalfas grown for different lengths of time in the semi-humid area of the Loess Plateau. Acta Prataculturae Sinica, 2008, 17(5): 60-67. |
胡守林, 万素梅, 贾志宽, 等. 黄土高原半湿润区不同生长年限苜蓿叶片光合性能研究. 草业学报, 2008, 17(5): 60-67. | |
26 | Mang L, Bao Y T G T, Bu R Q Q G, et al. Diurnal dynamics of photosynthetic and transpiration rates of Medicago falcata L. and their relationships with environmental factors. Acta Agrestia Sinica, 2010, 18(2): 195-198. |
茫来, 宝音陶格涛, 布仁其其格, 等. 黄花苜蓿光合蒸腾日变化特征及其与环境因子的关系. 草地学报, 2010, 18(2): 195-198. | |
27 | Flexas J, Carriquí M, Coopman R E, et al. Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 2014, 226(9): 41-48. |
28 | Li J X, Wang W P, Hu Z J, et al. Effects of simulated acid rain conditions on plant photosynthesis and disease susceptibility in tomato and its alleviation of brassinosteroid. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738. |
李建鑫, 王文平, 胡璋健, 等. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应. 中国农业科学, 2021, 54(8): 1728-1738. | |
29 | Zhang J S, Jia Y H, Sun P, et al. Effect of uniform pattern and N application rate on colony, photosynthesis and dry matter accumulation of winter wheat. Journal of China Agricultural University, 2021, 26(7): 12-24. |
张金汕, 贾永红, 孙鹏, 等. 匀播和施氮量对冬小麦群体、光合及干物质积累的影响. 中国农业大学学报, 2021, 26(7): 12-24. | |
30 | Zhu T Q, Liu X J, Hao F. Photosynthetic responses of alfalfa leaves to nitrogen. Grassland and Turf, 2017, 37(6): 31-35. |
朱天琦, 刘晓静, 郝凤. 2个紫花苜蓿品种叶片对氮的光合响应. 草原与草坪, 2017, 37(6): 31-35. | |
31 | Wang J, Zhang Y, Huang C Z, et al. Effects of different mulching on soil water-heat and spring maize yield in newly reclaimed land. Chinese Journal of Eco-Agriculture, 2021, 29(5): 844-854. |
王娟, 张瑜, 黄成真, 等. 不同覆盖方式对新复垦区土壤水热及春玉米产量的影响. 中国生态农业学报, 2021, 29(5): 844-854. |
[1] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[2] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[3] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[4] | Wei GAO, Na SHOU, Cong-ze JIANG, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. Effect of nitrogen application rate on dry matter accumulation, allocation and water use efficiency of forage sorghum [J]. Acta Prataculturae Sinica, 2022, 31(9): 26-35. |
[5] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[6] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[7] | Da-liang ZHOU, Wei SHI, Zi-wei JIANG, Zheng-ye WEI, Huan-huan LIANG, Qian-min JIA. Effects of planting density and nitrogen application on leaf enzyme activity and water-nitrogen utilization of silage maize under ridge furrow rainwater harvesting in Loess Plateau [J]. Acta Prataculturae Sinica, 2022, 31(8): 126-143. |
[8] | Xiao-ting LIU, Tuo YAO. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(8): 178-187. |
[9] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[10] | Wei-ling NIU, Hui CHEN, Hui-xin HOU, Chen-rui GUO, Jiao-lin MA, Jian-shuang WU. Ten-year livestock exclusion did not affect water and nitrogen use efficiency of alpine desert-steppe plants in Northwest Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 35-48. |
[11] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[12] | Zi-wei JIANG, Gui-yu LIU, Hao-yun AN, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system [J]. Acta Prataculturae Sinica, 2022, 31(7): 157-171. |
[13] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[14] | Jiao-yun LU, He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems [J]. Acta Prataculturae Sinica, 2022, 31(6): 221-234. |
[15] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||