Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (9): 121-133.DOI: 10.11686/cyxb2024404
Wei-peng ZOU(
), Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN(
), Hui-sen ZHU(
), Tao XU
Received:2024-10-17
Revised:2024-12-25
Online:2025-09-20
Published:2025-07-02
Contact:
Hui-fang CEN,Hui-sen ZHU
Wei-peng ZOU, Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN, Hui-sen ZHU, Tao XU. Cloning of MsNAC053 from alfalfa and analysis of its transcript profile in response to abiotic stresses[J]. Acta Prataculturae Sinica, 2025, 34(9): 121-133.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| NAC053-F | ATGGCATCAATGGAGGACATCAAC |
| NAC053-R | TTAAAAATTCAGGATATTAGTGTAAGCACTCC |
| qNAC053-F | ACGCATAATCGGGTTGAGGAAG |
| qNAC053-R | TAGGCAAGGGGCTATTGTCAGG |
| ACTIN-F | CAAAAGATGGCAGATGCTGAGGAT |
| ACTIN-R | CATGACACCAGTATGACGAGGTCG |
Table 1 The primer sequence of MsNAC053 gene in PCR and qRT-PCR
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
|---|---|
| NAC053-F | ATGGCATCAATGGAGGACATCAAC |
| NAC053-R | TTAAAAATTCAGGATATTAGTGTAAGCACTCC |
| qNAC053-F | ACGCATAATCGGGTTGAGGAAG |
| qNAC053-R | TAGGCAAGGGGCTATTGTCAGG |
| ACTIN-F | CAAAAGATGGCAGATGCTGAGGAT |
| ACTIN-R | CATGACACCAGTATGACGAGGTCG |
软件名称 The name of software | 分析项目 The item analyzed | 网址 Website |
|---|---|---|
| NCBI-Blast | 序列比对Sequence alignment | https://blast.ncbi.nlm.nih.gov/ |
| Evolview | 系统进化树美化Phylogenetic tree beautification | https://www.evolgenius.info/evolview/ |
| SMART | 保守结构域分析Conservative domain analysis | https://smart.embl.de/ |
| NCBI-conserved domain | 保守结构域分析Conservative domain analysis | https://www.ncbi.nlm.nih.gov/Structure/cdd/ |
| PlantCARE | 顺式作用元件分析Cis-acting element analysis | https://bioinformatics.psb.ugent.be/ |
| ExPasy | 蛋白理化性质分析The characteristic analysis of physical and chemical of protein | https://www.expasy.org/ |
| TMHMM | 蛋白跨膜结构分析Protein transmembrane structure analysis | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| SOPMA | 蛋白二级结构分析Secondary structure analysis of protein | https://npsa-prabi.ibcp.fr/ |
| Swiss-Model | 蛋白三级结构分析Tertiary structure analysis of protein | https://swissmodel.expasy.org/ |
| Cell-Ploc 2.0 | 亚细胞定位分析Subcellular localization analysis | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| SignalP 5.0 | 蛋白信号肽分析Signal peptide analysis of protein | https://services.healthtech.dtu.dk/services/SignalP-5.0/ |
| NetPhos 3.1 | 蛋白磷酸化位点分析Phosphorylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetPhos-3.1/ |
| NetGlycate 1.0 | 蛋白糖基化位点分析Glycosylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetGlycate-1.0/ |
| DNAMAN 7.0 | 序列比对Sequence alignment | 本地软件Local software |
| MEGA 6.0 | 系统进化树构建Phylogenetic tree construction | 本地软件Local software |
| SnapGene | 序列比对Sequence alignment | 本地软件Local software |
| TBtools | 系统进化树美化Phylogenetic tree beautification | 本地软件Local software |
Table 2 Information on the software used for bioinformatics analysis
软件名称 The name of software | 分析项目 The item analyzed | 网址 Website |
|---|---|---|
| NCBI-Blast | 序列比对Sequence alignment | https://blast.ncbi.nlm.nih.gov/ |
| Evolview | 系统进化树美化Phylogenetic tree beautification | https://www.evolgenius.info/evolview/ |
| SMART | 保守结构域分析Conservative domain analysis | https://smart.embl.de/ |
| NCBI-conserved domain | 保守结构域分析Conservative domain analysis | https://www.ncbi.nlm.nih.gov/Structure/cdd/ |
| PlantCARE | 顺式作用元件分析Cis-acting element analysis | https://bioinformatics.psb.ugent.be/ |
| ExPasy | 蛋白理化性质分析The characteristic analysis of physical and chemical of protein | https://www.expasy.org/ |
| TMHMM | 蛋白跨膜结构分析Protein transmembrane structure analysis | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ |
| SOPMA | 蛋白二级结构分析Secondary structure analysis of protein | https://npsa-prabi.ibcp.fr/ |
| Swiss-Model | 蛋白三级结构分析Tertiary structure analysis of protein | https://swissmodel.expasy.org/ |
| Cell-Ploc 2.0 | 亚细胞定位分析Subcellular localization analysis | http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/ |
| SignalP 5.0 | 蛋白信号肽分析Signal peptide analysis of protein | https://services.healthtech.dtu.dk/services/SignalP-5.0/ |
| NetPhos 3.1 | 蛋白磷酸化位点分析Phosphorylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetPhos-3.1/ |
| NetGlycate 1.0 | 蛋白糖基化位点分析Glycosylation site analysis of protein | https://services.healthtech.dtu.dk/services/NetGlycate-1.0/ |
| DNAMAN 7.0 | 序列比对Sequence alignment | 本地软件Local software |
| MEGA 6.0 | 系统进化树构建Phylogenetic tree construction | 本地软件Local software |
| SnapGene | 序列比对Sequence alignment | 本地软件Local software |
| TBtools | 系统进化树美化Phylogenetic tree beautification | 本地软件Local software |
氨基酸 Amino acid | 数目 Number | 含量 Content (%) | 氨基酸 Amino acid | 数目 Number | 含量 Content (%) |
|---|---|---|---|---|---|
| 丙氨酸Alanine (Ala, A) | 11 | 3.7 | 赖氨酸Lysine (Lys, K) | 25 | 8.3 |
| 精氨酸Arginine (Arg, R) | 14 | 4.7 | 甲硫氨酸Methionine (Met, M) | 10 | 3.3 |
| 天冬酰胺Asparagine (Asn, N) | 13 | 4.3 | 苯丙氨酸Phenylalanine (Phe, F) | 12 | 4.0 |
| 天冬氨酸Asparticacid (Asp, D) | 18 | 6.0 | 脯氨酸Proline (Pro, P) | 20 | 6.6 |
| 半胱氨酸Cysteine (Cys, C) | 4 | 1.3 | 丝氨酸Serine (Ser, S) | 22 | 7.3 |
| 谷氨酰胺Glutamine (Gln, Q) | 14 | 4.7 | 苏氨酸Threonine (Thr, T) | 20 | 6.6 |
| 谷氨酸Glutamicacid (Glu, E) | 21 | 7.0 | 色氨酸Tryptophan (Trp, W) | 7 | 2.3 |
| 甘氨酸Glycine (Gly, G) | 16 | 5.3 | 酪氨酸Tyrosine (Tyr, Y) | 9 | 3.0 |
| 组氨酸Histidine (His, H) | 7 | 2.3 | 缬氨酸Valine (Val, V) | 15 | 5.0 |
| 异亮氨酸Isoleucine (Ile, I) | 16 | 5.3 | 吡咯酪氨酸Pyrrolysine (Pyl, O) | 0 | 0.0 |
| 亮氨酸Leucine (Leu, L) | 27 | 9.0 | 硒代胱氨酸Selenocysteine (Sec, U) | 0 | 0.0 |
Table 3 Amino acid composition analysis of MsNAC053 in alfalfa
氨基酸 Amino acid | 数目 Number | 含量 Content (%) | 氨基酸 Amino acid | 数目 Number | 含量 Content (%) |
|---|---|---|---|---|---|
| 丙氨酸Alanine (Ala, A) | 11 | 3.7 | 赖氨酸Lysine (Lys, K) | 25 | 8.3 |
| 精氨酸Arginine (Arg, R) | 14 | 4.7 | 甲硫氨酸Methionine (Met, M) | 10 | 3.3 |
| 天冬酰胺Asparagine (Asn, N) | 13 | 4.3 | 苯丙氨酸Phenylalanine (Phe, F) | 12 | 4.0 |
| 天冬氨酸Asparticacid (Asp, D) | 18 | 6.0 | 脯氨酸Proline (Pro, P) | 20 | 6.6 |
| 半胱氨酸Cysteine (Cys, C) | 4 | 1.3 | 丝氨酸Serine (Ser, S) | 22 | 7.3 |
| 谷氨酰胺Glutamine (Gln, Q) | 14 | 4.7 | 苏氨酸Threonine (Thr, T) | 20 | 6.6 |
| 谷氨酸Glutamicacid (Glu, E) | 21 | 7.0 | 色氨酸Tryptophan (Trp, W) | 7 | 2.3 |
| 甘氨酸Glycine (Gly, G) | 16 | 5.3 | 酪氨酸Tyrosine (Tyr, Y) | 9 | 3.0 |
| 组氨酸Histidine (His, H) | 7 | 2.3 | 缬氨酸Valine (Val, V) | 15 | 5.0 |
| 异亮氨酸Isoleucine (Ile, I) | 16 | 5.3 | 吡咯酪氨酸Pyrrolysine (Pyl, O) | 0 | 0.0 |
| 亮氨酸Leucine (Leu, L) | 27 | 9.0 | 硒代胱氨酸Selenocysteine (Sec, U) | 0 | 0.0 |
| [1] | Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| 王少鹏, 刘佳, 洪军, 等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. | |
| [2] | Wang Y, Wang J, Li S X. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance. Acta Prataculturae Sinica, 2023, 32(3): 107-117. |
| 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析. 草业学报, 2023, 32(3): 107-117. | |
| [3] | Liu G S, Li H L, Grierson D, et al. NAC transcription factor family regulation of fruit ripening and quality: a review.Cells, 2022, 11(3): 525. |
| [4] | Ren Y, Huang Z Q, Jiang H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. JournalofExperimentalBotany, 2021, 72(8): 2947-2964. |
| [5] | Martín-Pizarro C, Vallarino J G, Osorio S, et al. The NAC transcription factor FaRIF controls fruit ripening in strawberry. The Plant Cell, 2021, 33(5): 1574-1593. |
| [6] | Han D, Du M, Zhou Z, et al. Overexpression of a Malus baccata NAC transcription factor gene MbNAC25 increases cold and salinity tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(4): 1198. |
| [7] | Qian Y X, Xi Y, Xia L X, et al. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. International Journal of Molecular Sciences, 2023, 24(22): 16157. |
| [8] | Zhang M J, Hou X T, Yang H, et al. The NAC gene family in the halophyte Limonium bicolor: identification, expression analysis, and regulation of abiotic stress tolerance. Plant Physiology and Biochemistry, 2024, 208: 108462. |
| [9] | Ling L, Song L L, Wang Y J, et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula. Physiology and Molecular Biology of Plants, 2017, 23(2): 343-356. |
| [10] | Li M, Chen R, Jiang Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology, 2021, 105(3): 333-345. |
| [11] | Li T T, Fang K, Tie Y, et al. NAC transcription factor ATAF1 negatively modulates the PIF-regulated hypocotyl elongation under a short-day photoperiod. Plant, Cell & Environment, 2024, 47(8): 3253-3265. |
| [12] | Shen J B, Lv B, Luo L Q, et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Scientific Reports, 2017, 7(1): 40641. |
| [13] | Wang J F, Lian W R, Cao Y Y, et al. Overexpression of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Scientific Reports, 2018, 8(1): 13349. |
| [14] | Zhang G Y, Huang S Q, Zhang C, et al. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). Protoplasma, 2020, 258(2): 337-345. |
| [15] | Li S Y. Study on genetic transformation of MsNAC47 gene to alfalfa. Harbin: Harbin Normal University, 2023. |
| 李思宇. MsNAC47基因对紫花苜蓿的遗传转化研究. 哈尔滨: 哈尔滨师范大学, 2023. | |
| [16] | Zou W P, Zhai J X, Li D N, et al. Identification of alfalfa NAC gene family and analysis of their expression patterns under abiotic stress. Acta Agrestia Sinica, 2024, 32(8): 2440-2458. |
| 邹苇鹏, 翟佳兴, 李迪娜, 等. 紫花苜蓿NAC基因家族鉴定及在非生物胁迫下的表达模式分析. 草地学报, 2024, 32(8): 2440-2458. | |
| [17] | Guerin C, Roche J, Allard V, et al. Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.). PLoS One, 2019, 14(3): e0213390. |
| [18] | Diao W P, Snyder J, Wang S B, et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network. International Journal of Molecular Sciences, 2018, 19(4): 1028. |
| [19] | Satheesh V, Jagannadham P T K, Chidambaranathan P, et al. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea [Cajanus cajan (L.) Millsp.]. Molecular Biology Reports, 2014, 41(12): 7763-7773. |
| [20] | Li W H, Zeng Y L, Yin F L, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Scientific Reports, 2021, 11(1): 19865. |
| [21] | Zhou L, Shi K, Cui X R, et al. Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco. Environmental and Experimental Botany, 2023, 205: 105143. |
| [22] | Shang X G, Yu Y J, Zhu L J, et al. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis.Plant Science, 2020, 296: 110498. |
| [23] | Yang Y L, Zhang H X, Wang S S, et al. Cloning, bioinformatics analysis of transcription factor NAC62 in industrial hemp (Cannabis sativa) and its response analysis to drought stress. Journal of Agricultural Biotechnology, 2024, 32(1): 107-114. |
| 杨宇蕾, 张涵雪, 王珊珊, 等. 转录因子NAC62在工业大麻中的克隆、生信分析及其干旱胁迫响应分析. 农业生物技术学报, 2024, 32(1): 107-114. | |
| [24] | Sun L, Liu L P, Wang Y Z, et al. NAC103, a NAC family transcription factor, regulates ABA response during seed germination and seedling growth in Arabidopsis. Planta, 2020, 252(6): 95. |
| [25] | Kong J Y, Yang N, Luo W, et al. Identification of NAC transcription factor genes CsNAC79 and CsNAC9 in tea plant and their response to different abiotic stresses. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(4): 572-581. |
| 孔洁玙, 杨妮, 罗微, 等. 茶树NAC转录因子基因CsNAC79和CsNAC9鉴定及其对非生物胁迫的响应. 西北植物学报, 2024, 44(4): 572-581. | |
| [26] | Cao L H, Wang J Y, Ren S J, et al. Genome-wide identification of the NAC family in Hemerocallis citrina and functional analysis of HcNAC35 in response to abiotic stress in watermelon. Frontiers in Plant Science, 2024, 15: 1474589. |
| [27] | Yong Y B, Zhang Y, Lyu Y M. A stress-responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis. International Journal of Molecular Sciences, 2019, 20(13): 3225. |
| [28] | Ao C W, Xiang G J, Wu Y F, et al. OsNAC15 regulates drought and salt tolerance in rice. Physiology and Molecular Biology of Plants, 2024, 30(11): 1909-1919. |
| [29] | Xu Z. Cloning and characteristic analysis of MfNAC63 gene in Medicago falcata. Hohhot: Inner Mongolia University, 2019. |
| 徐哲. 黄花苜蓿MfNAC63基因的克隆及特性分析. 呼和浩特: 内蒙古大学, 2019. |
| [1] | Hua-ying DU, Yu-zhou ZHANG, Nan ZHAO, Yan HU, Yi-dong WANG, Teng-da LIU, Pei-wen GU, Ze-yang YU. Trichoderma asperellum bai5 inhibits root rot pathogens of alfalfa (Medicago sativa) and promotes alfalfa plant growth [J]. Acta Prataculturae Sinica, 2025, 34(8): 179-190. |
| [2] | Yi-yin ZHANG, Bin WANG, Teng-fei WANG, Jian LAN, Hai-ying HU. Effects of intercropping triticale with alfalfa on system yield, resource utilization, and alfalfa seed yield [J]. Acta Prataculturae Sinica, 2025, 34(8): 43-53. |
| [3] | Wen-xiu LI, Tuo YAO, Chang-ning LI, Qian-min JIA, Ao-lei HE, Yang ZHOU. Screening of the best ratio of ‘attapulgite-organic matrix’ bacterial fertilizer carrier and its growth-promotion effect on alfalfa [J]. Acta Prataculturae Sinica, 2025, 34(8): 88-98. |
| [4] | Xue-qian JIANG, Qing-chuan YANG, Jun-mei KANG. Research progress on yield loss under drought stress and drought resistance genetics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2025, 34(7): 219-234. |
| [5] | Yuan-yuan ZHAO, Xiao-jian PU, Cheng-ti XU, Wei WANG, Yun-jie FU. Cloning of the MtBMI1 gene from Medicago truncatula and its role in drought tolerance [J]. Acta Prataculturae Sinica, 2025, 34(6): 139-153. |
| [6] | Xiao-Yue WEN, Ying ZHAO, Bao-qiang WANG, Xian WANG, Xiao-lin ZHU, Yi-zhen WANG, Xiao-hong WEI. Expression analysis of AP2/ERFs genes in alfalfa regulated by exogenous NO under drought stress [J]. Acta Prataculturae Sinica, 2025, 34(6): 154-167. |
| [7] | Ying-hao ZHANG, Chu-bo LIU, Kun ZHOU, Jia-cun GUO, Shi-peng LIU, Luan-zi SUN. Effects of jujube tree on the growth of alfalfa and orchardgrass in different positions within an orchard [J]. Acta Prataculturae Sinica, 2025, 34(6): 203-212. |
| [8] | Yan-xia ZENG, Zhi-long CHEN, Ji-hong SHANG, Xiao-di SHA, Juan WU, Cai-jin CHEN. Effects of space mutagenesis on the growth of alfalfa (Medicago sativa) seedlings under PEG-6000 simulated drought stress [J]. Acta Prataculturae Sinica, 2025, 34(6): 59-69. |
| [9] | Kong-qin WEI, Ying-ying ZHANG, Jin-feng HUI, Chun-hui MA, Qian-bing ZHANG. Effect of phosphate-solubilizing bacteria and phosphorus on non-structural carbohydrate content and the carbon∶nitrogen∶phosphorus stoichiometry of alfalfa roots [J]. Acta Prataculturae Sinica, 2025, 34(5): 40-50. |
| [10] | Zhi-fang ZUO, Yong-long LI, Yu-jia WEI, Sheng-hui ZHOU, Yan LI, Guo-feng YANG. Identification of DREB genes from Zoysia japonica and their transcript profiles in response to abiotic stress [J]. Acta Prataculturae Sinica, 2025, 34(5): 74-88. |
| [11] | Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses [J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104. |
| [12] | Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| [13] | Ya-qi FENG, Jia-hui CHEN, Jing-ni ZHANG, Chao SUI, Ji-wei CHEN, Zhi-peng LIU, Qiang ZHOU, Wen-xian LIU. Development of high-protein and high-yield associated InDel molecular markers based on re-sequencing in alfalfa [J]. Acta Prataculturae Sinica, 2025, 34(4): 137-149. |
| [14] | Cai-jin CHEN, Ming-fang BAO, Wen-hu WANG, Ji-hong SHANG, Yan-xia ZENG, Xiao-di SHA, Xin-zhong ZHU, Xue-min WANG, Wen-hui LIU. Current situation and prospects for drought-resistance breeding in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(3): 204-223. |
| [15] | Peng-fei HU, Yu-nong YE, Tong-rui WANG, Jing WANG, Xing WANG, Bing-zhe FU, Xue-qin GAO. Analysis of genetic variation in agronomic of half-sib families of Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(3): 85-96. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||