Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (5): 89-104.DOI: 10.11686/cyxb2024247
Previous Articles Next Articles
Xin-yue ZHOU1(
), Li-ping WANG2, Qing-xue JIANG1, Xiao-ran MA1, Deng-xia YI1, Xue-min WANG1(
)
Received:2024-06-24
Revised:2024-07-22
Online:2025-05-20
Published:2025-03-20
Contact:
Xue-min WANG
Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses[J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104.
| 引物名称Primer name | 引物序列Primer sequence (5′→3′) | 用途Function |
|---|---|---|
| MsLTI-3′-RACE | TGATGAGTCAAAACCTGCCACAGAACCA | 基因克隆 Gene cloning |
| MsLTI-5′-RACE | CCAACAGCATCCTTAACCTTGTCAACCA | |
| MsLTI65-F | ATGGATTCAAGAGTTGTTCATAGTC | |
| MsLTI65-R | TTACTCCTGTTTTCCTCCTTCA | |
| Actin-F | CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Reference genes |
| Actin-R | CATGACACCAGTATGACGAGGTCG | |
| qlTI65-F | AGCTGATAAAGCTTCTAAGCTCGG | 表达分析 Expression analysis |
| qlTI65-R | GTTTCAGTTCCGTCATTAGTTCCA | |
| LTI65-F | TCAGGGATCCGTGCATGATGAGCCAAAACC | 抗体制备 Antibody preparation |
| LTI65-R | CGTAGTCGACTTACTCCTGTTTTCCTCCTT |
Table 1 Primer information used in the experiment
| 引物名称Primer name | 引物序列Primer sequence (5′→3′) | 用途Function |
|---|---|---|
| MsLTI-3′-RACE | TGATGAGTCAAAACCTGCCACAGAACCA | 基因克隆 Gene cloning |
| MsLTI-5′-RACE | CCAACAGCATCCTTAACCTTGTCAACCA | |
| MsLTI65-F | ATGGATTCAAGAGTTGTTCATAGTC | |
| MsLTI65-R | TTACTCCTGTTTTCCTCCTTCA | |
| Actin-F | CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Reference genes |
| Actin-R | CATGACACCAGTATGACGAGGTCG | |
| qlTI65-F | AGCTGATAAAGCTTCTAAGCTCGG | 表达分析 Expression analysis |
| qlTI65-R | GTTTCAGTTCCGTCATTAGTTCCA | |
| LTI65-F | TCAGGGATCCGTGCATGATGAGCCAAAACC | 抗体制备 Antibody preparation |
| LTI65-R | CGTAGTCGACTTACTCCTGTTTTCCTCCTT |
生物信息学工具 Bioinformatics tools | 网址 Website | 用途 Purpose |
|---|---|---|
| Open Reading Frame Finder | https://www.ncbi.nlm.nih.gov/orffinder/ | 开放阅读框分析Open reading frame analysis |
| SMART | https://smart.embl.de/ | 蛋白质保守结构域分析Protein conserved domain analysis |
| Expasy-ProtParam tool | https://web.expasy.org/protparam/ | 蛋白质理化性质分析Analysis of physical and chemical properties of proteins |
| PRABI | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html | 蛋白质二级结构分析Protein secondary structure analysis |
| AlphaFold | https://alphafoldserver.com/ | 蛋白质三级结构分析Protein tertiary structure analysis |
| BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 同源蛋白序列分析Homologous protein sequence analysis |
| DNAMAN | https://www.lynnon.com/qa.html | 多序列比对Multiple sequence alignment |
| Plant CARE | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件分析Cis-acting element analysis |
| MEGA | https://www.megasoftware.net/ | 系统进化树构建Phylogenetic tree construction |
| NetPhos-3.1 | https://services.healthtech.dtu.dk/ services/NetPhos-3.1/ | 蛋白磷酸化位点分析Protein phosphorylation site analysis |
| SignaL.P-5.0 | http://www.cbs.dtu.dk/services/SignalP/ | 蛋白质信号肽分析Protein signal peptide analysis |
| TMHMM-2.0 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ | 蛋白跨膜结构分析Protein transmembrane structure analysis |
Table 2 Bioinformatics tools used
生物信息学工具 Bioinformatics tools | 网址 Website | 用途 Purpose |
|---|---|---|
| Open Reading Frame Finder | https://www.ncbi.nlm.nih.gov/orffinder/ | 开放阅读框分析Open reading frame analysis |
| SMART | https://smart.embl.de/ | 蛋白质保守结构域分析Protein conserved domain analysis |
| Expasy-ProtParam tool | https://web.expasy.org/protparam/ | 蛋白质理化性质分析Analysis of physical and chemical properties of proteins |
| PRABI | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa%20_sopma.html | 蛋白质二级结构分析Protein secondary structure analysis |
| AlphaFold | https://alphafoldserver.com/ | 蛋白质三级结构分析Protein tertiary structure analysis |
| BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 同源蛋白序列分析Homologous protein sequence analysis |
| DNAMAN | https://www.lynnon.com/qa.html | 多序列比对Multiple sequence alignment |
| Plant CARE | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件分析Cis-acting element analysis |
| MEGA | https://www.megasoftware.net/ | 系统进化树构建Phylogenetic tree construction |
| NetPhos-3.1 | https://services.healthtech.dtu.dk/ services/NetPhos-3.1/ | 蛋白磷酸化位点分析Protein phosphorylation site analysis |
| SignaL.P-5.0 | http://www.cbs.dtu.dk/services/SignalP/ | 蛋白质信号肽分析Protein signal peptide analysis |
| TMHMM-2.0 | https://services.healthtech.dtu.dk/services/TMHMM-2.0/ | 蛋白跨膜结构分析Protein transmembrane structure analysis |
| 元件名称Element name | 序列Sequence | 数量Amount | 功能Function |
|---|---|---|---|
| TCT-motif | TCTTAC | 1 | 光响应模块的一部分Part of a module for light response |
| MYC | CATTTG | 5 | MYC结合位点MYC binding site |
| Box 4 | ATTAAT | 1 | 光响应元件Light responsive element |
| Chs-CMA1a | TTACTTAA | 1 | 光响应元件Light responsive element |
| GT1-motif | GGTTAA | 1 | 光响应元件Light responsive element |
| LTR | CCGAAA | 2 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
| ARE | AAACCA | 4 | 无氧诱导调节元件Anaerobic induction regulating element |
| TC-rich repeats | GTTTTCTTAC | 2 | 参与防御和胁迫反应的顺式作用元件Cis-acting element involved in defense and stress responsiveness |
| ABRE | CACGTG/ACGTG | 4 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| DRE | GCCGAC | 1 | 参与脱水反应的顺式作用元件Cis-acting elements involved in dehydration reactions |
Table 3 Analysis of cis-acting elements in the promoter region of the MsLTI65 gene
| 元件名称Element name | 序列Sequence | 数量Amount | 功能Function |
|---|---|---|---|
| TCT-motif | TCTTAC | 1 | 光响应模块的一部分Part of a module for light response |
| MYC | CATTTG | 5 | MYC结合位点MYC binding site |
| Box 4 | ATTAAT | 1 | 光响应元件Light responsive element |
| Chs-CMA1a | TTACTTAA | 1 | 光响应元件Light responsive element |
| GT1-motif | GGTTAA | 1 | 光响应元件Light responsive element |
| LTR | CCGAAA | 2 | 参与低温响应的顺式作用元件Cis-acting element involved in low-temperature responsiveness |
| ARE | AAACCA | 4 | 无氧诱导调节元件Anaerobic induction regulating element |
| TC-rich repeats | GTTTTCTTAC | 2 | 参与防御和胁迫反应的顺式作用元件Cis-acting element involved in defense and stress responsiveness |
| ABRE | CACGTG/ACGTG | 4 | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| DRE | GCCGAC | 1 | 参与脱水反应的顺式作用元件Cis-acting elements involved in dehydration reactions |
| 1 | Yang Q C, Kang J M, Zhang T J, et al. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. |
| 杨青川, 康俊梅, 张铁军, 等. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270. | |
| 2 | Li X L, Shen Y Y, Wan L Q. Potential analysis and policy recommendations for restructuring the crop farming and developing forage industry in China. Strategic Study of CAE, 2016, 18(1): 94-105. |
| 李向林, 沈禹颖, 万里强. 种植业结构调整和草牧业发展潜力分析及政策建议. 中国工程科学, 2016, 18(1): 94-105. | |
| 3 | Sun R, Liu Z D, Gao H J, et al. A brief analysis of the protection and restoration of China’s grassland ecological environment. Animal Husbandry Industry, 2024(3): 55-58. |
| 孙蕊, 刘泽东, 高海娟, 等. 简析我国草原生态环境的保护与修复. 畜牧产业, 2024(3): 55-58. | |
| 4 | Chen C J, Wang X M, Liu W H, et al. Research advances on genetic diversity of grass germplasm. Acta Agrestia Sinica, 2024, 32(2): 349-357. |
| 陈彩锦, 王学敏, 刘文辉, 等. 草种质资源遗传多样性研究进展. 草地学报, 2024, 32(2): 349-357. | |
| 5 | Sun P B, Wang Z J, Ge G T, et al. Research progress of alfalfa salt and alkali stress tolerance and mitigation measures. Northern Horticulture, 2023(21): 131-137. |
| 孙鹏波, 王志军, 格根图, 等. 紫花苜蓿耐盐碱胁迫与缓减措施的研究进展. 北方园艺, 2023(21): 131-137. | |
| 6 | Mao P S, Hou L Y, Wang M Y. Limited factors and key technologies of forage seed production in the northern of China. Science Bulletin, 2016, 61(2): 250-260. |
| 毛培胜, 侯龙鱼, 王明亚. 中国北方牧草种子生产的限制因素和关键技术. 科学通报, 2016, 61(2): 250-260. | |
| 7 | Wang X, Li Z P, Sun J J, et al. Progress of alfalfa breeding in China. Pratacultural Science, 2014, 31(3): 512-518. |
| 王雪, 李志萍, 孙建军, 等. 中国苜蓿品种的选育与研究. 草业科学, 2014, 31(3): 512-518. | |
| 8 | Ma B, Sun J W, Li S F. Research advances about low temperature induced proteins in plants. Journal of Anhui Agricultural Sciences, 2010, 38(12): 6085-6086, 6094. |
| 马斌, 孙骏威, 李素芳. 植物低温诱导蛋白的研究进展. 安徽农业科学, 2010, 38(12): 6085-6086, 6094. | |
| 9 | Briggs D R, Siminovitch D. The chemistry of the living bark of the black locust tree in relation to frost hardiness. Ⅱ. Seasonal variations in the electrophoresis pattern of the water-soluble proteins of the bark. Archives of Biochemistry and Biophysics, 1949, 23(1): 8-11. |
| 10 | Houde M, Danyluk J, Laliberte J F, et al. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiology, 1992, 99(4): 1381-1387. |
| 11 | Yonca S, Bekir C, Betül B. Differential expression analysis of boron transporters and some stress-related genes in response to 24-epibrassinolide and boron by semi-quantitative RT-PCR in Arabidopsis thaliana (L.) Heynh. Genetika, 2016, 48(2): 547-563. |
| 12 | Vigeland M D, Manuel S, Torben A, et al. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. The New Phytologist, 2013, 199(4): 1060-1068. |
| 13 | Joaquín M, Marta F R, Andrés P, et al. Arabidopsis mutants deregulated in RCI2A expression reveal new signaling pathways in abiotic stress responses. The Plant Journal, 2005, 42(4): 586-597. |
| 14 | Li J H, Sun H Y, Zhao P J, et al. Cloning and sequence analysis of low-temperature inducible gene (MeLTI6A) of Manihot esculenta. Chinese Agricultural Science Bulletin, 2012, 28(27): 72-77. |
| 黎娟华, 孙海彦, 赵平娟, 等. 木薯低温诱导基因MeLTI6A的克隆与序列分析. 中国农学通报, 2012, 28(27): 72-77. | |
| 15 | Shi H, Chen Y, Qian Y, et al. Low temperature-induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: Effect on abscisic acid sensitivity and hydrogen peroxide accumulation. Frontiers in Plant Science, 2015, 6: 893. |
| 16 | Jia H, Zhang S, Ruan M, et al. Analysis and application of RD29 genes in abiotic stress response. Acta Physiologiae Plantarum, 2012, 34: 1239-1250. |
| 17 | Yang Y Z, Lei Z H, Peng F R. Research advances about low-temperature-induced proteins and the cold tolerance in plants. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 421-428. |
| 杨玉珍, 雷志华, 彭方仁. 低温诱导蛋白及其与植物的耐寒性研究进展. 西北植物学报, 2007, 27(2): 421-428. | |
| 18 | Jia H L, Shi Y H, Wang X M, et al. Cloning and expression analysis of MsLEA4 promoter from Medicago sativa. Acta Agrestia Sinica, 2019, 27(4): 789-796. |
| 贾会丽, 石永红, 王学敏, 等. 紫花苜蓿MsLEA4启动子的克隆及表达分析. 草地学报, 2019, 27(4): 789-796. | |
| 19 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
| 20 | Li T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis. Yangling: Northwest A & F University, 2017. |
| 李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究. 杨凌: 西北农林科技大学, 2017. | |
| 21 | Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
| 王少鹏, 刘佳, 洪军, 等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. | |
| 22 | Zhang L S, Sun Y G, Ji J Q, et al. Flavonol synthase gene MsFLS13 regulates saline-alkali stress tolerance in alfalfa. The Crop Journal, 2023, 11(4): 1218-1229. |
| 23 | Cen H F, Huang J Q, Shen W H, et al. Cloning of MsUGT87A1 gene in alfalfa and analysis of its expression in the response to abiotic stress. Acta Agrestia Sinica, 2023, 31(6): 1682-1692. |
| 岑慧芳, 黄洁琼, 申王晖, 等. 紫花苜蓿MsUGT87A1基因克隆及其对非生物胁迫的响应分析. 草地学报, 2023, 31(6): 1682-1692. | |
| 24 | Ma L, Wen H Y, Wang X M, et al. Cloning and function analysis of MsMAX2 gene in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2021, 54(19): 4061-4069. |
| 马琳, 温红雨, 王学敏, 等. 紫花苜蓿MsMAX2的克隆及功能研究. 中国农业科学, 2021, 54(19): 4061-4069. | |
| 25 | Sun X, Lei T, Yuan S, et al. Progress in research of dehydrins. Journal of Wuhan Botanical Research, 2005, 23(3): 299-304. |
| 孙歆, 雷韬, 袁澍, 等. 脱水素研究进展. 武汉植物学研究, 2005, 23(3): 299-304. | |
| 26 | Nordin K, Vahala T, Palva E T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1993, 21: 641-653. |
| 27 | Wang J, Li B, Liu C C, et al. Advances of the studies on structure and function of promoter. Bulletin of Biotechnology, 2014(8): 40-45. |
| 王婧, 李冰, 刘翠翠, 等. 启动子结构和功能研究进展. 生物技术通报, 2014(8): 40-45. | |
| 28 | Yang P F, Duan G Q, Hu X W, et al. Overview of higher plant promoters research. Molecular Plant Breeding, 2018, 16(5): 1482-1493. |
| 杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述. 分子植物育种, 2018, 16(5): 1482-1493. | |
| 29 | Zhao L, Wang P, Wu Q, et al. Research progress in histone modification of plant involved in the regulation of gene expression response to abiotic stress. Bulletin of Biotechnology, 2020, 36(7): 182-189. |
| 赵琳, 王璞, 吴琦, 等. 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展. 生物技术通报, 2020, 36(7): 182-189. | |
| 30 | Li J X, Zhou L Y, Yuan F, et al. Cloning and expression analysis of MsHB1 gene from Medicago sativa. Acta Agrestia Sinica, 2023, 31(12): 3617-3625. |
| 李家兴, 周丽莹, 苑峰, 等. 紫花苜蓿MsHB1基因的克隆及表达分析. 草地学报, 2023, 31(12): 3617-3625. | |
| 31 | Liu Y M, Zhou H Y, Wang K, et al. Research on response mechanism of plants to abiotic stress. Journal of Anhui Agricultural Sciences, 2018, 46(16): 35-37, 62. |
| 刘燕敏, 周海燕, 王康, 等. 植物对非生物胁迫的响应机制研究. 安徽农业科学, 2018, 46(16): 35-37, 62. | |
| 32 | Wang P L, Nie X, Ye Y L, et al. Forskolin improves salt tolerance of Gossypium hirsutum L. by upregulation of GhLTI65. Industrial Crops Products, 2023, 201: 116900. |
| 33 | Kim S H, Kim J Y, Kim S H, et al. Isolation of cold stress-responsive genes in the reproductive organs, and characterization of the OsLti6b gene from rice (Oryza sativa L.). Plant Cell Reports, 2007, 26(7): 1097-1110. |
| 34 | Yu C H, Zhu C Y, Duan S F, et al. Comparative transcriptome analysis of response to low temperature during flowering of Coptis teeta Wall. Molecular Plant Breeding, 2022, 20(14): 4642-4653. |
| 余成华, 朱春艳, 段绍凤, 等. 比较转录组分析云南黄连开花过程对低温的应答. 分子植物育种, 2022, 20(14): 4642-4653. | |
| 35 | Puhakainen T, Hess M W, Mäkelä P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology, 2004, 54(5): 743-753. |
| 36 | Zhang Y J, Sang H T, Wang H Q, et al. Research progress in signal transduction in systemic responses of plants to abiotic stress. Acta Botanica Sinica, 2024, 59(1): 122-133. |
| 张悦婧, 桑鹤天, 王涵琦, 等. 植物对非生物胁迫系统性反应中信号传递的研究进展. 植物学报, 2024, 59(1): 122-133. | |
| 37 | Shi W J, Wang X J, Liu H, et al. A novel ABA-insensitive mutant in Arabidopsis reveals molecular network of ABA-induced anthocyanin accumulation and abiotic stress tolerance. Journal of Plant Physiology, 2022, 278: 153810. |
| 38 | Shinozaki K Y, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular Genetics and Genomics, 1993, 236: 331-340. |
| 39 | Zhang L, Shi J N, Liu G Z. The concept of an advanced version of western blot (WB 2.0) and its perspectives. Progress in Biochemistry and Biophysics, 2019, 46(9): 917-924. |
| 张柳, 史佳楠, 刘国振. 蛋白质印迹技术升级版(WB 2.0)的概念与设想. 生物化学与生物物理进展, 2019, 46(9): 917-924. | |
| 40 | Shu X T, Ouyang N, Jiang C J, et al. Expression patterns of dehydrin-like proteins in tea plant (Camellia sinensis) by Western-blot analysis. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(12): 2448-2454. |
| 舒锡婷, 欧阳娜, 江昌俊, 等. 茶树叶片类脱水素蛋白的Western-blot分析. 西北植物学报, 2015, 35(12): 2448-2454. |
| [1] | Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| [2] | Tuo-xuan DONG, Xun-feng CHEN, Da-hai MEI, Yong-sha GUO, Xu-hong WEI, Qiu-yan SONG. Inhibition and control effect of nano-iron and copper on Ascochyta medicaginicola and spring black stem disease [J]. Acta Prataculturae Sinica, 2025, 34(4): 201-211. |
| [3] | Xin-yao WANG, Ya-ping PENG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Gene cloning and drought resistance identification of the gene HgS5 in Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2025, 34(2): 184-195. |
| [4] | Wen-qi CAI, Shu-xia LI, Xiao-tong WANG, Wen-xue SONG, Xu-xia MA, Xiao-mei MA, Xiao-hong LI, Xin-yao DAI. Effects of interaction between exogenous melatonin and ethylene on the growth and physiological characteristics of Medicago sativa seedlings under salt stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 80-93. |
| [5] | Hong-li CUI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Genome-wide analysis and expression of the OSCA family genes from Medicago truncatula in response to low temperature stresses [J]. Acta Prataculturae Sinica, 2024, 33(9): 111-125. |
| [6] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
| [7] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
| [8] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
| [9] | Abudilimu YUERENSA·, Wei ZHAO, Xiao-wei WANG, Yan HUANG, Ai-qin ZHNAG. Ovule development before and after fertilization and seed formation dynamics of Medicago sativa cv. Xinmu No.4 [J]. Acta Prataculturae Sinica, 2024, 33(12): 111-121. |
| [10] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
| [11] | Yu-xin WANG, Jia-li TAO, Hui-sen ZHU, Tao XU, Yi-fei ZHANG, Hui-fang CEN. Heterologous expression of miR397-5p from Medicago sativa cv. ‘Pianguan’ improves the drought tolerance of tobacco [J]. Acta Prataculturae Sinica, 2024, 33(11): 123-134. |
| [12] | Xin-yue ZHOU, Qing-xue JIANG, Hui-li JIA, Lin MA, Lu FAN, Xue-min WANG. Cloning and salt-tolerance functional analysis of alfalfa MsBBX20 gene [J]. Acta Prataculturae Sinica, 2024, 33(10): 55-73. |
| [13] | Xu-qin BAI, Chun-yun JIA, Wen-shuan LI, Ya-min LI, Chang-feng LIU, Xiu-yun HAN, Mei-han CHU, Zong-qiang GONG, Xiao-jun LI. An investigation of foliar spraying of selenium fertilizer for selenium enrichment and cadmium reduction in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(1): 50-60. |
| [14] | Shang-qin HU, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Xiao-le MA, Ke YANG, Hong ZHANG, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Cloning and preliminary functional analysis of the root gene HgAKR6C of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2024, 33(1): 61-74. |
| [15] | Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||