Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 92-105.DOI: 10.11686/cyxb2023219
Previous Articles Next Articles
Sheng-ran HE(), Xiao-jing LIU(), Ya-jiao ZHAO, Xue WANG, Jing WANG
Received:
2023-06-28
Revised:
2023-07-28
Online:
2024-05-20
Published:
2024-02-03
Contact:
Xiao-jing LIU
Sheng-ran HE, Xiao-jing LIU, Ya-jiao ZHAO, Xue WANG, Jing WANG. Effects of alfalfa/sweet sorghum intercropping on rhizosphere soil characteristics and microbial community characteristics[J]. Acta Prataculturae Sinica, 2024, 33(5): 92-105.
年份 Year | 处理 Treatment | pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
2020 | MA | 8.06±0.02Aa | 12.74±0.09Aa | 0.79±0.01Aa | 81.47±0.96Aa | 15.38±0.29Aa | 106.96±2.45Aa |
IA | 7.99±0.06Aa | 12.98±0.10Aa | 0.74±0.01Ab | 80.35±1.44Aa | 15.04±0.16Aa | 91.37±1.91Ab | |
MS | 8.12±0.01Aa | 11.78±0.13Ac | 0.73±0.01Ab | 64.85±0.72Ac | 13.66±0.19Ab | 81.74±1.17Ac | |
IS | 8.08±0.05Aa | 12.16±0.09Ab | 0.75±0.01Ab | 69.28±1.53Ab | 14.85±0.21Aa | 87.69±1.29Ab | |
2021 | MA | 7.79±0.02Bbc | 12.96±0.25Aa | 0.80±0.01Aa | 80.33±0.33Aa | 15.05±0.17Ab | 99.12±3.61ABa |
IA | 7.75±0.08Bc | 12.81±0.20Aa | 0.74±0.01Ab | 73.49±1.43Bb | 14.63±0.10Ab | 87.69±1.20Ab | |
MS | 8.01±0.01Ba | 10.44±0.14Bc | 0.69±0.01Bc | 62.02±0.39Bd | 13.19±0.03Bc | 75.05±2.16Bc | |
IS | 7.91±0.01Bab | 12.01±0.27Ab | 0.72±0.01ABbc | 66.17±0.58ABc | 15.86±0.29Aa | 79.25±0.47Bc | |
2022 | MA | 7.68±0.01Cc | 13.11±0.07Aa | 0.79±0.01Aa | 78.81±2.79Aa | 14.86±0.12Ab | 92.60±0.34Ba |
IA | 7.63±0.01Bd | 12.67±0.05Ab | 0.72±0.01Ab | 74.81±0.39Ba | 14.04±0.10Bc | 82.60±0.74Bb | |
MS | 7.90±0.02Ca | 9.21±0.02Cd | 0.66±0.01Bc | 59.90±0.91Bb | 13.06±0.04Bd | 71.01±1.16Bd | |
IS | 7.77±0.01Cb | 11.95±0.15Ac | 0.69±0.02Bbc | 62.84±0.43Bb | 15.70±0.43Aa | 76.47±1.54Bc |
Table 1 Effects of intercropping on physicochemical properties of rhizosphere soil in different years
年份 Year | 处理 Treatment | pH | 有机质 Soil organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
2020 | MA | 8.06±0.02Aa | 12.74±0.09Aa | 0.79±0.01Aa | 81.47±0.96Aa | 15.38±0.29Aa | 106.96±2.45Aa |
IA | 7.99±0.06Aa | 12.98±0.10Aa | 0.74±0.01Ab | 80.35±1.44Aa | 15.04±0.16Aa | 91.37±1.91Ab | |
MS | 8.12±0.01Aa | 11.78±0.13Ac | 0.73±0.01Ab | 64.85±0.72Ac | 13.66±0.19Ab | 81.74±1.17Ac | |
IS | 8.08±0.05Aa | 12.16±0.09Ab | 0.75±0.01Ab | 69.28±1.53Ab | 14.85±0.21Aa | 87.69±1.29Ab | |
2021 | MA | 7.79±0.02Bbc | 12.96±0.25Aa | 0.80±0.01Aa | 80.33±0.33Aa | 15.05±0.17Ab | 99.12±3.61ABa |
IA | 7.75±0.08Bc | 12.81±0.20Aa | 0.74±0.01Ab | 73.49±1.43Bb | 14.63±0.10Ab | 87.69±1.20Ab | |
MS | 8.01±0.01Ba | 10.44±0.14Bc | 0.69±0.01Bc | 62.02±0.39Bd | 13.19±0.03Bc | 75.05±2.16Bc | |
IS | 7.91±0.01Bab | 12.01±0.27Ab | 0.72±0.01ABbc | 66.17±0.58ABc | 15.86±0.29Aa | 79.25±0.47Bc | |
2022 | MA | 7.68±0.01Cc | 13.11±0.07Aa | 0.79±0.01Aa | 78.81±2.79Aa | 14.86±0.12Ab | 92.60±0.34Ba |
IA | 7.63±0.01Bd | 12.67±0.05Ab | 0.72±0.01Ab | 74.81±0.39Ba | 14.04±0.10Bc | 82.60±0.74Bb | |
MS | 7.90±0.02Ca | 9.21±0.02Cd | 0.66±0.01Bc | 59.90±0.91Bb | 13.06±0.04Bd | 71.01±1.16Bd | |
IS | 7.77±0.01Cb | 11.95±0.15Ac | 0.69±0.02Bbc | 62.84±0.43Bb | 15.70±0.43Aa | 76.47±1.54Bc |
年份 Year | 处理 Treatment | 细菌 Bacterium (×106 CFU·g-1 DM) | 真菌 Fungus (×103 CFU·g-1 DM) | 放线菌 Actinomycete (×105 CFU·g-1 DM) | 细菌/真菌 Bacterium/fungus | 总量 Total (×106 CFU·g-1 DM) |
---|---|---|---|---|---|---|
2020 | MA | 14.29±0.41Aa | 42.60±0.29Aa | 19.45±0.51Aa | 335.53±9.73Ab | 16.28±0.36Ba |
IA | 15.05±0.34ABa | 40.83±0.40Ab | 18.36±0.32Ba | 368.66±12.00Ba | 16.92±0.37ABa | |
MS | 8.56±0.23Ac | 34.72±0.27Bc | 12.83±0.50Ac | 246.66±8.40Ac | 9.87±0.22Ac | |
IS | 11.07±0.39Bb | 30.80±0.89Ad | 16.01±0.66Bb | 359.51±5.76Cab | 12.70±0.45Bb | |
2021 | MA | 15.72±0.45Aa | 42.79±0.18Aa | 20.28±0.46Aa | 367.29±9.35Ab | 17.79±0.45Aa |
IA | 16.03±0.51Aa | 37.72±0.44Bb | 20.32±0.47Aa | 425.19±15.79Aa | 18.10±0.52Aa | |
MS | 7.85±0.24ABc | 36.89±0.91Ab | 11.62±0.27Ab | 212.99±8.35Bc | 9.04±0.23Bc | |
IS | 13.46±0.29Ab | 29.97±0.65Ac | 19.50±0.37Aa | 448.98±3.23Aa | 15.44±0.32Ab | |
2022 | MA | 14.77±0.38Ab | 43.16±0.59Aa | 19.78±0.45Aa | 342.30±11.00Ab | 16.79±0.40ABa |
IA | 14.02±0.44Bb | 34.49±0.81Cc | 19.00±0.47ABa | 406.30±3.37ABa | 15.95±0.48Bab | |
MS | 7.66±0.20Bc | 38.49±0.51Ab | 12.16±0.15Ab | 199.08±5.04Bc | 8.91±0.21Bc | |
IS | 13.11±0.26Aa | 31.12±1.05Ad | 20.06±0.26Aa | 421.87±7.44Ba | 15.15±0.20Ab |
Table 2 Effects of intercropping on microbial number in rhizosphere soil in different years
年份 Year | 处理 Treatment | 细菌 Bacterium (×106 CFU·g-1 DM) | 真菌 Fungus (×103 CFU·g-1 DM) | 放线菌 Actinomycete (×105 CFU·g-1 DM) | 细菌/真菌 Bacterium/fungus | 总量 Total (×106 CFU·g-1 DM) |
---|---|---|---|---|---|---|
2020 | MA | 14.29±0.41Aa | 42.60±0.29Aa | 19.45±0.51Aa | 335.53±9.73Ab | 16.28±0.36Ba |
IA | 15.05±0.34ABa | 40.83±0.40Ab | 18.36±0.32Ba | 368.66±12.00Ba | 16.92±0.37ABa | |
MS | 8.56±0.23Ac | 34.72±0.27Bc | 12.83±0.50Ac | 246.66±8.40Ac | 9.87±0.22Ac | |
IS | 11.07±0.39Bb | 30.80±0.89Ad | 16.01±0.66Bb | 359.51±5.76Cab | 12.70±0.45Bb | |
2021 | MA | 15.72±0.45Aa | 42.79±0.18Aa | 20.28±0.46Aa | 367.29±9.35Ab | 17.79±0.45Aa |
IA | 16.03±0.51Aa | 37.72±0.44Bb | 20.32±0.47Aa | 425.19±15.79Aa | 18.10±0.52Aa | |
MS | 7.85±0.24ABc | 36.89±0.91Ab | 11.62±0.27Ab | 212.99±8.35Bc | 9.04±0.23Bc | |
IS | 13.46±0.29Ab | 29.97±0.65Ac | 19.50±0.37Aa | 448.98±3.23Aa | 15.44±0.32Ab | |
2022 | MA | 14.77±0.38Ab | 43.16±0.59Aa | 19.78±0.45Aa | 342.30±11.00Ab | 16.79±0.40ABa |
IA | 14.02±0.44Bb | 34.49±0.81Cc | 19.00±0.47ABa | 406.30±3.37ABa | 15.95±0.48Bab | |
MS | 7.66±0.20Bc | 38.49±0.51Ab | 12.16±0.15Ab | 199.08±5.04Bc | 8.91±0.21Bc | |
IS | 13.11±0.26Aa | 31.12±1.05Ad | 20.06±0.26Aa | 421.87±7.44Ba | 15.15±0.20Ab |
处理 Treatment | 测序结果Sequencing results | 多样性指标Diversity indicators | |||||
---|---|---|---|---|---|---|---|
序列 Reads | 分类单元 OTU | 覆盖度 Coverage | ACE指数 ACE index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | |
MA | 145882±2004c | 4751±65a | 0.99±0.0031a | 5662±48a | 5599±67a | 6.71±0.02b | 0.0052±0.0001a |
IA | 142365±739c | 4932±85a | 0.99±0.0000a | 5862±166a | 5768±50a | 6.75±0.01b | 0.0051±0.0000a |
MS | 156325±507b | 5036±58a | 0.99±0.0058a | 5632±49a | 5741±29a | 7.04±0.05a | 0.0022±0.0001b |
IS | 163254±4295a | 5136±62a | 0.99±0.0000a | 5768±35a | 5824±58a | 7.01±0.03a | 0.0021±0.0001b |
Table 3 Rhizosphere soil bacterial diversity index under different planting patterns
处理 Treatment | 测序结果Sequencing results | 多样性指标Diversity indicators | |||||
---|---|---|---|---|---|---|---|
序列 Reads | 分类单元 OTU | 覆盖度 Coverage | ACE指数 ACE index | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | |
MA | 145882±2004c | 4751±65a | 0.99±0.0031a | 5662±48a | 5599±67a | 6.71±0.02b | 0.0052±0.0001a |
IA | 142365±739c | 4932±85a | 0.99±0.0000a | 5862±166a | 5768±50a | 6.75±0.01b | 0.0051±0.0000a |
MS | 156325±507b | 5036±58a | 0.99±0.0058a | 5632±49a | 5741±29a | 7.04±0.05a | 0.0022±0.0001b |
IS | 163254±4295a | 5136±62a | 0.99±0.0000a | 5768±35a | 5824±58a | 7.01±0.03a | 0.0021±0.0001b |
MA | IA | MS | IS | ||||
---|---|---|---|---|---|---|---|
属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance |
芽孢杆菌属 Bacillus | 6.58 | 芽孢杆菌属 Bacillus | 6.56 | 芽孢杆菌属 Bacillus | 6.44 | 芽孢杆菌属 Bacillus | 6.94 |
纤维弧菌属 Cellvibrio | 5.87 | 纤维弧菌属 Cellvibrio | 5.57 | 纤维弧菌属 Cellvibrio | 5.49 | 纤维弧菌属 Cellvibrio | 5.22 |
芽单胞菌属 Gemmatimonas | 3.89 | Gp6 | 3.80 | Gp6 | 4.98 | Gp6 | 5.16 |
链霉菌属 Streptomyces | 3.75 | 芽单胞菌属 Gemmatimonas | 3.15 | 芽单胞菌属 Gemmatimonas | 3.17 | 假单胞菌属Pseudomonas | 3.21 |
假单胞菌属Pseudomonas | 3.67 | 假单胞菌属Pseudomonas | 3.12 | 假单胞菌属Pseudomonas | 3.09 | 芽单胞菌属 Gemmatimonas | 3.03 |
Gp6 | 3.31 | 链霉菌属Streptomyces | 2.64 | 链霉菌属Streptomyces | 2.84 | 链霉菌属Streptomyces | 2.05 |
Aridibacter | 2.35 | Litorilinea | 1.77 | Aridibacter | 2.02 | Aridibacter | 1.97 |
黄杆菌属 Flavobacterium | 1.76 | Aridibacter | 1.62 | Litorilinea | 1.96 | Litorilinea | 1.92 |
Litorilinea | 1.62 | 沃斯菌属 Devosia | 1.61 | 铁矿砂单胞菌属 Arenimonas | 1.74 | 铁矿砂单胞菌属 Arenimonas | 1.90 |
铁矿砂单胞菌属 Arenimonas | 1.35 | 黄杆菌属 Flavobacterium | 1.33 | 类诺卡氏菌属 Nocardioides | 1.59 | 节杆菌属 Arthrobacter | 1.32 |
类诺卡氏菌属Nocardioides | 1.11 | 类诺卡氏菌属 Nocardioides | 1.31 | 节杆菌属 Arthrobacter | 1.37 | 小梨形菌属 Pirellula | 1.21 |
丰佑菌属 Opitutus | 1.02 | 脱硫单胞菌属 Desulfuromonas | 1.16 | Gp7 | 1.22 | Gp7 | 1.13 |
铁矿砂单胞菌属 Arenimonas | 1.15 | 丰佑菌属 Opitutus | 1.20 | 类诺卡氏菌属 Nocardioides | 1.10 | ||
小梨形菌属 Pirellula | 1.09 | 丰佑菌属 Opitutus | 1.07 | ||||
黄杆菌属 Flavobacterium | 1.08 | 脱硫单胞菌属 Desulfuromonas | 1.06 | ||||
脱硫单胞菌属 Desulfuromonas | 1.01 | ||||||
沃斯菌属 Devosia | 1.01 |
Table 4 The bacterial dominant species with abundance >1% under different treatments (%)
MA | IA | MS | IS | ||||
---|---|---|---|---|---|---|---|
属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance | 属 Genus | 丰度 Abundance |
芽孢杆菌属 Bacillus | 6.58 | 芽孢杆菌属 Bacillus | 6.56 | 芽孢杆菌属 Bacillus | 6.44 | 芽孢杆菌属 Bacillus | 6.94 |
纤维弧菌属 Cellvibrio | 5.87 | 纤维弧菌属 Cellvibrio | 5.57 | 纤维弧菌属 Cellvibrio | 5.49 | 纤维弧菌属 Cellvibrio | 5.22 |
芽单胞菌属 Gemmatimonas | 3.89 | Gp6 | 3.80 | Gp6 | 4.98 | Gp6 | 5.16 |
链霉菌属 Streptomyces | 3.75 | 芽单胞菌属 Gemmatimonas | 3.15 | 芽单胞菌属 Gemmatimonas | 3.17 | 假单胞菌属Pseudomonas | 3.21 |
假单胞菌属Pseudomonas | 3.67 | 假单胞菌属Pseudomonas | 3.12 | 假单胞菌属Pseudomonas | 3.09 | 芽单胞菌属 Gemmatimonas | 3.03 |
Gp6 | 3.31 | 链霉菌属Streptomyces | 2.64 | 链霉菌属Streptomyces | 2.84 | 链霉菌属Streptomyces | 2.05 |
Aridibacter | 2.35 | Litorilinea | 1.77 | Aridibacter | 2.02 | Aridibacter | 1.97 |
黄杆菌属 Flavobacterium | 1.76 | Aridibacter | 1.62 | Litorilinea | 1.96 | Litorilinea | 1.92 |
Litorilinea | 1.62 | 沃斯菌属 Devosia | 1.61 | 铁矿砂单胞菌属 Arenimonas | 1.74 | 铁矿砂单胞菌属 Arenimonas | 1.90 |
铁矿砂单胞菌属 Arenimonas | 1.35 | 黄杆菌属 Flavobacterium | 1.33 | 类诺卡氏菌属 Nocardioides | 1.59 | 节杆菌属 Arthrobacter | 1.32 |
类诺卡氏菌属Nocardioides | 1.11 | 类诺卡氏菌属 Nocardioides | 1.31 | 节杆菌属 Arthrobacter | 1.37 | 小梨形菌属 Pirellula | 1.21 |
丰佑菌属 Opitutus | 1.02 | 脱硫单胞菌属 Desulfuromonas | 1.16 | Gp7 | 1.22 | Gp7 | 1.13 |
铁矿砂单胞菌属 Arenimonas | 1.15 | 丰佑菌属 Opitutus | 1.20 | 类诺卡氏菌属 Nocardioides | 1.10 | ||
小梨形菌属 Pirellula | 1.09 | 丰佑菌属 Opitutus | 1.07 | ||||
黄杆菌属 Flavobacterium | 1.08 | 脱硫单胞菌属 Desulfuromonas | 1.06 | ||||
脱硫单胞菌属 Desulfuromonas | 1.01 | ||||||
沃斯菌属 Devosia | 1.01 |
1 | Zhao J H, Sun J H, Chen L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Prataculturae Sinica, 2020, 29(1): 86-94. |
赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94. | |
2 | Du Q F, Wang D J, Yu X Y, et al. The effects of corn and green manure intercropping on soil availability and plant nutrient uptake. Acta Prataculturae Sinica, 2016, 25(3): 225-233. |
杜青峰, 王党军, 于翔宇, 等. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016, 25(3): 225-233. | |
3 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
4 | Weng Q Y, Huang X J, Xu H L, et al. Effects of corn/soybean intercropping model on yield, quality, soil nutrition and rhizosphere microorganisms of silage corn. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 462-470. |
瓮巧云, 黄新军, 许翰林, 等. 玉米/大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响. 核农学报, 2021, 35(2): 462-470. | |
5 | Wu L K, Li Q S, Li Q, et al. Analysis of rhizosphere bacterial community structure and PICRUSt-predicted functional categories in maize and peanut intercropping systems. Acta Ecologica Sinica, 2023, 43(18): 1-12. |
吴林坤, 李奇松, 李倩, 等. 玉米与花生间作下根际细菌群落结构与PICRUSt功能预测分析. 生态学报, 2023, 43(18): 1-12. | |
6 | Zhang M Y, Xiao J X, Tang L, et al. Effects of wheat and faba bean intercropping on the available phosphorus contents in rhizospheric soil and phosphorus uptake by crops under different phosphorus levels. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1157-1165. |
张梦瑶, 肖靖秀, 汤利, 等. 不同磷水平下小麦蚕豆间作对根际有效磷及磷吸收的影响. 植物营养与肥料学报, 2019, 25(7): 1157-1165. | |
7 | Yin X T, Yang H, Yu R P, et al. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1215-1227. |
尹晓童, 杨浩, 于瑞鹏, 等. 根系分泌物在作物多样性体系中对种间地下部互作的介导作用. 中国生态农业学报, 2022, 30(8): 1215-1227. | |
8 | Huang T, Feng Y J, Wang J W. A review on the effects of cereal‖legume intercropping on soil microorganisms. Ecological Science, 2022, 41(3): 229-236. |
黄涛, 冯远娇, 王建武. 禾本科‖豆科间作对土壤微生物影响的研究进展. 生态科学, 2022, 41(3): 229-236. | |
9 | Luo Y, Zhang J D, Zhou G P, et al. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi Oasis irrigated area. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 402-413. |
罗跃, 张久东, 周国朋, 等. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28(3): 402-413. | |
10 | Wang Q Y, Li L J, Ruan H, et al. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land. Agricultural Research in the Arid Areas, 2019, 37(2): 179-184. |
王庆宇, 李立军, 阮慧, 等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响. 干旱地区农业研究, 2019, 37(2): 179-184. | |
11 | Aydin G, Esra G B, Ali I. Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. Journal of Plant Nutrition, 2007, 30(9): 1455-1469. |
12 | Tang Y F, Xu Y B, Zheng Y, et al. Effects of wheat and faba bean intercropping on microorganism involved in nitrogen transformation in the rhizosphere soils. Journal of Agricultural Resources and Environment, 2016, 33(5): 482-490. |
唐艳芬, 续勇波, 郑毅, 等. 小麦蚕豆间作对根际土壤氮转化微生物的影响. 农业资源与环境学报, 2016, 33(5): 482-490. | |
13 | Wang J X, Zhu K, Zhang Z P, et al. Effects of sorghum-peanut intercropping on root traits and soil microorganisms of single-row crops. Agricultural Research in the Arid Areas, 2022, 40(4): 51-59. |
王佳旭, 朱凯, 张志鹏, 等. 高粱花生间作对不同单行作物根系性状及土壤微生物的影响. 干旱地区农业研究, 2022, 40(4): 51-59. | |
14 | Ma X, Luo Z Z, Zhang Y Q, et al. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
马欣, 罗珠珠, 张耀全, 等. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测. 草业学报, 2021, 30(3): 54-67. | |
15 | Barcelos C A, Maeda R N, Santa-Anna L M M, et al. Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass and Bioenergy, 2016, 94: 46-56. |
16 | Lin F, Liu X J, Tong C C, et al. Effects of intercropping on light energy utilization characteristics and productivity of different feed crops. Chinese Journal of Applied Ecology, 2019, 30(10): 3452-3462. |
蔺芳, 刘晓静, 童长春, 等. 间作对不同类型饲料作物光能利用特征及生产能力的影响. 应用生态学报, 2019, 30(10): 3452-3462. | |
17 | Dai S, Wang F, Dong X, et al. Effects of mixing ratio of alfalfa and sweet sorghum on nutritional quality and aerobic stability of total mixed ration silage. Chinese Journal of Animal Nutrition, 2020, 32(5): 2306-2315. |
代胜, 王飞, 董祥, 等. 紫花苜蓿与甜高粱混合比例对发酵全混合日粮营养品质及有氧稳定性的影响. 动物营养学报, 2020, 32(5): 2306-2315. | |
18 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000: 228-264. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 228-264. | |
19 | Guan S Y. Soil enzymes and research method. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
20 | Hu F L, Zhao C, Feng F C, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant and Soil, 2017, 412(1/2): 235-251. |
21 | Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 2017, 63(5): 470-482. |
22 | Xu G H. Soil microbiological analysis methods manual. Beijing: China Agriculture Press, 1986. |
许光辉. 土壤微生物分析方法手册. 北京: 中国农业出版社, 1986. | |
23 | Lin W W, Li N, Chen L S, et al. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chinese Journal of Eco-Agriculture, 2022, 30(1): 26-37. |
林伟伟, 李娜, 陈丽珊, 等. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报, 2022, 30(1): 26-37. | |
24 | Fu X P, Wu F Z, Wu X, et al. Advances in the mechanism of improving crop mineral nutrients in intercropping and relay intercropping systems. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 525-535. |
付学鹏, 吴凤芝, 吴瑕, 等. 间套作改善作物矿质营养的机理研究进展. 植物营养与肥料学报, 2016, 22(2): 525-535. | |
25 | Chen S X, Zhang W, Ma D W, et al. Effects of rhizosphere environment on the competitive ability of extremely small population of Cynanchum forrestii Schltr under alpine conditions. Acta Ecologica Sinica, 2023, 43(6): 2555-2567. |
陈时鑫, 张伟, 马丹炜, 等. 高寒条件下根际环境对极小种群大理白前竞争能力的影响. 生态学报, 2023, 43(6): 2555-2567. | |
26 | Li S J, Wang F X, Cong W Q, et al. Microbial community structure and environmental response of desert soil in Hexi Corridor. Acta Pedologica Sinica, 2022, 59(6): 1718-1728. |
李善家, 王福祥, 从文倩, 等. 河西走廊荒漠土壤微生物群落结构及环境响应. 土壤学报, 2022, 59(6): 1718-1728. | |
27 | Zhou T T. Effects of two types of typical pesticides on composition, function and structure of soil microbial communities. Tai’an: Shandong Agricultural University, 2021. |
周彤彤. 两类典型农药对土壤微生物群落组成、功能和结构的影响. 泰安: 山东农业大学, 2021. | |
28 | Zhao Y J, Liu X J, Tong C C, et al. Factors influencing nodulation and N fixation ability of alfalfa in a simulated alfalfa/maize intercropping system. Acta Prataculturae Sinica, 2020, 29(1): 95-105. |
赵雅姣, 刘晓静, 童长春, 等. 紫花苜蓿/玉米间作对紫花苜蓿结瘤固氮特性的影响. 草业学报, 2020, 29(1): 95-105. | |
29 | Jing J Q, Sarenqilimoge, Qin J, et al. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe. Chinese Journal of Grassland, 2022, 44(2): 33-40. |
荆佳强, 萨仁其力莫格, 秦洁, 等. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响. 中国草地学报, 2022, 44(2): 33-40. | |
30 | Liu J, Li Y, Han C Q, et al. Maize-soybean intercropping facilitates chemical and microbial transformations of phosphorus fractions in a calcareous soil. Frontiers in Microbiology, 2022(13): 1028969. |
31 | Shen C C, Ni Y Y, Liang W, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Frontiers in Microbiology, 2015(6): 00582. |
32 | Pang D B, Wu M Y, Zhao Y R, et al. Soil microbial community characteristics and its influencing factors at different elevations on the eastern slope of Helan Mountain, Northwest China. Chinese Journal of Applied Ecology, 2023, 34(7): 1957-1967. |
庞丹波, 吴梦瑶, 赵娅茹, 等. 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素. 应用生态学报, 2023, 34(7): 1957-1967. | |
33 | Yu F M, Yao Y W, Xie D Y, et al. Study on the soil microbial community structure associated with six land use in Siding mining area. China Environmental Science, 2020, 40(5): 2262-2269. |
于方明, 姚亚威, 谢冬煜, 等. 泗顶矿区6种土地利用类型土壤微生物群落结构特征. 中国环境科学, 2020, 40(5): 2262-2269. |
[1] | Zheng-jun SHI, Song PAN, Shi-xiu FENG, Feng-jun YUAN. Effects of green-waste mulching treatments on plant growth and the soil bacterial community [J]. Acta Prataculturae Sinica, 2023, 32(4): 153-160. |
[2] | Yuan-yuan LI, Ting-ting XU, Zhe AI, Zhao-na ZHOU, Fei MA. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species [J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49. |
[3] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[4] | LI Zhi-long, LUO Chao-yue, QIU Hui-zhen, FU Xiao, DENG De-lei, ZHANG Chun-hong, SHEN Qi-rong. Effects of continuous nitrogen application on bacterial community structure and denitrification in the rhizosphere of potato [J]. Acta Prataculturae Sinica, 2020, 29(6): 105-116. |
[5] | LIU Hong-mei, YANG Dian-lin, ZHANG Hai-fang, ZHAO Jian-ning, WANG Hui, ZHANG Nai-qin. Effects of nitrogen addition on the soil bacterial community structure of Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2019, 28(9): 23-32. |
[6] | LI Hai-yun, YAO Tuo, MA Ya-chun, ZHANG Hui-rong, LU Xiao-wen, YANG Xiao-lei, XIA Dong-hui, ZHANG Jian-gui, GAO Ya-min. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains [J]. Acta Prataculturae Sinica, 2019, 28(8): 170-179. |
[7] | ZHANG Wen-wen, LIU Bing-ru, NIU Song-fang. Correlation between soil nutrient status and the bacterial community composition in alfalfa stands of different ages in the Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2019, 28(5): 46-54. |
[8] | SI Hua-zhe, LI Zhi-peng, NAN Wei-xiao, JIN Chun-ai, LI Guang-yu, LIU Han-lu. Effects of bacterial community composition on fermentation characteristics of Lactobacillus plantarum in low moisture content rice stalk silage [J]. Acta Prataculturae Sinica, 2019, 28(3): 184-192. |
[9] | HE Wei, GUO Lin-Wei, FAN Peng-Hui, GUO Bin, FU Yan-Ping, WEI Ya-Hui. Allelopathy and the rhizospere bacterial community structure of Oxytropis ochrocephala [J]. Acta Prataculturae Sinica, 2015, 24(7): 21-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||