Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 189-199.DOI: 10.11686/cyxb2022081
Xuan-shuai LIU(), Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG()
Received:
2022-02-18
Revised:
2022-03-31
Online:
2023-03-20
Published:
2022-12-30
Contact:
Qian-bing ZHANG
Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa[J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199.
全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 容重 Bulk density (g·cm-3) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|---|
1.53 | 68.30 | 0.22 | 15.70 | 132.60 | 1.46 | 24.20 |
Table 1 The basic physical and chemical properties of the tested soil
全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 容重 Bulk density (g·cm-3) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|---|
1.53 | 68.30 | 0.22 | 15.70 | 132.60 | 1.46 | 24.20 |
因素 Factor | 项目 Item | 净光合 速率 Pn | 蒸腾 速率 Tr | 气孔 导度 Gs | 胞间CO2 浓度 Ci | 光能利用 效率 LUE | 水分利用 效率 WUE | 叶绿素a 含量Chl a content | 叶绿素b 含量Chl b content | 叶绿素总含量Chl (a+b) content | 生物量Biomass |
---|---|---|---|---|---|---|---|---|---|---|---|
J | F值F value | 27.019 | 328.403 | 14973.605 | 3725.991 | 1636.166 | 573.374 | 23.100 | 1108.286 | 33.038 | 4.797 |
P值P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.037 | <0.001 | <0.001 | <0.001 | 0.029 | |
P | F值F value | 10.801 | 189.577 | 1401.009 | 1930.936 | 494.982 | 204.594 | 9.155 | 315.671 | 12.065 | 24.769 |
P值P value | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | 0.002 | <0.001 | |
J×P | F值F value | 121.347 | 6.234 | 157.332 | 31.519 | 40.454 | 32.397 | 159.307 | 38.547 | 30.442 | 1846.891 |
P值P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.015 | <0.001 | <0.001 | <0.001 | <0.001 |
Table 2 Two-way ANOVA of the effect of rhizobium, P application on photosynthetic related parameters and biomass of alfalfa
因素 Factor | 项目 Item | 净光合 速率 Pn | 蒸腾 速率 Tr | 气孔 导度 Gs | 胞间CO2 浓度 Ci | 光能利用 效率 LUE | 水分利用 效率 WUE | 叶绿素a 含量Chl a content | 叶绿素b 含量Chl b content | 叶绿素总含量Chl (a+b) content | 生物量Biomass |
---|---|---|---|---|---|---|---|---|---|---|---|
J | F值F value | 27.019 | 328.403 | 14973.605 | 3725.991 | 1636.166 | 573.374 | 23.100 | 1108.286 | 33.038 | 4.797 |
P值P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.037 | <0.001 | <0.001 | <0.001 | 0.029 | |
P | F值F value | 10.801 | 189.577 | 1401.009 | 1930.936 | 494.982 | 204.594 | 9.155 | 315.671 | 12.065 | 24.769 |
P值P value | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | <0.001 | 0.002 | <0.001 | |
J×P | F值F value | 121.347 | 6.234 | 157.332 | 31.519 | 40.454 | 32.397 | 159.307 | 38.547 | 30.442 | 1846.891 |
P值P value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.015 | <0.001 | <0.001 | <0.001 | <0.001 |
Fig.1 Net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration of alfalfa leaves under different treatments
指标 Index | 净光合速率 Pn | 蒸腾速率 Tr | 气孔导度 Gs | 胞间CO2 浓度Ci | 光能利用 效率LUE | 水分利用 效率WUE | 叶绿素总含量Chl (a+b) |
---|---|---|---|---|---|---|---|
蒸腾速率Transpiration rate (Tr) | 0.905** | ||||||
气孔导度Stomatal conductance (Gs) | 0.734** | 0.846** | |||||
胞间CO2浓度Intercellular CO2 concentration (Ci) | -0.716** | -0.893** | -0.874** | ||||
光能利用效率Light use efficiency (LUE) | 0.988** | 0.924** | 0.764** | -0.769** | |||
水分利用效率Water use efficiency (WUE) | 0.954** | 0.740** | 0.568* | -0.513* | 0.925** | ||
叶绿素总含量Chlorophyll content [Chl (a+b)] | 0.854** | 0.778** | 0.662** | -0.731** | 0.854** | 0.814** | |
生物量Biomass | 0.714** | 0.728** | 0.585* | -0.610** | 0.704** | 0.605* | 0.746** |
Table 3 The correlation analysis of each index under different treatments
指标 Index | 净光合速率 Pn | 蒸腾速率 Tr | 气孔导度 Gs | 胞间CO2 浓度Ci | 光能利用 效率LUE | 水分利用 效率WUE | 叶绿素总含量Chl (a+b) |
---|---|---|---|---|---|---|---|
蒸腾速率Transpiration rate (Tr) | 0.905** | ||||||
气孔导度Stomatal conductance (Gs) | 0.734** | 0.846** | |||||
胞间CO2浓度Intercellular CO2 concentration (Ci) | -0.716** | -0.893** | -0.874** | ||||
光能利用效率Light use efficiency (LUE) | 0.988** | 0.924** | 0.764** | -0.769** | |||
水分利用效率Water use efficiency (WUE) | 0.954** | 0.740** | 0.568* | -0.513* | 0.925** | ||
叶绿素总含量Chlorophyll content [Chl (a+b)] | 0.854** | 0.778** | 0.662** | -0.731** | 0.854** | 0.814** | |
生物量Biomass | 0.714** | 0.728** | 0.585* | -0.610** | 0.704** | 0.605* | 0.746** |
处理 Treatment | 净光合速率 Pn | 蒸腾速率 Tr | 气孔导度 Gs | 胞间CO2浓度 Ci | 光能利用效率 LUE | 水分利用效率 WUE | 叶绿素总含量 Chl (a+b) | 生物量 Biomass | 平均值 Average | 排序Rank |
---|---|---|---|---|---|---|---|---|---|---|
J0P0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 16 |
J0P1 | 0.060 | 0.114 | 0.043 | 0.157 | 0.036 | 0.029 | 0.192 | 0.295 | 0.116 | 15 |
J0P2 | 0.241 | 0.429 | 0.077 | 0.214 | 0.202 | 0.137 | 0.288 | 0.538 | 0.266 | 12 |
J0P3 | 0.202 | 0.371 | 0.102 | 0.365 | 0.179 | 0.108 | 0.164 | 0.099 | 0.199 | 14 |
J1P0 | 0.296 | 0.171 | 0.070 | 0.191 | 0.298 | 0.431 | 0.521 | 0.033 | 0.251 | 13 |
J1P1 | 0.589 | 0.486 | 0.128 | 0.317 | 0.536 | 0.716 | 0.630 | 0.267 | 0.459 | 10 |
J1P2 | 0.720 | 0.714 | 0.267 | 0.432 | 0.786 | 0.765 | 0.781 | 0.803 | 0.659 | 5 |
J1P3 | 0.525 | 0.590 | 0.123 | 0.534 | 0.595 | 0.520 | 0.548 | 0.407 | 0.480 | 9 |
J2P0 | 0.475 | 0.533 | 0.506 | 0.354 | 0.536 | 0.480 | 0.178 | 0.053 | 0.389 | 11 |
J2P1 | 0.623 | 0.619 | 0.613 | 0.471 | 0.643 | 0.667 | 0.534 | 0.294 | 0.558 | 7 |
J2P2 | 0.804 | 0.867 | 0.861 | 0.613 | 0.810 | 0.784 | 0.836 | 0.937 | 0.814 | 2 |
J2P3 | 0.452 | 0.686 | 0.805 | 0.757 | 0.512 | 0.324 | 0.452 | 0.527 | 0.564 | 6 |
J3P0 | 0.539 | 0.619 | 0.564 | 0.449 | 0.536 | 0.529 | 0.575 | 0.114 | 0.491 | 8 |
J3P1 | 0.585 | 0.638 | 0.754 | 0.719 | 0.643 | 0.588 | 1.000 | 0.720 | 0.706 | 3 |
J3P2 | 1.000 | 1.000 | 1.000 | 0.849 | 1.000 | 1.000 | 0.932 | 1.000 | 0.973 | 1 |
J3P3 | 0.553 | 0.895 | 0.885 | 1.000 | 0.655 | 0.343 | 0.753 | 0.424 | 0.689 | 4 |
Table 4 Membership function analysis of each index
处理 Treatment | 净光合速率 Pn | 蒸腾速率 Tr | 气孔导度 Gs | 胞间CO2浓度 Ci | 光能利用效率 LUE | 水分利用效率 WUE | 叶绿素总含量 Chl (a+b) | 生物量 Biomass | 平均值 Average | 排序Rank |
---|---|---|---|---|---|---|---|---|---|---|
J0P0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 16 |
J0P1 | 0.060 | 0.114 | 0.043 | 0.157 | 0.036 | 0.029 | 0.192 | 0.295 | 0.116 | 15 |
J0P2 | 0.241 | 0.429 | 0.077 | 0.214 | 0.202 | 0.137 | 0.288 | 0.538 | 0.266 | 12 |
J0P3 | 0.202 | 0.371 | 0.102 | 0.365 | 0.179 | 0.108 | 0.164 | 0.099 | 0.199 | 14 |
J1P0 | 0.296 | 0.171 | 0.070 | 0.191 | 0.298 | 0.431 | 0.521 | 0.033 | 0.251 | 13 |
J1P1 | 0.589 | 0.486 | 0.128 | 0.317 | 0.536 | 0.716 | 0.630 | 0.267 | 0.459 | 10 |
J1P2 | 0.720 | 0.714 | 0.267 | 0.432 | 0.786 | 0.765 | 0.781 | 0.803 | 0.659 | 5 |
J1P3 | 0.525 | 0.590 | 0.123 | 0.534 | 0.595 | 0.520 | 0.548 | 0.407 | 0.480 | 9 |
J2P0 | 0.475 | 0.533 | 0.506 | 0.354 | 0.536 | 0.480 | 0.178 | 0.053 | 0.389 | 11 |
J2P1 | 0.623 | 0.619 | 0.613 | 0.471 | 0.643 | 0.667 | 0.534 | 0.294 | 0.558 | 7 |
J2P2 | 0.804 | 0.867 | 0.861 | 0.613 | 0.810 | 0.784 | 0.836 | 0.937 | 0.814 | 2 |
J2P3 | 0.452 | 0.686 | 0.805 | 0.757 | 0.512 | 0.324 | 0.452 | 0.527 | 0.564 | 6 |
J3P0 | 0.539 | 0.619 | 0.564 | 0.449 | 0.536 | 0.529 | 0.575 | 0.114 | 0.491 | 8 |
J3P1 | 0.585 | 0.638 | 0.754 | 0.719 | 0.643 | 0.588 | 1.000 | 0.720 | 0.706 | 3 |
J3P2 | 1.000 | 1.000 | 1.000 | 0.849 | 1.000 | 1.000 | 0.932 | 1.000 | 0.973 | 1 |
J3P3 | 0.553 | 0.895 | 0.885 | 1.000 | 0.655 | 0.343 | 0.753 | 0.424 | 0.689 | 4 |
1 | Vassilev N, Vassileva M, Nikolaeva I. Simultaneous P-solubilizing and biocontrol activity of microorganisms: Potentials and future trends. Applied Microbiology and Biotechnology, 2006, 71(2): 137-144. |
2 | Li H S. Modern plant physiology (3rd Edition). Beijing: Higher Education Press, 2012. |
李合生. 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. | |
3 | Jia Y, Li F M, Wang X L, et al. Dynamics of soil organic carbon and soil fertility affected by alfalfa productivity in a semiarid agro-ecosystem. Biogeochemistry, 2006, 80(3): 233-243. |
4 | Zhao C, Feng Z, Chen G. Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau. Agricultural Water Management, 2004, 69(2): 101-114. |
5 | Wang H Z, Han L, Xu Y L, et al. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2 concentration. Chinese Journal of Plant Ecology, 2014, 38(10): 1099-1109. |
王海珍, 韩路, 徐雅丽, 等. 胡杨异形叶光合作用对光强与CO2浓度的响应. 植物生态学报, 2014, 38(10): 1099-1109. | |
6 | Qi M X, Liu X J, Zhang X L, et al. Effects of different phosphorus levels on photosynthesis and root nodule nitrogen-fixing characteristic of alfalfa. Acta Agrestia Sinica, 2013, 21(3): 512-516. |
齐敏兴, 刘晓静, 张晓磊, 等. 不同磷水平对紫花苜蓿光合作用和根瘤固氮特性的影响. 草地学报, 2013, 21(3): 512-516. | |
7 | Liu J Y, Liu X S, Zhang Q B, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 2020, 10(1): 1-13. |
8 | Friesen M L, Porter S S, Stark S C, et al. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 2011, 42(8): 23-46. |
9 | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007. |
刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. | |
10 | Willmann M, Gerlach N, Buer B, et al. Mycorrhizal phosphate uptake pathway in maize: Vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013, 4(12): 533. |
11 | Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62(6): 227-250. |
12 | Shan L W, Zhang Q, Zhu R F, et al. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
单立文, 张强, 朱瑞芬, 等. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响. 草业学报, 2020, 29(8): 46-57. | |
13 | Tilak K, Ranganayaki N, Manoharachari C. Synergistic effects of plant-growth promoting rhizobacteria and rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). European Journal of Soil Science, 2006, 57(1): 67-71. |
14 | Qin L J, Yang Y Z, Yang X Y. Research progress in mechanism of soil phosphorus solubilizing microorganisms. Life Sciences Research, 2019, 23(1): 59-64, 86. |
秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展. 生命科学研究, 2019, 23(1): 59-64, 86. | |
15 | Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112. |
韩华雯, 孙丽娜, 姚拓, 等. 不同促生菌株组合对紫花苜蓿产量和品质的影响. 草业学报, 2013, 22(5): 104-112. | |
16 | Qin F L, Tian Z M. Effect of co-inoculation with arbuscular mycorrhizal fungi and four different phosphate-solubilizing bacteria on nutrients uptake of red clover in a low phosphorus soil. Journal of Northwest A & F University (Natural Science Edition), 2009, 37(6): 151-157. |
秦芳玲, 田中民. 同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响. 西北农林科技大学学报(自然科学版), 2009, 37(6): 151-157. | |
17 | Li H Y, Wei X, Xu Q X. Photosynthetic functions and anatomical structure variations of Fraxinus mandshurica seedling leaf after AMF inoculation. Journal of Northeast Forestry University, 2019, 47(10): 49-54. |
李虹谕, 卫星, 徐庆祥. 接种丛枝菌根真菌对水曲柳实生苗光合特性和叶片解剖结构的影响. 东北林业大学学报, 2019, 47(10): 49-54. | |
18 | Yao R B, Wu X Q. Interaction between high effective phosphate-solubilizing bacteria and mycorrhizal fungi and its effect on poplar growth. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(5): 170-173. |
姚如斌, 吴小芹. 高效解磷细菌与菌根真菌菌剂交互作用对杨树的促生效应. 南京林业大学学报(自然科学版), 2012, 36(5): 170-173. | |
19 | Xue Z M, Xue Q, Gao J H. The relationship of stomatal movement and photosynthetic characteristics of alfalfa seedlings under osmotic stress. Acta Agrestia Sinica, 2018, 26(2): 420-426. |
薛泽民, 薛琪, 高景慧. 渗透胁迫下紫花苜蓿幼苗气孔运动与光合作用的关系. 草地学报, 2018, 26(2): 420-426. | |
20 | Hu S L, Wan S M, Jia Z K, et al. A study on photosynthetic characteristics of alfalfas grown for different lengths of time in the semi-humid region of the Loess Plateau. Acta Prataculturae Sinica, 2008, 17(5): 60-67. |
胡守林, 万素梅, 贾志宽, 等. 黄土高原半湿润区不同生长年限苜蓿叶片光合性能研究. 草业学报, 2008, 17(5): 60-67. | |
21 | Behn O. Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. Journal of Plant Diseases and Protection, 2008, 115(1): 4-8. |
22 | Zhang D Y, Wang X H, Chen Y, et al. Determinant of photosynthetic capacity in rice leaves under ambient air conditions. Photosynthetica, 2005, 43(2): 273-276. |
23 | Zhao C D, Liu Y C, Yang Z, et al. Effects of different gradient phosphorus additions on photosynthetic characteristics of Vitex negundo seedlings. Journal of West China Forestry Science, 2020, 49(6): 94-99. |
赵琛迪, 刘雅辰, 杨子, 等. 不同磷添加梯度对荆条幼苗光合特性的影响. 西部林业科学, 2020, 49(6): 94-99. | |
24 | Elkoca E, Kantar F, Sahin F. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition, 2007, 31(1): 157-171. |
25 | Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. |
26 | Xue Y L, Li C Y, Wang C R, et al. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. |
薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制. 水土保持学报, 2019, 33(6): 10-20. | |
27 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
28 | Hinsinger P, Herrmann L, Lesueur D, et al. Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere. Annual Plant Reviews, 2015, 48(3): 377-408. |
29 | Raliya R, Tarafdar J C, Biswas P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. Journal of Agricultural and Food Chemistry, 2016, 64(16): 3111-3118. |
30 | Jones D L, Dennis P G, Owen A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps. Plant and Soil, 2003, 248(1): 31-41. |
31 | Toro M, Azcón R, Barea J M. The use of isotopic dilution techniques to evaluate the interactive effects of rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. The New Phytologist, 1998, 138(2): 265-273. |
[1] | Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance [J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
[2] | Shou-jiang SUN, Yi-han TANG, Wen MA, Man-li LI, Pei-sheng MAO. Response of the mitochondrial AsA-GSH cycle during alfalfa seed germination under low temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 152-162. |
[3] | Li-zhu GUO, Hui-zhen MENG, Xi-feng FAN, Ke TENG, Wen-jun TENG, Hai-feng WEN, Yue-sen YUE, Hui ZHANG, Ju-ying WU. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms [J]. Acta Prataculturae Sinica, 2023, 32(2): 65-74. |
[4] | Wen-wu QIAN, Peng GUO, Hui-sen ZHU, Shi-min ZHANG, De-ying LI. Responses of leaf epidermis, anatomical structure and photosynthetic characteristics of Poa pratensis to different nitrogen application level [J]. Acta Prataculturae Sinica, 2023, 32(1): 131-143. |
[5] | Rong RONG, Bin SUN, Zhi-tao WU, Zhi-hai GAO, Zi-qiang DU, Si-han TENG. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
[6] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[7] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[8] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[9] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[10] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[11] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[12] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[13] | Ze-dong ZHOU, Hui-ling MA, Xu HAN, Yuan-heng LI, Xi-liang LI, Kun-na LI. Responses of photosynthetic characteristics of Leymus chinensis in temperate typical steppe to component factors of simulated grazing [J]. Acta Prataculturae Sinica, 2022, 31(8): 81-89. |
[14] | Yi-han ZHAO, Meng-jing HOU, Qi-sheng FENG, Hong-yuan GAO, Tian-gang LIANG, Jin-sheng HE, Da-wen QIAN. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach [J]. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
[15] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||