Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (3): 204-223.DOI: 10.11686/cyxb2024105
Cai-jin CHEN1,2,3(), Ming-fang BAO2, Wen-hu WANG1, Ji-hong SHANG2, Yan-xia ZENG2, Xiao-di SHA2, Xin-zhong ZHU2, Xue-min WANG3(
), Wen-hui LIU1(
)
Received:
2024-04-02
Revised:
2024-07-09
Online:
2025-03-20
Published:
2025-01-02
Contact:
Xue-min WANG,Wen-hui LIU
Cai-jin CHEN, Ming-fang BAO, Wen-hu WANG, Ji-hong SHANG, Yan-xia ZENG, Xiao-di SHA, Xin-zhong ZHU, Xue-min WANG, Wen-hui LIU. Current situation and prospects for drought-resistance breeding in Medicago sativa[J]. Acta Prataculturae Sinica, 2025, 34(3): 204-223.
基因 Genes | 基因来源 Gene origins | 转基因物种 Genetically modified species | 功能Functions | 参考文献References |
---|---|---|---|---|
MsMYB58 | 紫花苜蓿M. sativa | 烟草N. tabacum | POD、CAT、SOD活性,Pro含量、叶绿素荧光参数PSⅡ利用效率和PSⅡ最大光化学量子产量增加,MDA含量、非光化学猝灭降低。POD, CAT, and SOD activities, Pro content, chlorophyll fluorescence parameters PSⅡ utilisation efficiency and PSⅡ maximum photochemical quantum yield increased, and MDA content and non-photochemical burst decreased. | [ |
MsPPR1 | 紫花苜蓿M. sativa | 烟草N. tabacum | Pro含量升高,MDA含量降低。The MDA content decreased while the Pro content increased. | [ |
MsASG166 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 促进根长生长。Promoted root growth. | [ |
MsSAP22 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 萌发期的发芽率、苗期的相对根长及侧根数增加。Germination rate in the sprouting period, relative root length and number of lateral roots increased in the seedling stage. | [ |
MsLEA10 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 促进根长生长, SS和Pro含量升高,MDA含量和离子泄露水平降低。Promoted root length growth, SS and Pro content were increased, and MDA content and ion leakage levels were decreased. | [ |
MsERF003 | 紫花苜蓿M. sativa | 烟草N. tabacum | 保水性和Pro含量升高。Water retention and Pro content were increased. | [ |
MsTHI1 | 紫花苜蓿M. sativa | 烟草N. tabacum | 维生素B1、叶绿素a、叶绿素b、SP含量和POD活性升高,膜脂过氧化程度降低。Vitamin B1, chlorophyll a, chlorophyll b, SP content and POD activity were increased, and membrane lipid peroxidation was decreased. | [ |
MsHSP70 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | Pro含量、SOD活性和RWC升高,MDA含量降低。Pro content, SOD activity and RWC were increased, and MDA content was decreased. | [ |
MsSPL9 | 紫花苜蓿M. sativa | 紫花苜蓿M. sativa | RWC和花青素含量升高,叶片衰老程度降低。RWC, anthocyanin content were increased, and leaf senescence were reduced. | [ |
MsVDACl | 紫花苜蓿M. sativa | 烟草N. tabacum | MDA、谷胱甘肽、SS、SP和Pro含量升高。MDA, glutathione, SS, SP and Pro content were increased. | [ |
MsLEA4-4 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 侧根增多,SS含量、各种抗氧化酶活性和存活率升高,Pro和MDA含量降低。The number of lateral roots, SS content, activities of various antioxidant enzymes, and survival rate were increased, and Pro and MDA content were decreased. | [ |
MsCML46 | 紫花苜蓿M. sativa | 烟草N. tabacum | 渗透调节物质含量和抗氧化酶活性升高, ROS的积累量降低。The osmotic regulator content and antioxidant enzyme activities were increased, and the accumulation of ROS was reduced. | [ |
Table 1 Drought resistance genes and their functions in M. sativa
基因 Genes | 基因来源 Gene origins | 转基因物种 Genetically modified species | 功能Functions | 参考文献References |
---|---|---|---|---|
MsMYB58 | 紫花苜蓿M. sativa | 烟草N. tabacum | POD、CAT、SOD活性,Pro含量、叶绿素荧光参数PSⅡ利用效率和PSⅡ最大光化学量子产量增加,MDA含量、非光化学猝灭降低。POD, CAT, and SOD activities, Pro content, chlorophyll fluorescence parameters PSⅡ utilisation efficiency and PSⅡ maximum photochemical quantum yield increased, and MDA content and non-photochemical burst decreased. | [ |
MsPPR1 | 紫花苜蓿M. sativa | 烟草N. tabacum | Pro含量升高,MDA含量降低。The MDA content decreased while the Pro content increased. | [ |
MsASG166 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 促进根长生长。Promoted root growth. | [ |
MsSAP22 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 萌发期的发芽率、苗期的相对根长及侧根数增加。Germination rate in the sprouting period, relative root length and number of lateral roots increased in the seedling stage. | [ |
MsLEA10 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 促进根长生长, SS和Pro含量升高,MDA含量和离子泄露水平降低。Promoted root length growth, SS and Pro content were increased, and MDA content and ion leakage levels were decreased. | [ |
MsERF003 | 紫花苜蓿M. sativa | 烟草N. tabacum | 保水性和Pro含量升高。Water retention and Pro content were increased. | [ |
MsTHI1 | 紫花苜蓿M. sativa | 烟草N. tabacum | 维生素B1、叶绿素a、叶绿素b、SP含量和POD活性升高,膜脂过氧化程度降低。Vitamin B1, chlorophyll a, chlorophyll b, SP content and POD activity were increased, and membrane lipid peroxidation was decreased. | [ |
MsHSP70 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | Pro含量、SOD活性和RWC升高,MDA含量降低。Pro content, SOD activity and RWC were increased, and MDA content was decreased. | [ |
MsSPL9 | 紫花苜蓿M. sativa | 紫花苜蓿M. sativa | RWC和花青素含量升高,叶片衰老程度降低。RWC, anthocyanin content were increased, and leaf senescence were reduced. | [ |
MsVDACl | 紫花苜蓿M. sativa | 烟草N. tabacum | MDA、谷胱甘肽、SS、SP和Pro含量升高。MDA, glutathione, SS, SP and Pro content were increased. | [ |
MsLEA4-4 | 紫花苜蓿M. sativa | 拟南芥A. thaliana | 侧根增多,SS含量、各种抗氧化酶活性和存活率升高,Pro和MDA含量降低。The number of lateral roots, SS content, activities of various antioxidant enzymes, and survival rate were increased, and Pro and MDA content were decreased. | [ |
MsCML46 | 紫花苜蓿M. sativa | 烟草N. tabacum | 渗透调节物质含量和抗氧化酶活性升高, ROS的积累量降低。The osmotic regulator content and antioxidant enzyme activities were increased, and the accumulation of ROS was reduced. | [ |
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 选育单位 Breeding institutes | 文献 References |
---|---|---|---|
中兰1号M. sativa cv. Zhonglan No.1 | 抗旱性中等;适宜种植在黄土高原降水量为350 mm半干旱半湿润的旱作或灌溉地区。Medium drought resistance. It is suitable for planting in dry or irrigated areas of the Loess Plateau where the precipitation is 350 mm semi-arid and semi-humid. | 中国农业科学院兰州畜牧与兽药研究所Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences | [ |
中兰2号M. sativa cv. Zhonglan No.2 | 抗旱性强;适宜种植在黄土高原半干旱半湿润的旱作地区。Strong drought resistance. It is suitable for planting in semi-arid and semi-humid dry farming areas on the Loess Plateau. | 中国农业科学院兰州畜牧与兽药研究所Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences;甘肃农业大学Gansu Agricultural University | [ |
敖汉苜蓿M. sativa cv. Aohan | 抗旱性强;适宜栽培于年降水量为260~460 mm的我国东北、华北和西北各省区。Strong drought resistance; Suitable for cultivation in the annual precipitation of 260-460 mm in China’s northeastern, northern and northwestern provinces and regions. | 内蒙古农牧学院Inner Mongolia College of Agriculture and Animal Husbandry;内蒙古赤峰市草原站Chifeng Grassland Station of Inner Mongolia;内蒙古赤峰市敖汉旗草原站Aohanqi Grassland Station of Chifeng City of Inner Mongolia | [ |
图牧2号M. sativa cv. Tumu No.2 | 抗旱性强;适宜在内蒙古东部地区和吉林、黑龙江省种植。Strong drought resistance; It is suitable for cultivation in the eastern part of Inner Mongolia and Jilin and Heilongjiang Provinces. | 内蒙古图牧吉草地研究所Inner Mongolia Tumuji Grassland Research Institute | [ |
新牧2号M. sativa cv. Xinmu No.2 | 具有抗旱特性; 适宜焉营盆地各农区、南疆塔里木盆地、宁夏引黄灌区、甘肃省河西走廊等地种植。It has drought resistance characteristics. It is suitable for planting in the agricultural areas of Yanying Basin, Tarim Basin in southern Xinjiang, Yellow River Diversion irrigation area of Ningxia, Hexi Corridor of Gansu Province, etc. | 新疆农业大学畜牧分院Animal Husbandry Branch, Xinjiang Agricultural University | [ |
中苜1号M. sativa cv. Zhongmu No.1 | 耐旱性好;适宜黄淮海平原及渤海湾一带的盐碱地,也可种植于其他类似的内陆盐碱地。Good drought tolerance. It is suitable for saline soils along the Huanghuaihai Plain and Bohai Bay, and can also be grown in other similar inland saline soils. | 中国农业科学院畜牧兽医研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
甘农3号M. sativa cv. Gannong No.3 | 抗旱性中等,适宜黄土高原地区和西北内陆灌溉农业区。Medium drought resistance. Suitable for the Loess Plateau region and the inland irrigated agricultural areas of Northwest China. | 甘肃农业大学Gansu Agricultural University;甘肃创绿草业科技有限公司Gansu Chuanglv Grass Science & Technology Co. | [ |
龙牧806 M. sativa×M. ruthenica cv. Longmu 806 | 抗旱性强;适宜种植在东北寒冷气候区、西部半干旱地区及盐碱地,也可以种植在我国西北、华北及内蒙古等地。Strong drought resistance; It is suitable for planting in the cold climate zone in the northeast, semi-arid areas in the west, and saline and alkaline land, and can also be planted in the northwest, North China and Inner Mongolia of China. | 黑龙江省农业科学院畜牧研究所Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences | [ |
公农3号M. sativa cv. Gongnong No.3 | 耐旱;适宜东北、西北、华北北纬46°以南、年降水量为350~550 mm的区域。Drought-resistant. It is suitable for areas south of 46° N latitude in Northeast and Northwest China with annual precipitation of 350-550 mm. | 吉林省农业科学院畜牧分院草地研究所Grassland Research Institute, Animal Husbandry Branch, Jilin Academy of Agricultural Sciences | [ |
中苜4号M. sativa cv. Zhongmu No.4 | 抗旱性中等;适宜种植于黄淮海地区及其类似区域。Medium drought resistance. Suitable for planting in the Huanghuaihai area and its similar regions. | 中国农业科学院北京畜牧兽医研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
甘农7号M. sativa cv. Gannong No.7 | 抗旱性较好;适宜种植于黄土高原半干旱、半湿润地区和北方类似地区。Good drought tolerance. It is suitable for planting in semi-arid and semi-humid areas of the Loess Plateau and similar areas in the north. | 甘肃创绿草业科技有限公司Gansu Chuanglv Grass Science & Technology Co.;甘肃农业大学草业学院College of Pratacultural Science, Gansu Agricultural University | [ |
Table 2 Bred M. sativa varieties with drought-resistant characteristics in China
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 选育单位 Breeding institutes | 文献 References |
---|---|---|---|
中兰1号M. sativa cv. Zhonglan No.1 | 抗旱性中等;适宜种植在黄土高原降水量为350 mm半干旱半湿润的旱作或灌溉地区。Medium drought resistance. It is suitable for planting in dry or irrigated areas of the Loess Plateau where the precipitation is 350 mm semi-arid and semi-humid. | 中国农业科学院兰州畜牧与兽药研究所Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences | [ |
中兰2号M. sativa cv. Zhonglan No.2 | 抗旱性强;适宜种植在黄土高原半干旱半湿润的旱作地区。Strong drought resistance. It is suitable for planting in semi-arid and semi-humid dry farming areas on the Loess Plateau. | 中国农业科学院兰州畜牧与兽药研究所Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences;甘肃农业大学Gansu Agricultural University | [ |
敖汉苜蓿M. sativa cv. Aohan | 抗旱性强;适宜栽培于年降水量为260~460 mm的我国东北、华北和西北各省区。Strong drought resistance; Suitable for cultivation in the annual precipitation of 260-460 mm in China’s northeastern, northern and northwestern provinces and regions. | 内蒙古农牧学院Inner Mongolia College of Agriculture and Animal Husbandry;内蒙古赤峰市草原站Chifeng Grassland Station of Inner Mongolia;内蒙古赤峰市敖汉旗草原站Aohanqi Grassland Station of Chifeng City of Inner Mongolia | [ |
图牧2号M. sativa cv. Tumu No.2 | 抗旱性强;适宜在内蒙古东部地区和吉林、黑龙江省种植。Strong drought resistance; It is suitable for cultivation in the eastern part of Inner Mongolia and Jilin and Heilongjiang Provinces. | 内蒙古图牧吉草地研究所Inner Mongolia Tumuji Grassland Research Institute | [ |
新牧2号M. sativa cv. Xinmu No.2 | 具有抗旱特性; 适宜焉营盆地各农区、南疆塔里木盆地、宁夏引黄灌区、甘肃省河西走廊等地种植。It has drought resistance characteristics. It is suitable for planting in the agricultural areas of Yanying Basin, Tarim Basin in southern Xinjiang, Yellow River Diversion irrigation area of Ningxia, Hexi Corridor of Gansu Province, etc. | 新疆农业大学畜牧分院Animal Husbandry Branch, Xinjiang Agricultural University | [ |
中苜1号M. sativa cv. Zhongmu No.1 | 耐旱性好;适宜黄淮海平原及渤海湾一带的盐碱地,也可种植于其他类似的内陆盐碱地。Good drought tolerance. It is suitable for saline soils along the Huanghuaihai Plain and Bohai Bay, and can also be grown in other similar inland saline soils. | 中国农业科学院畜牧兽医研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
甘农3号M. sativa cv. Gannong No.3 | 抗旱性中等,适宜黄土高原地区和西北内陆灌溉农业区。Medium drought resistance. Suitable for the Loess Plateau region and the inland irrigated agricultural areas of Northwest China. | 甘肃农业大学Gansu Agricultural University;甘肃创绿草业科技有限公司Gansu Chuanglv Grass Science & Technology Co. | [ |
龙牧806 M. sativa×M. ruthenica cv. Longmu 806 | 抗旱性强;适宜种植在东北寒冷气候区、西部半干旱地区及盐碱地,也可以种植在我国西北、华北及内蒙古等地。Strong drought resistance; It is suitable for planting in the cold climate zone in the northeast, semi-arid areas in the west, and saline and alkaline land, and can also be planted in the northwest, North China and Inner Mongolia of China. | 黑龙江省农业科学院畜牧研究所Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences | [ |
公农3号M. sativa cv. Gongnong No.3 | 耐旱;适宜东北、西北、华北北纬46°以南、年降水量为350~550 mm的区域。Drought-resistant. It is suitable for areas south of 46° N latitude in Northeast and Northwest China with annual precipitation of 350-550 mm. | 吉林省农业科学院畜牧分院草地研究所Grassland Research Institute, Animal Husbandry Branch, Jilin Academy of Agricultural Sciences | [ |
中苜4号M. sativa cv. Zhongmu No.4 | 抗旱性中等;适宜种植于黄淮海地区及其类似区域。Medium drought resistance. Suitable for planting in the Huanghuaihai area and its similar regions. | 中国农业科学院北京畜牧兽医研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
甘农7号M. sativa cv. Gannong No.7 | 抗旱性较好;适宜种植于黄土高原半干旱、半湿润地区和北方类似地区。Good drought tolerance. It is suitable for planting in semi-arid and semi-humid areas of the Loess Plateau and similar areas in the north. | 甘肃创绿草业科技有限公司Gansu Chuanglv Grass Science & Technology Co.;甘肃农业大学草业学院College of Pratacultural Science, Gansu Agricultural University | [ |
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 来源国家Country of origin | 文献References |
---|---|---|---|
美国苜蓿王M. sativa cv. Alfaking | 抗旱性强;适宜种植在我国黄土高原半干旱半湿润雨养区和西部干旱灌区。Strong drought resistance. It is suitable for planting in semi-arid and semi-humid rain-fed areas and arid irrigated areas in western China. | 美国 America | [ |
牧歌401+Z M. sativa cv. AmeriGraze 401+Z | 抗旱性强;适宜种植在华北大部分地区,以及东北、西北及华中地区。Strong drought resistance. It is suitable for planting in most parts of north China, as well as northeast, northwest and central China. | 美国 America | [ |
金黄后M. sativa cv. Golden Empress | 抗旱性较好;适宜我国北方有灌溉条件的干旱、半干旱地区。Good drought tolerance. It is suitable for arid and semi-arid areas with irrigation conditions in northern China. | 美国 America | [ |
皇冠M. sativa cv. Phabulous | 抗旱性较好;适宜华北、西北、东北地区南部,华中及苏北等区域。Good drought tolerance. It is suitable for north China, northwest China, south northeast China, central China and north Jiangsu Province and other regions. | 加拿大 Canada | [ |
维克多M. sativa cv. Vector | 抗旱性较好;适宜我国华北和华中地区。Good drought tolerance. It is suitable for north and central China. | 加拿大 Canada | [ |
WL232HQ M. sativa cv. WL232HQ | 抗旱性强;适宜我国北方干旱半干旱地区种植。Strong drought resistance. It is suitable for cultivation in arid and semi-arid areas in the north of China. | 美国 America | [ |
Table 3 Introduced M. sativa varieties with drought resistance characteristics in China
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 来源国家Country of origin | 文献References |
---|---|---|---|
美国苜蓿王M. sativa cv. Alfaking | 抗旱性强;适宜种植在我国黄土高原半干旱半湿润雨养区和西部干旱灌区。Strong drought resistance. It is suitable for planting in semi-arid and semi-humid rain-fed areas and arid irrigated areas in western China. | 美国 America | [ |
牧歌401+Z M. sativa cv. AmeriGraze 401+Z | 抗旱性强;适宜种植在华北大部分地区,以及东北、西北及华中地区。Strong drought resistance. It is suitable for planting in most parts of north China, as well as northeast, northwest and central China. | 美国 America | [ |
金黄后M. sativa cv. Golden Empress | 抗旱性较好;适宜我国北方有灌溉条件的干旱、半干旱地区。Good drought tolerance. It is suitable for arid and semi-arid areas with irrigation conditions in northern China. | 美国 America | [ |
皇冠M. sativa cv. Phabulous | 抗旱性较好;适宜华北、西北、东北地区南部,华中及苏北等区域。Good drought tolerance. It is suitable for north China, northwest China, south northeast China, central China and north Jiangsu Province and other regions. | 加拿大 Canada | [ |
维克多M. sativa cv. Vector | 抗旱性较好;适宜我国华北和华中地区。Good drought tolerance. It is suitable for north and central China. | 加拿大 Canada | [ |
WL232HQ M. sativa cv. WL232HQ | 抗旱性强;适宜我国北方干旱半干旱地区种植。Strong drought resistance. It is suitable for cultivation in arid and semi-arid areas in the north of China. | 美国 America | [ |
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 选育单位 Breeding institutes | 文献 References |
---|---|---|---|
北疆苜蓿 M. sativa cv. Beijiang | 抗旱性强;适宜我国北方各省、区种植。Strong drought resistance. Suitable for planting in northern provinces and districts of China. | 新疆农业大学畜牧分院Animal Husbandry Branch, Xinjiang Agricultural University | [ |
关中苜蓿 M. sativa cv. Guanzhong | 抗旱性中等;适宜渭水流域、渭北旱塬及与山西晋南、关中类似气候区种植。Medium drought resistance. It is suitable for planting in Weihe River basin, Weibei dry tableland and similar climatic areas with Shanxi, Jinnan and Guanzhong. | 西北农业大学Northwest Agricultural University | [ |
河西苜蓿 M. sativa cv. Hexi | 耐旱性强;适宜黄土高原地区及西北各省荒漠、半荒漠、干旱有灌溉条件的区域。Strong drought resistance. It is suitable for irrigation in desert, semi-desert and arid areas of Loess Plateau and northwest provinces. | 甘肃农业大学Gansu Agricultural University;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃省饲草饲料技术推广总站 Gansu Forage Feed Technology Extension Station | [ |
晋南苜蓿 M. sativa cv. Jinnan | 抗旱性中等;适宜在年平均气温在9~14 ℃,年降水量在300~550 mm的地区种植。Medium drought resistance. It is suitable for planting in areas where the annual average temperature is 9-14 ℃, and the annual precipitation is 300-550 mm. | 山西省农业科学院畜牧兽医研究所Institute of Animal Husbandry and Veterinary Medicine, Shanxi Academy of Agricultural Sciences;山西省运城地区农牧局牧草站Bureau Forage Station of Shanxi Yuncheng District Agriculture and Animal Husbandry | [ |
陇东苜蓿 M. sativa cv. Longdong | 耐旱性强;最适宜黄土高原地区栽培。Strong drought resistance. It is most suitable for cultivation in Loess Plateau area. | 甘肃草原生态研究所Gansu Grassland Ecology Research Institute;甘肃农业大学Gansu Agricultural University;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃省饲草饲料技术推广总站Gansu Forage Feed Technology Extension Station | [ |
陇中苜蓿 M. sativa cv. Longzhong | 抗旱性强;最适宜黄土高原地区种植,也可在长城沿线干旱风沙地区栽培。Strong drought resistance. It is most suitable for planting in Loess Plateau area, and can also be cultivated in arid and sandy areas along the Great Wall. | 甘肃省饲草饲料技术推广总站Gansu Forage Feed Technology Extension Station;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃农业大学Gansu Agricultural University | [ |
内蒙准格尔苜蓿M. sativa cv. Neimeng Zhungeer | 抗旱性强;适应在内蒙古中、西部以及相邻的陕北、宁夏部分地区。Strong drought resistance. It is suitable for planting in central and western Inner Mongolia as well as parts of neighboring northern Shaanxi and Ningxia. | 内蒙古农牧学院Inner Mongolia College of Agriculture and Animal Husbandry;内蒙古草原工作站Grassland Workstation of Inner Mongolia | [ |
陕北苜蓿 M. sativa cv. Shanbei | 抗旱性较强;适宜在黄土高原北部、长城沿线风沙地区。More drought resistant. It is suitable for cultivation in the northern part of Loess Plateau and the wind-blown sand area along the Great Wall. | 西北农业大学Northwest Agricultural University | [ |
无棣苜蓿 M. sativa cv. Wudi | 抗旱性强;适宜鲁西北渤海湾一带以及类似地区。Strong drought resistance. It is suitable for Bohai Bay area in northwest Shandong Province and similar areas. | 中国农业科学院畜牧研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences;山东省无棣县畜牧局Wudi County Animal Husbandry Bureau, Shandong Province | [ |
蔚县苜蓿 M. sativa cv. Yuxian | 抗旱性强;适宜种植于河北省北部、西部,山西省北部和内蒙古自治区中西部地区。Strong drought resistance. It is suitable for planting in northern and western Hebei Province, northern Shanxi Province and central and western Inner Mongolia Autonomous Region. | 河北省张家口市草原畜牧研究所Hebei Zhangjiakou Grassland Animal Husbandry Institute;河北省蔚县畜牧局Yu County Animal of Husbandry Bureau of Hebei Province;河北省阳原县畜牧局Animal Husbandry Bureau of Yangyuan County of Hebei Province | [ |
肇东苜蓿 M. sativa cv. Zhaodong | 抗旱性强;适宜在北方寒冷湿润及半干旱地区种植。Strong drought resistance. It is suitable for planting in cold, humid and semi-arid areas in the north. | 黑龙江省农业科学院畜牧研究所Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences | [ |
保定苜蓿 M. sativa cv. Baoding | 耐旱性较好;适宜北京、天津、河北、山东、山西、甘肃、宁夏、青海东部、辽宁、吉林中南部等地区。More drought resistant. Suitable for Beijing, Tianjin, Hebei, Shandong, Shanxi, Gansu, Ningxia, eastern Qinghai, Liaoning, South-central Jilin and other regions. | 中国农业科学院畜牧研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
Table 4 Local varieties of M. sativa with drought-resistant characteristics approved in China
品种 Varieties | 抗旱性及适宜种植区域 Drought resistance and suitable cultivation areas | 选育单位 Breeding institutes | 文献 References |
---|---|---|---|
北疆苜蓿 M. sativa cv. Beijiang | 抗旱性强;适宜我国北方各省、区种植。Strong drought resistance. Suitable for planting in northern provinces and districts of China. | 新疆农业大学畜牧分院Animal Husbandry Branch, Xinjiang Agricultural University | [ |
关中苜蓿 M. sativa cv. Guanzhong | 抗旱性中等;适宜渭水流域、渭北旱塬及与山西晋南、关中类似气候区种植。Medium drought resistance. It is suitable for planting in Weihe River basin, Weibei dry tableland and similar climatic areas with Shanxi, Jinnan and Guanzhong. | 西北农业大学Northwest Agricultural University | [ |
河西苜蓿 M. sativa cv. Hexi | 耐旱性强;适宜黄土高原地区及西北各省荒漠、半荒漠、干旱有灌溉条件的区域。Strong drought resistance. It is suitable for irrigation in desert, semi-desert and arid areas of Loess Plateau and northwest provinces. | 甘肃农业大学Gansu Agricultural University;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃省饲草饲料技术推广总站 Gansu Forage Feed Technology Extension Station | [ |
晋南苜蓿 M. sativa cv. Jinnan | 抗旱性中等;适宜在年平均气温在9~14 ℃,年降水量在300~550 mm的地区种植。Medium drought resistance. It is suitable for planting in areas where the annual average temperature is 9-14 ℃, and the annual precipitation is 300-550 mm. | 山西省农业科学院畜牧兽医研究所Institute of Animal Husbandry and Veterinary Medicine, Shanxi Academy of Agricultural Sciences;山西省运城地区农牧局牧草站Bureau Forage Station of Shanxi Yuncheng District Agriculture and Animal Husbandry | [ |
陇东苜蓿 M. sativa cv. Longdong | 耐旱性强;最适宜黄土高原地区栽培。Strong drought resistance. It is most suitable for cultivation in Loess Plateau area. | 甘肃草原生态研究所Gansu Grassland Ecology Research Institute;甘肃农业大学Gansu Agricultural University;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃省饲草饲料技术推广总站Gansu Forage Feed Technology Extension Station | [ |
陇中苜蓿 M. sativa cv. Longzhong | 抗旱性强;最适宜黄土高原地区种植,也可在长城沿线干旱风沙地区栽培。Strong drought resistance. It is most suitable for planting in Loess Plateau area, and can also be cultivated in arid and sandy areas along the Great Wall. | 甘肃省饲草饲料技术推广总站Gansu Forage Feed Technology Extension Station;甘肃省畜牧厅Gansu Provincial Animal Husbandry Department;甘肃农业大学Gansu Agricultural University | [ |
内蒙准格尔苜蓿M. sativa cv. Neimeng Zhungeer | 抗旱性强;适应在内蒙古中、西部以及相邻的陕北、宁夏部分地区。Strong drought resistance. It is suitable for planting in central and western Inner Mongolia as well as parts of neighboring northern Shaanxi and Ningxia. | 内蒙古农牧学院Inner Mongolia College of Agriculture and Animal Husbandry;内蒙古草原工作站Grassland Workstation of Inner Mongolia | [ |
陕北苜蓿 M. sativa cv. Shanbei | 抗旱性较强;适宜在黄土高原北部、长城沿线风沙地区。More drought resistant. It is suitable for cultivation in the northern part of Loess Plateau and the wind-blown sand area along the Great Wall. | 西北农业大学Northwest Agricultural University | [ |
无棣苜蓿 M. sativa cv. Wudi | 抗旱性强;适宜鲁西北渤海湾一带以及类似地区。Strong drought resistance. It is suitable for Bohai Bay area in northwest Shandong Province and similar areas. | 中国农业科学院畜牧研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences;山东省无棣县畜牧局Wudi County Animal Husbandry Bureau, Shandong Province | [ |
蔚县苜蓿 M. sativa cv. Yuxian | 抗旱性强;适宜种植于河北省北部、西部,山西省北部和内蒙古自治区中西部地区。Strong drought resistance. It is suitable for planting in northern and western Hebei Province, northern Shanxi Province and central and western Inner Mongolia Autonomous Region. | 河北省张家口市草原畜牧研究所Hebei Zhangjiakou Grassland Animal Husbandry Institute;河北省蔚县畜牧局Yu County Animal of Husbandry Bureau of Hebei Province;河北省阳原县畜牧局Animal Husbandry Bureau of Yangyuan County of Hebei Province | [ |
肇东苜蓿 M. sativa cv. Zhaodong | 抗旱性强;适宜在北方寒冷湿润及半干旱地区种植。Strong drought resistance. It is suitable for planting in cold, humid and semi-arid areas in the north. | 黑龙江省农业科学院畜牧研究所Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences | [ |
保定苜蓿 M. sativa cv. Baoding | 耐旱性较好;适宜北京、天津、河北、山东、山西、甘肃、宁夏、青海东部、辽宁、吉林中南部等地区。More drought resistant. Suitable for Beijing, Tianjin, Hebei, Shandong, Shanxi, Gansu, Ningxia, eastern Qinghai, Liaoning, South-central Jilin and other regions. | 中国农业科学院畜牧研究所Institute of Animal Science, Chinese Academy of Agricultural Sciences | [ |
外源基因 Exogenous genes | 外源物种 Exogenous species | 转基因物种 Genetically modified species | 功能 Functions | 参考文献References |
---|---|---|---|---|
CsALDH、BAR | 无芒隐子草Cleistogenes songorica | 紫花苜蓿M. sativa | RWC和地上生物量升高,膜伤害和渗透胁迫水平降低。RWC and aboveground biomass were elevated, and levels of membrane injury and osmotic stress were reduced. | [ |
AtEDT1 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | 存活率、生物量、气孔大小、根系大小、根长、根重、根直径,叶绿素、SS、Pro含量和SOD活性升高,失水率、气孔密度、质膜透性和MDA含量降低。Survival rate, biomass, stomatal size, root size, root length, root weight, root diameter, chlorophyll content, SS content, Pro content and SOD activity were elevated, while water loss rate, stomatal density, plasma membrane permeability and MDA content were reduced. | [ |
AtABF3 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | 叶片枯萎速度、蒸腾速率和ROS含量降低。Leaf wilting rate, transpiration rate and ROS content were reduced. | [ |
AtNDPK2 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | RWC、Pro含量升高,叶片枯萎速度、失水率和MDA含量降低。RWC, Pro content were increased, leaf wilting rate, water loss rate and MDA content were decreased. | [ |
MtWXP1 | 蒺藜苜蓿M. truncatula | 紫花苜蓿M. sativa | 净光合速率、蒸腾速率、气孔导度、光系统II的效率、光系统II的量子效率、光化学猝灭系数、表观电子传递速率、RWC和叶水势升高。Net photosynthetic rate, transpiration rate and stomatal conductance, photosystem II efficiency, quantum efficiency of photosystem II, photochemical burst coefficient, apparent electron transfer rate, RWC and leaf water potential were increased. | [ |
AgcodA | 球形接杆菌Arthrobacter globiformis | 紫花苜蓿M. sativa | RWC,甜菜碱和Pro含量升高。RWC, betaine and Pro content were increased. | [ |
GsWRKY20 | 野大豆Glycine soja | 紫花苜蓿M. sativa | Pro和SS含量升高,膜透性和MDA含量降低。Pro and SS content were increased, and membrane permeability and MDA content were decreased. | [ |
ZxABCG11 | 霸王Zygophyllum xanthoxylum | 紫花苜蓿M. sativa | 株高、地上生物量、角质层蜡质、保水能力和光合能力升高,角质层的透性降低。Plant height, aboveground biomass, cuticle wax, water retention capacity and photosynthetic capacity were increased, while cuticle permeability were decreased. | [ |
CsP5CDH1 | 无芒隐子草C. songorica | 紫花苜蓿M. sativa | Pro含量升高,叶片失水率降低。Pro content were elevated, while leaf water loss rate were reduced. | [ |
Table 5 Exogenous genes transferred to M. sativa and functions
外源基因 Exogenous genes | 外源物种 Exogenous species | 转基因物种 Genetically modified species | 功能 Functions | 参考文献References |
---|---|---|---|---|
CsALDH、BAR | 无芒隐子草Cleistogenes songorica | 紫花苜蓿M. sativa | RWC和地上生物量升高,膜伤害和渗透胁迫水平降低。RWC and aboveground biomass were elevated, and levels of membrane injury and osmotic stress were reduced. | [ |
AtEDT1 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | 存活率、生物量、气孔大小、根系大小、根长、根重、根直径,叶绿素、SS、Pro含量和SOD活性升高,失水率、气孔密度、质膜透性和MDA含量降低。Survival rate, biomass, stomatal size, root size, root length, root weight, root diameter, chlorophyll content, SS content, Pro content and SOD activity were elevated, while water loss rate, stomatal density, plasma membrane permeability and MDA content were reduced. | [ |
AtABF3 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | 叶片枯萎速度、蒸腾速率和ROS含量降低。Leaf wilting rate, transpiration rate and ROS content were reduced. | [ |
AtNDPK2 | 拟南芥A. thaliana | 紫花苜蓿M. sativa | RWC、Pro含量升高,叶片枯萎速度、失水率和MDA含量降低。RWC, Pro content were increased, leaf wilting rate, water loss rate and MDA content were decreased. | [ |
MtWXP1 | 蒺藜苜蓿M. truncatula | 紫花苜蓿M. sativa | 净光合速率、蒸腾速率、气孔导度、光系统II的效率、光系统II的量子效率、光化学猝灭系数、表观电子传递速率、RWC和叶水势升高。Net photosynthetic rate, transpiration rate and stomatal conductance, photosystem II efficiency, quantum efficiency of photosystem II, photochemical burst coefficient, apparent electron transfer rate, RWC and leaf water potential were increased. | [ |
AgcodA | 球形接杆菌Arthrobacter globiformis | 紫花苜蓿M. sativa | RWC,甜菜碱和Pro含量升高。RWC, betaine and Pro content were increased. | [ |
GsWRKY20 | 野大豆Glycine soja | 紫花苜蓿M. sativa | Pro和SS含量升高,膜透性和MDA含量降低。Pro and SS content were increased, and membrane permeability and MDA content were decreased. | [ |
ZxABCG11 | 霸王Zygophyllum xanthoxylum | 紫花苜蓿M. sativa | 株高、地上生物量、角质层蜡质、保水能力和光合能力升高,角质层的透性降低。Plant height, aboveground biomass, cuticle wax, water retention capacity and photosynthetic capacity were increased, while cuticle permeability were decreased. | [ |
CsP5CDH1 | 无芒隐子草C. songorica | 紫花苜蓿M. sativa | Pro含量升高,叶片失水率降低。Pro content were elevated, while leaf water loss rate were reduced. | [ |
1 | Liu J D, Deng H S, Jin J, et al.Evaluation on the production performance and nutritional value of 11 alfalfa cultivars in dry-hot valley. China Herbivore Science, 2023, 43(6): 23-28. |
刘进娣, 邓红山, 金杰, 等. 11个紫花苜蓿品种在干热河谷区的生产性能及营养价值评定. 中国草食动物科学, 2023, 43(6): 23-28. | |
2 | Wang M, Li L, Jia R, et al. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
王敏, 李莉, 贾蓉, 等. 10种紫花苜蓿在低温胁迫下的生理特性及耐寒性评价. 草业学报, 2024, 33(6): 76-88. | |
3 | Wu L L, Xie Y L, Yang J, et al. Biological activity of Bacillus WL520 and its growth-promoting effect on alfalfa under drought stress. Acta Agrestia Sinica, 2024, 32(1): 322-330. |
武玲玲, 谢永丽, 杨杰, 等. 萎缩芽孢杆菌WL520生物活性及干旱胁迫下促紫花苜蓿生长效应. 草地学报, 2024, 32(1): 322-330. | |
4 | Yu H Z, Jin C H, Wang Z F. Research and prospects for breeding in Medicago sativa//Proceedings of the third China alfalfa development conference. Changchun: Jilin Academy of Agricultural Sciences, 2010. |
于洪柱, 金春花, 王志锋. 紫花苜蓿育种研究及展望//第三届中国苜蓿发展大会论文集. 长春: 吉林省农业科学院, 2010. | |
5 | Wang Z L, Li J, Lai C G, et al. Drying tendency dominating the global grain production area. Global Food Security, 2018, 16: 138-149. |
6 | Zhang C M, Shi S L, Liu Z, et al. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 2019, 232: 226-240. |
7 | Fu B Z, Lan J, Li X W, et al. Effects of PEG-6000 drought stress on seed germination of 16 varieties of alfalfa. Seed, 2012, 31(4): 10-14. |
伏兵哲, 兰剑, 李小伟, 等. PEG-6000干旱胁迫对16个苜蓿品种种子萌发的影响. 种子, 2012, 31(4): 10-14. | |
8 | Li Y, Wan L Q, Li X L. Progress in understanding relationships between the physiological mechanisms of endogenous abscisic acid and drought resistance of alfalfa. Acta Prataculturae Sinica, 2015, 24(11): 195-205. |
李跃, 万里强, 李向林. 内源脱落酸生理作用机制及其与苜蓿耐旱性关系研究进展. 草业学报, 2015, 24(11): 195-205. | |
9 | Jiang Y J, Han X, Shi Y X, et al. Research on the water use efficiency of 8 different varieties of Medicago sativa L. Modern Agriculture Research, 2023, 29(11): 39-44. |
蒋英洁, 韩旭, 时玉新, 等. 8个紫花苜蓿品种的水分利用效率研究. 现代农业研究, 2023, 29(11): 39-44. | |
10 | Munns R. Comparative physiology of salt and water stress. Plant Cell & Environment, 2002, 25(2): 239-250. |
11 | Han R H, Lu X S, Gao G J, et al. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica, 2007, 27(12): 5229-5237. |
韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27(12): 5229-5237. | |
12 | Han D L. A comprehensive evaluation of alfalfa (Medicago sativa) varieties for drought tolerance. Lanzhou: Gansu Agricultural University, 2004. |
韩德梁. 紫花苜蓿(Medicago sativa)品种的抗旱性综合评价. 兰州: 甘肃农业大学, 2004. | |
13 | Li Y. Studies on responses of alfalfa to drought: Morphology, physiology and microRNA transcriptome. Beijing: Chinese Academy of Agricultural Sciences, 2017. |
李跃. 紫花苜蓿对干旱的响应:形态、生理以及miRNA组学研究. 北京: 中国农业科学院, 2017. | |
14 | Zhang C M. Physiological and molecular mechanisms of response to drought stress in different drought-resistant alfalfa (Medicago sativa L.) varieties. Lanzhou: Gansu Agricultural University, 2019. |
张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究. 兰州: 甘肃农业大学, 2019. | |
15 | Li Y, Wan L Q, Li X L, et al. Effects of water stress on the growth characteristics and ABA content of alfalfa. Journal of China Agricultural University, 2017, 22(10): 75-83. |
李跃, 万里强, 李向林, 等. 水分胁迫对不同紫花苜蓿品种幼苗生长特性和根系ABA含量的影响. 中国农业大学学报, 2017, 22(10): 75-83. | |
16 | Slama I, Tayachi S, Jdey A, et al. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: Growth, water relations, osmolyte accumulation and lipid peroxidation. African Journal of Biotechnology, 2011, 10(72): 16250-16259. |
17 | Yang P Z, Zhang P, Li B, et al. Effect of nodules on dehydration response in alfalfa (Medicago sativa L.). Environmental & Experimental Botany, 2013, 86: 29-34. |
18 | Luo Y Z. Study on the physiological responds and ecological compatibility of Medicago sativa L. cv. Xingjiang Daye under water stress. Lanzhou: Gansu Agricultural University, 2011. |
罗永忠. 新疆大叶苜蓿对土壤水分胁迫的生理响应及生态适应性研究. 兰州: 甘肃农业大学, 2011. | |
19 | Zang Z F, Bai J, Liu C, et al. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
臧真凤, 白婕, 刘丛, 等. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性. 草业学报, 2021, 30(6): 73-81. | |
20 | Yu S M. Effects of drought stress on morphological and physiological characteristics of different Medicago sativa L. cultivars. Lanzhou: Gansu Agricultural University, 2023. |
于思敏. 干旱胁迫对不同紫花苜蓿品种形态及生理特性的影响. 兰州: 甘肃农业大学, 2023. | |
21 | Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. |
李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. | |
22 | Guo Y J, Ni Y, Guo Y J, et al. Effect of soil water deficit and high temperature on leaf cuticular waxes and physiological indices in alfalfa (Medicago sativa) leaf. Acta Agronomica Sinica, 2011, 37(5): 911-917. |
郭彦军, 倪郁, 郭芸江, 等. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响. 作物学报, 2011, 37(5): 911-917. | |
23 | Quan W L, Chan Z L. Research progress on drought resistance mechanism of alfalfa. Biotechnology Bulletin, 2016, 32(10): 34-41. |
权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41. | |
24 | Quan W L, Liu X, Wang H Q, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 2016, 6: 1256. |
25 | Hosseini B S A, Khavari-Nejad R A, Hassan S R, et al. Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa L.). Acta Physiologiae Plantarum, 2012, 34: 1177-1186. |
26 | Huo X M, Hu T M, Yang P Z, et al. Effect of drought stress on three physiological indexes in alfalfa seedling. Pratacultural Science, 2010, 27(4): 89-92. |
霍学敏, 呼天明, 杨培志, 等. 干旱胁迫对苗期紫花苜蓿3种生理指标的影响. 草业科学, 2010, 27(4): 89-92. | |
27 | Luo W, Sun Z M, Bian J H, et al. PeDREB2a, KcERF enhance drought and salt tolerance in transgenic alfalfa. Pratacultural Science, 2023, 40(3): 732-739. |
罗雯, 孙占敏, 边佳辉, 等. 转PeDREB2a和KcERF基因紫花苜蓿的表型及抗旱耐盐性. 草业科学, 2023, 40(3): 732-739. | |
28 | Li L, Li D N, Yang Y Y, et al. Analysis of metabolomics and screening of stomatal regulating substances in alfalfa leaves under drought stress. Acta Agrestia Sinica, 2023, 31(9): 2671-2683. |
李乐, 李丹宁, 杨叶研, 等. 干旱胁迫下紫花苜蓿叶片代谢组分析及气孔调节物质的筛选. 草地学报, 2023, 31(9): 2671-2683. | |
29 | Inès S, Talbi O, Nasreddine Y, et al. Drought tolerance traits in Medicago species: A review. Arid Land Research and Management, 2022, 36(1): 67-83. |
30 | Yue L, Shan Q M K, Wang H, et al. Comprehensive evaluation of drought resistance during germination of sorghum germplasm resources in Xinjiang. Acta Agrestia Sinica, 2024, 32(2): 553-561. |
岳丽, 山其米克, 王卉, 等. 新疆高粱种质资源萌发期抗旱性综合评价. 草地学报, 2024, 32(2): 553-561. | |
31 | Ye X L, Gan Z, Wan Y, et al. Advances and perspectives in forage oat breeding. Acta Prataculturae Sinica, 2023, 32(2): 160-177. |
叶雪玲, 甘圳, 万燕, 等. 饲用燕麦育种研究进展与展望. 草业学报, 2023, 32(2): 160-177. | |
32 | Chen Z H, Li X Y, Wang J T, et al. Conservation and innovative utilization of alfalfa germplasm resources in China. Seed, 2020, 39(5): 59-63. |
陈志宏, 李新一, 王加亭, 等. 中国苜蓿种质资源保护及创新利用. 种子, 2020, 39(5): 59-63. | |
33 | Zanella M, Borghi G L, Pirone C, et al. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. Journal of Experimental Botany, 2016, 67(6): 1819-1826. |
34 | Institute of Botany, Chinese Academy of Sciences. Guide to higher plants of China (Volume 2). Beijing: Science Press, 1972: 370-376. |
中国科学院植物研究所. 中国高等植物图鉴(第二册). 北京: 科学出版社, 1972: 370-376. | |
35 | Geng H Z. Chinese alfalfa. Beijing: China Agriculture Press, 1995: 11. |
耿华珠. 中国苜蓿. 北京: 中国农业出版社, 1995: 11. | |
36 | Hou K Z. A dictionary of families and genera Chinese seed plants. Beijing: Science Press, 1982: 298. |
侯宽昭. 中国种子植物科属词典. 北京: 科学出版社, 1982: 298. | |
37 | Liu Y X. Flora in desertis republicae populorum sinarum. Beijing: Science Press, 1985: 197. |
刘瑛心. 中国沙漠植物志. 北京: 科学出版社, 1985: 197. | |
38 | Editorial Committee of Flora Republicae Popularis Sinicae. Flora republicae popularis sinicae. Beijing: Science Press, 1998. |
中国植物志编辑委员会. 中国植物志. 北京: 科学出版社, 1998. | |
39 | Huang L L. Current situation of germplasm resources of alfalfa in China and suggestions for introduction. Gansu Agricultural Science and Technology, 2013(4): 45-46. |
黄亮亮. 我国苜蓿的种质资源现状及引种建议. 甘肃农业科技, 2013(4): 45-46. | |
40 | Yu L X, Kole C. The alfalfa genome. Berlin: Springer International Publishing, 2021: 47. |
41 | Beijing Forestry University. Collection, preservation, genetic evaluation and germplasm innovation utilization of alfalfa germplasm resources in China. Beijing: Beijing Forestry University, 2008. |
北京林业大学. 中国苜蓿种质资源搜集保存、遗传评价及种质创新利用. 北京: 北京林业大学, 2008. | |
42 | Han J G. Ractical forage seed science. Beijing: China Agricultural University Press, 1997. |
韩建国. 实用牧草种子学. 北京: 中国农业大学出版社, 1997. | |
43 | Lu X X, Chen X L. Progress of conservation and research of crop germplasm resources in China. Scientia Agricultura Sinica, 2003, 36(10): 1125-1132. |
卢新雄, 陈晓玲. 我国作物种质资源保存与研究进展. 中国农业科学, 2003, 36(10): 1125-1132. | |
44 | Wang H, Zhang Y C, Yu X D, et al. Content and methods of identification and evaluation of alfalfa germplasm resources. Jiangxi Journal of Animal Husbandry & Veterinary Medicine, 2020(1): 32-36. |
王浩, 张迎超, 于晓东, 等. 苜蓿种质资源鉴定与评价的内容与方法. 江西畜牧兽医杂志, 2020(1): 32-36. | |
45 | Cheng W Y, Zhang W G, Hasgimuge. Observation of the Rec Medicago sativa L’s morphological anatomy. Journal of Inner Mongolia Minzu University (Natural Sciences), 2003, 18(3): 241-244. |
程伟燕, 张卫国, 哈斯其木格. 特莱克紫花苜蓿的形态解剖学观察. 内蒙古民族大学学报(自然科学版), 2003, 18(3): 241-244. | |
46 | Li Z Z. A study on drought resistance of ten alfalfa cultivar seedings. Chinese Journal of Grassland, 1991(3): 1-3, 12. |
李慥哲. 10种苜蓿品种幼苗抗旱性的研究. 中国草地, 1991(3): 1-3, 12. | |
47 | Wang Y. Phenotypic character identification and drought resistance evaluation of alfalfa germplasm resources. Yinchuan: Ningxia University, 2018. |
王焱. 紫花苜蓿种质资源表型性状鉴定及抗旱性评价. 银川: 宁夏大学, 2018. | |
48 | Zhang T, Kesoju S, Greene S L, et al. Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Genetic Resources and Crop Evolution, 2018, 65: 471-484. |
49 | Maghsoodi M, Razmjoo J, Gheysari M. Application of biochemical markers for the assessment of drought tolerance in alfalfa (Medicago sativa L.) cultivars. Grassland Science, 2017, 63(1): 3-14. |
50 | Sun Y R, Shi Y, Chen G J, et al. Evaluation of the germination characteristics and drought resistance of green manure crops under PEG stress. Acta Prataculturae Sinica, 2015, 24(3): 89-98. |
孙艳茹, 石屹, 陈国军, 等. PEG模拟干旱胁迫下8种绿肥作物萌发特性与抗旱性评价. 草业学报, 2015, 24(3): 89-98. | |
51 | Yang S, Du G J, Ma F J. Evaluation of drought resistance for 27 alfalfa germplasm resources at seed germination stage. Liaoning Agricultural Sciences, 2019(3): 7-12. |
杨姝, 杜桂娟, 马凤江. 27份紫花苜蓿种质资源萌发期抗旱性评价. 辽宁农业科学, 2019(3): 7-12. | |
52 | Wang Y, Sha B P, Li M Y, et al. Indices screening and comprehensive evaluation of drought resistance in alfalfa germplasm resources at germinating stage. Journal of Plant Genetic Resources, 2019, 20(3): 598-609, 623. |
王焱, 沙柏平, 李明雨, 等. 苜蓿种质资源萌发期抗旱指标筛选及抗旱性综合评价. 植物遗传资源学报, 2019, 20(3): 598-609, 623. | |
53 | Zeid I M, Shedeed Z A. Response of alfalfa to putrescine treatment under drought stress. Biologia Plantarum, 2006, 50(4): 635-640. |
54 | Hoshang R, Mohsen F. Evaluation of different alfalfa genotypes to drought stress and selection drought tolerant genotypes. Life Science Journal, 2013, 10(3s): 277-282. |
55 | Chang W, Li X, Zhou Y F, et al. Screening of drought resistance indices and comprehensive evaluation of alfalfa germplasm resources based on leaf morphology and photosynthetic characteristics at seedling stage. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(5): 57-68. |
常巍, 李雪, 周燕飞, 等. 基于苗期叶片形态及光合特性的苜蓿种质资源抗旱性综合评价. 西北农林科技大学学报(自然科学版), 2020, 48(5): 57-68. | |
56 | Zhang H H, Zhen S C, Zhang Y G, et al. Comprehensive evaluation of drought resistance of twelve alfalfa accessions at seedling stage. Pratacultural Science, 2014, 31(4): 737-743. |
张荟荟, 甄世财, 张一弓, 等. 12份苜蓿种质材料苗期抗旱性综合评价. 草业科学, 2014, 31(4): 737-743. | |
57 | Zhang H S, Chen M X, Wang F, et al. Comprehensive evaluation of seedling drought tolerance of 18 alfalfa varieties. Jiangsu Agricultural Sciences, 2012, 40(3): 168-171. |
张鹤山, 陈明新, 王凤, 等. 18个紫花苜蓿品种苗期抗旱性综合评价. 江苏农业科学, 2012, 40(3): 168-171. | |
58 | Wu R X, Li Y, You Y L, et al. Study on drought resistance identification and evaluation methods of alfalfa during whole growth period. Acta Agrestia Sinica, 2020, 28(5): 1444-1453. |
武瑞鑫, 李源, 游永亮, 等. 紫花苜蓿全生育期抗旱性鉴定评价方法探讨. 草地学报, 2020, 28(5): 1444-1453. | |
59 | Wang J Y, Xu W N, Su Y, et al. Characterization and comparison of drought resistance of five alfalfa varieties during germination period under PEG-6000 simulated drought stress. Animal Husbandry and Feed Science, 2023, 44(2): 81-91. |
王江银, 徐婉宁, 苏洋, 等. PEG-6000模拟干旱胁迫下5份苜蓿材料萌发期抗旱性鉴定与比较. 畜牧与饲料科学, 2023, 44(2): 81-91. | |
60 | Tao L, Ren J. Studies on comprehensive evaluation of forage grass in drought resistance. Journal of Gansu Agricultural University, 1999(1): 23-28. |
陶玲, 任珺. 牧草抗旱性综合评价的研究. 甘肃农业大学学报, 1999(1): 23-28. | |
61 | Li B, Li H, Zhao H B. Three alfalfa seedlings to PEG stress and their drought tolerance studies. Heilongjiang Animal Science and Veterinary Medicine, 2010(9): 77-78. |
李波, 李红, 赵洪波. 三种苜蓿幼苗对PEG胁迫的响应及其抗旱性研究. 黑龙江畜牧兽医, 2010(9): 77-78. | |
62 | Liu Y P, Zeng Z H, Zhao X M. The research on screening of drought resistant alfalfa cultivars in the Huanghuaihai Plain. Chinese Agricultural Science Bulletin, 2007, 23(3): 208-211. |
刘悦萍, 曾昭海, 赵晓萌. 黄淮海平原旱作条件耐旱苜蓿品种筛选的试验研究. 中国农学通报, 2007, 23(3): 208-211. | |
63 | Yang X J, Han R H, Lu X S, et al. Preliminary study on drought resistance of alfalfa seedling under water stress. Pratacultural Science, 2008, 25(11): 54-59. |
杨秀娟, 韩瑞宏, 卢欣石, 等. 苗期紫花苜蓿品种抗旱性初步研究. 草业科学, 2008, 25(11): 54-59. | |
64 | Zhai C M, Wang Z, Deng B, et al. Study on screening of drought resistance assessment indices and comprehensive evaluation of alfalfas during seedling stage. Agricultural Research in the Arid Areas, 2008, 26(6): 167-172. |
翟春梅, 王赞, 邓波, 等. 紫花苜蓿苗期抗旱性鉴定指标筛选及综合评价. 干旱地区农业研究, 2008, 26(6): 167-172. | |
65 | Li Y, Liu G B, Gao H W, et al. Study on comprehensive evaluation of drought resistance of Medicago sativa L. germplasm at seedling stage. Acta Agrestia Sinica, 2009, 17(6): 807-812. |
李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质苗期抗旱性综合评价研究. 草地学报, 2009, 17(6): 807-812. | |
66 | Kang J M, Fan F C, Yang Q C. Study and appraisal of drought resistance capacity of 41 different alfalfa cultivars. Acta Agrestia Sinica, 2004, 12(1): 21-23, 56. |
康俊梅, 樊奋成, 杨青川. 41份紫花苜蓿抗旱鉴定试验研究. 草地学报, 2004, 12(1): 21-23, 56. | |
67 | Yu L Q, Gu A L. Descriptors and data standard for Ruthenia Medic [ Medicago ruthenica (Linn.) Trautv. ]. Beijing: China Agriculture Press, 2010: 67-68. |
于林清, 谷安琳. 花苜蓿种质资源描述规范和数据标准. 北京: 中国农业出版社, 2010: 67-68. | |
68 | Aili R, Deng Y, Yang R, et al. Molecular mechanisms of alfalfa (Medicago sativa L.) in response to combined drought and cold stresses. Agronomy, 2023, 13(12): 3002. |
69 | Li Q, Jiang W B, Wang Y X, et al. Research progresses on the drought resistance of Medicago at molecular level. Biotechnology Bulletin, 2021, 37(8): 243-252. |
李倩, 江文波, 王玉祥, 等. 苜蓿抗旱性分子研究进展. 生物技术通报, 2021, 37(8): 243-252. | |
70 | Zhang J Y, Cruz De Carvalho M H, Torres‐Jerez I, et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant, Cell & Environment, 2014, 37(11): 2553-2576. |
71 | Wan L, Li Y, Li S, et al. Transcriptomic profiling revealed genes involved in response to drought stress in alfalfa. Journal of Plant Growth Regulation, 2021, 41: 92-112. |
72 | Chen D, Liang M X, DeWald D, et al. Identification of dehydration responsive genes from two non-nodulated alfalfa cultivars using Medicago truncatula microarrays. Acta Physiologiae Plantarum, 2008, 30(2): 183-199. |
73 | Ma Q, Xu X, Wang W, et al. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms. Plant Physiology and Biochemistry, 2021, 166: 203-214. |
74 | Zhang C, Shi S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Frontiers in Plant Science, 2018, 9: 242. |
75 | Ma Q, Kang J, Long R, et al. Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Molecular Biology Reports, 2017, 44: 261-272. |
76 | Aranjuelo I, Molero G, Erice G, et al. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 2011, 62(1): 111-123. |
77 | Rahman M A, Yong-Goo K, Iftekhar A, et al. Proteome analysis of alfalfa roots in response to water deficit stress. Journal of Integrative Agriculture, 2016, 15(6): 1275-1285. |
78 | Bagherikia S, Pahlevani M, Yamchi A, et al. Transcript profiling of genes encoding fructan and sucrose metabolism in wheat under terminal drought stress. Journal of Plant Growth Regulation, 2019, 38: 148-163. |
79 | Santos A B, Bottcher A, Kiyota E, et al. Water stress alters lignin content and related gene expression in two sugarcane genotypes. Journal of Agricultural and Food Chemistry, 2015, 63(19): 4708-4720. |
80 | Chen H, Zhang Q, Lu Z, et al. Accumulation of ammonium and reactive oxygen mediated drought-induced rice growth inhibition by disturbed nitrogen metabolism and photosynthesis. Plant and Soil, 2018, 431: 107-117. |
81 | Yang Y, Gu M, Lu J, et al. Metabolomic analysis of key metabolites and their pathways revealed the response of alfalfa (Medicago sativa L.) root exudates to rac-GR24 under drought stress. Plants, 2023, 12(5): 1163. |
82 | Jiang X, Yu A, Zhang F, et al. Identification of QTL and candidate genes associated with biomass yield and feed quality in response to water deficit in alfalfa (Medicago sativa L.) using linkage mapping and RNA-Seq. Frontiers in Plant Science, 2022, 13: 996672. |
83 | Ray I M, Han Y H, Lei E, et al. Identification of quantitative trait loci for alfalfa forage biomass productivity during drought stress. Crop Science, 2015, 55(5): 2012-2033. |
84 | Santantonio N, Pierce C A, Steiner R L, et al. Genetic mapping of water use efficiency and carbon and nitrogen metabolism in drought-stressed alfalfa. Crop Science, 2019, 59(1): 92-106. |
85 | Yu L X. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Frontiers in Plant Science, 2017, 8: 1152. |
86 | Zhang T, Yu L X, Zheng P, et al. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS One, 2015, 10(9): e0138931. |
87 | Liu J, Wang S P, Shi K, et al. Cloning and function identification of MsMYB58 in alfalfa under drought stress. Acta Agrestia Sinica, 2023, 31(12): 3608-3616. |
刘佳, 王少鹏, 史昆, 等. 紫花苜蓿MsMYB58基因克隆及抗旱功能鉴定. 草地学报, 2023, 31(12): 3608-3616. | |
88 | Wang S P, Liu J, Hong J, et al. Cloning and function analysis of MsPPR1 in alfalfa under drought stress. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
王少鹏, 刘佳, 洪军, 等. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析. 草业学报, 2023, 32(7): 49-60. | |
89 | Ma Y T. Identification of alfalfa-specific gene MsASG166 and analysis of its function in response to drought stress. Lanzhou: Lanzhou University, 2023. |
马艺桐. 紫花苜蓿特有基因MsASG166的鉴定及响应干旱胁迫功能分析. 兰州: 兰州大学, 2023. | |
90 | Wang Q X. Functional analysis of alfalfa SAP22 gene in response to drought stress. Lanzhou: Lanzhou University, 2023. |
王秋霞. 紫花苜蓿SAP22基因响应干旱胁迫功能分析. 兰州: 兰州大学, 2023. | |
91 | Ma W X. Drought tolerance analysis of alfalfa MsLEA10 gene. Lanzhou: Lanzhou University, 2021. |
马文雪. 紫花苜蓿MsLEA10基因的耐旱功能分析. 兰州: 兰州大学, 2021. | |
92 | Jian W N, Zuo P, Zhang G Z, et al. Cloning and functional analysis of MsERF003 gene in drought stress from Medicago sativa. Molecular Plant Breeding, 2020, 18(17): 5674-5681. |
坚伟宁, 左朋, 张国珍, 等. 紫花苜蓿MsERF003的基因克隆及其在干旱胁迫中的功能分析. 分子植物育种, 2020, 18(17): 5674-5681. | |
93 | Yin H, Wang Z Y, Li H, et al. MsTHI1 overexpression improves drought tolerance in transgenic alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2022, 13: 992024. |
94 | Li Z Y, Long R C, Zhang T J, et al. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Journal of Plant Research, 2017, 130: 387-396. |
95 | Hanly A, Karagiannis J, Lu Q S M, et al. Characterization of the role of SPL9 in drought stress tolerance in Medicago sativa. International Journal of Molecular Sciences, 2020, 21(17): 6003. |
96 | Yang M, Duan X, Wang Z, et al. Overexpression of a voltage-dependent anion-selective channel (VDAC) protein-encoding gene, MsVDAC, from Medicago sativa confers cold and drought tolerance to transgenic tobacco. Genes, 2021, 12(11): 1706. |
97 | Jia H L, Wang X M, Shi Y H, et al. Overexpression of Medicago sativa LEA 4-4 can improve the salt, drought, and oxidation resistance of transgenic arabidopsis. PLoS One, 2020, 15(6): e0234085. |
98 | Du B H, Chen N Y, Song L L, et al. Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Reports, 2021, 40: 1907-1922. |
99 | Boe A, Kephart K D, Berdahl J D, et al. Breeding alfalfa for semiarid regions in the northern Great Plains: History and additional genetic evaluations of novel germplasm. Agronomy, 2020, 10(11): 1686. |
100 | Rumbaugh M D, Colburn J D, Semeniuk G. Registration of travois alfalfa (Reg. No. 20). Crop Science, 1964, 4(1): 117. |
101 | Heinrichs D H. Roamer alfalfa. Canadian Journal of Plant Science, 1967, 47(2): 220-221. |
102 | Pankiw P, Siemens B. Anik alfalfa. Canadian Journal of Plant Science, 1976, 56(1): 203-205. |
103 | McLeod J G, Muri R, Jefferson P G, et al. Yellow head alfalfa. Canadian Journal of Plant Science, 2009, 89(4): 653-655. |
104 | Peel M D, Asay K H, Waldron B L, et al. ‘Don’, a diploid falcata alfalfa for western US rangelands. Journal of Plant Registrations, 2009, 3(2): 115-118. |
105 | Riday H, Brummer E C. Registration of two improved yellow-flowered alfalfa germplasms. Journal of Plant Registrations, 2007, 1(2): 131-133. |
106 | Liu Z P, Liu W X, Yang Q C, et al. Progress and existing problems of forage breeding in China. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 528-536. |
刘志鹏, 刘文献, 杨青川, 等. 我国牧草育种进展及存在问题 . 中国科学基金, 2023, 37(4): 528-536. | |
107 | Wang Q Q, Xie J H, Yu L Q, et al. Research progress and prospect of alfalfa breeding in China. Journal of Grassland and Forage Science, 2023(4): 1-7. |
王旗旗, 解继红, 于林清, 等. 我国苜蓿育种研究进展及展望. 草学, 2023(4): 1-7. | |
108 | Wang C M, Zhang Q, Wang X L, et al. Proceedings of the 4th (2011) China alfalfa development conference. Lanzhou: Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 2011. |
王春梅, 张茜, 王晓力, 等. 第四届(2011)中国苜蓿发展大会论文集. 兰州: 中国农业科学院兰州畜牧与兽药研究所, 2011. | |
109 | Chinese Academy of Agricultural Sciences. “Medicago sativa L. cv. Zhonglan No.2” was successfully cultivated. Grain Oil and Feed Technology, 2014(1): 44-45. |
中国农业科学院. “中兰2号紫花苜蓿”培育成功. 粮油与饲料科技, 2014(1): 44-45. | |
110 | Yu J R, Li Y T, Li A H, et al. Aohan alfalfa cultivation and management technology. Inner Mongolia Forestry, 2023(11): 38-40. |
于井瑞, 李雨涛, 李爱华, 等. 敖汉苜蓿栽培管理技术. 内蒙古林业, 2023(11): 38-40. | |
111 | National Grass Varieties Certification Committee. Collection of registered forage species in China. Beijing: China Agricultural University Press, 1999. |
全国牧草品种审定委员会. 中国牧草登记品种集. 北京: 中国农业大学出版社, 1999. | |
112 | National Grass Varieties Certification Committee. China approved and registered grass species collection (1999-2006). Beijing: China Agricultural University Press, 2008. |
全国牧草品种审定委员会. 中国审定登记草品种集(1999-2006). 北京: 中国农业大学出版社, 2008. | |
113 | Liu D H. Several varieties of forage suitable for planting in Heilongjiang Province. Heilongjiang Animal Science and Veterinary Medicine, 2013(10): 105-106. |
刘东华. 几种适合黑龙江省种植的牧草品种. 黑龙江畜牧兽医, 2013(10): 105-106. | |
114 | Qi X, Shao L H. Introduction of approved and registered grass varieties in 2011-2013 (28). Pratacultural Science, 2013, 30(11): 1889-1906. |
齐晓, 邵麟惠. 2011-2013年审定登记草品种简介(28个). 草业科学, 2013, 30(11): 1889-1906. | |
115 | Chang G Z, Yang H S, Zhou X H, et al. Two new alfalfa varieties suitable for dry land cultivation. Gansu Agricultural Science and Technology, 2010(10): 55-56. |
常根柱, 杨红善, 周学辉, 等. 2个适宜旱地种植的苜蓿新品种. 甘肃农业科技, 2010(10): 55-56. | |
116 | Xie H L, Yang Y P, Dong Y, et al. Analysis on international development trends of alfalfa. Chinese Bulletin of Botany, 2021, 56(6): 740-750. |
谢华玲, 杨艳萍, 董瑜, 等. 苜蓿国际发展态势分析. 植物学报, 2021, 56(6): 740-750. | |
117 | Wang Z Y, Brummer E C. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Annals of Botany, 2012, 110(6): 1317-1325. |
118 | Barros J, Temple S, Dixon R A. Development and commercialization of reduced lignin alfalfa. Current Opinion in Biotechnology, 2019, 56: 48-54. |
119 | Chen Z H, Li X Y, Hong J. Current situation,problems, and suggestions for forage germplasm resource conservation in China. Pratacultural Science, 2018, 35(1): 186-191. |
陈志宏, 李新一, 洪军. 我国草种质资源的保护现状、存在问题及建议. 草业科学, 2018, 35(1): 186-191. | |
120 | Chen C J, Wang X M, Liu W H, et al. Review of research on genetic diversity of grass germplasm. Acta Agrestia Sinica, 2024, 32(2): 349-357. |
陈彩锦, 王学敏, 刘文辉, 等. 草种质资源遗传多样性研究进展. 草地学报, 2024, 32(2): 349-357. | |
121 | Zhao H M, You Y L, Li Y, et al. Drought resistant identification and evaluation methods of alfalfa germplasm. Acta Agrestia Sinica, 2017, 25(6): 1308-1316. |
赵海明, 游永亮, 李源, 等. 紫花苜蓿资源抗旱性鉴定评价方法研究. 草地学报, 2017, 25(6): 1308-1316. | |
122 | Han R H, Jiang C, Dong Z X, et al. Comprehensive evaluation of drought resistance of 47 Medicago germplasm materials under drought stress. Chinese Journal of Grassland, 2017, 39(4): 27-35. |
韩瑞宏, 蒋超, 董朝霞, 等. 47份苜蓿种质材料抗旱性综合评价. 中国草地学报, 2017, 39(4): 27-35. | |
123 | Ma J, Qiu D, Gao H, et al. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC Plant Biology, 2020, 20(1): 1-16. |
124 | Luo D, Liu J, Wu Y, et al. NUCLEAR TRANSPORT FACTOR 2‐LIKE improves drought tolerance by modulating leaf water loss in alfalfa (Medicago sativa L.). The Plant Journal, 2022, 112(2): 429-450. |
125 | Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006, 25(12): 1263-1274. |
126 | Jing H C, Zhang J Y, Jin J B, et al. Fundamental biology and molecular breeding of forage crops. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 537-551. |
景海春, 张景昱, 金京波, 等. 饲草作物基础生物学与生物育种. 中国科学基金, 2023, 37(4): 537-551. | |
127 | Zhao L J. Development and optimization of highly efficient genetic transformation and genome editing system for alfalfa(Medicago sativa L.). Yinchuan: Ningxia University, 2022. |
赵丽娟. 紫花苜蓿(Medicago sativa L.)高效遗传转化与基因组编辑体系的建立与优化. 银川: 宁夏大学, 2022. | |
128 | Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
129 | Shen C, Du H, Chen Z, et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13(9): 1250-1261. |
130 | Luo D, Zhou Q, Wu Y, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biology, 2019, 19(1): 1-20. |
131 | Chen Y Q, Chen G P, Xiang H X. Research progress on gene engineering and signal transduction of salt tolerance in plant. Journal of Tangshan Normal University, 2003, 25(5): 50-52. |
陈玉芹, 陈桂平, 项慧新. 植物耐盐性的信号传导途径及基因工程进展. 唐山师范学院学报, 2003, 25(5): 50-52. | |
132 | Khan S A, Li M Z, Wang S M, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 2018, 19(6): 1634. |
133 | Liu Z P, Zhou Q, Liu W X, et al. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. |
刘志鹏, 周强, 刘文献, 等. 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193. | |
134 | Huo Z H, Song L L, Chen Y, et al. Research progress on genetic breeding of alfalfa and cold resistant resources. Journal of Grassland and Forage Science, 2015(1): 8-11. |
霍智慧, 宋丽莉, 陈月, 等. 紫花苜蓿耐寒育种研究进展. 草学, 2015(1): 8-11. | |
135 | Liu W, Liang Z, Shan C, et al. Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In Vitro Cellular & Developmental Biology-Plant, 2013, 49(1): 17-23. |
136 | Jiang Q, Fu C, Wang Z Y. A unified agrobacterium-mediated transformation protocol for alfalfa (Medicago sativa L.) and Medicago truncatula//Transgenic Plants: Methods and Protocols. New York: Humana Press, 2019: 153-163. |
137 | Zhang H, Huang Q M, Su J. Development of alfalfa (Medicago sativa L.) regeneration system and agrobacterium-mediated genetic transformation. Agricultural Sciences in China, 2010, 9(2): 170-178. |
138 | Duan Z, Zhang D Y, Zhang J Q, et al. Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2015, 6: 1115. |
139 | Zheng G S, Fan C Y, Di S K, et al. Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2017, 8: 2125. |
140 | Wang Z, Su G X, Li M, et al. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiology and Biochemistry, 2016, 109: 199-208. |
141 | Wang Z, Li H B, Ke Q B, et al. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 2014, 84: 67-77. |
142 | Long R, Yang Q, Kang J, et al. Molecular cloning and characterization of a novel stress responsive gene in alfalfa. Biologia Plantarum, 2012, 56(1): 43-49. |
143 | Li H B, Wang Z, Ke Q B, et al. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiology and Biochemistry, 2014, 85: 31-40. |
144 | Tang L, Cai H, Zhai H, et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell, Tissue and Organ Culture, 2014, 118: 77-86. |
145 | Liu L B, Bao A K, Li H J, et al. Overexpression of ZxABCG11 from Zygophyllum xanthoxylum enhances tolerance to drought and heat in alfalfa by increasing cuticular wax deposition. The Crop Journal, 2023, 11(4): 1140-1151. |
146 | Zhang Z S, Xu P, Duan Z, et al. Overexpression of P5CDH from Cleistogenes songorica improves alfalfa growth performance under field drought conditions. Plant Physiology and Biochemistry, 2024, 209: 108551. |
147 | Yu Z, Long X B. Study on the effect of digital breeding management system on promoting breeding 4.0. China Rural Science & Technology, 2023(12): 20-23. |
余众, 龙晓波. 数字化育种管理系统对推进育种4.0的效应研究. 中国农村科技, 2023(12): 20-23. | |
148 | Li A, Liu A, Du X, et al. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research, 2020, 7: 194. |
149 | Wang J J, Yun J F, Lv S J. Characteristics and utilizing values on the germplasm of Medicago falcata. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2008, 29(1): 215-219. |
王俊杰, 云锦凤, 吕世杰. 黄花苜蓿种质的优良特性与利用价值 . 内蒙古农业大学学报(自然科学版), 2008, 29(1): 215-219. | |
150 | Varshney R K, Tuberosa R, Tardieu F. Progress in understanding drought tolerance: From alleles to cropping systems. Journal of Experimental Botany, 2018, 69(13): 3175-3179. |
151 | Chen L B, Liu L, Li Z Y, et al. Discussion on establishing standardized database of alfalfa germplasm resources. Journal of Forage&Feed, 2008, 2(3): 3-6. |
陈立波, 刘磊, 李志勇, 等. 苜蓿种质资源标准化数据库建立的探讨. 牧草与饲料, 2008, 2(3): 3-6. |
[1] | Xin-yao WANG, Ya-ping PENG, Li-rong YAO, Jun-cheng WANG, Er-jing SI, Hong ZHANG, Ke YANG, Xiao-le MA, Ya-xiong MENG, Hua-jun WANG, Bao-chun LI. Gene cloning and drought resistance identification of the gene HgS5 in Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2025, 34(2): 184-195. |
[2] | Long-yi HE, Meng-meng TAN, Hai-tao CHE, Hong-ying ZHANG, Yu-xin ZHU, Yan-ni ZHANG. Cloning and analysis of drought tolerance function of the LpDREB9 in Lilium pumilum [J]. Acta Prataculturae Sinica, 2025, 34(1): 161-173. |
[3] | Chao MA, Xi-jing SUN, Ya-lan FENG, Shuang ZHOU, Ji-hao JU, Yi WU, Tian-ning WANG, Bin-bin GUO, Jun ZHANG. Genome-wide identification of the GLK gene family in alfalfa and their transcript profiles under osmotic stress [J]. Acta Prataculturae Sinica, 2025, 34(1): 174-190. |
[4] | Yuan TENG, Bing MA, Xian-zhong WU, Xing WANG, Wen LYU, Hong-wu REN, Zhi-tong WANG. Characteristics of soil water infiltration in replanted alfalfa plots after severe drying of deep soil horizons in loess areas [J]. Acta Prataculturae Sinica, 2025, 34(1): 66-79. |
[5] | Zhuan-lin BEN, Hui-xing JIN, Xiao-juan WU, Le MU, Jiao-jiao ZHANG, Yun-hua HAN, Hui-min YANG. Leaf nutritional traits of alfalfa at the reproductive stage and their correlations with seed yield under different irrigation and nitrogen fertilization levels in the oasis area of the Hexi Corridor [J]. Acta Prataculturae Sinica, 2025, 34(1): 94-106. |
[6] | Zheng-yan LI, Zhi-ming XU, Yan LI, Yang LI. Effects of short-term continuous cropping of alfalfa on the growth and soil microenvironment of subsequent sorghum-sudan grass hybrid crops in the Jianghuai area [J]. Acta Prataculturae Sinica, 2024, 33(9): 155-168. |
[7] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
[8] | Ying-ying ZHANG, Dan-dan HU, Chun-hui MA, Qian-bing ZHANG. Leaf structure and photosynthetic properties of alfalfa in response to bacteria and phosphorus addition [J]. Acta Prataculturae Sinica, 2024, 33(8): 133-144. |
[9] | Wei LI, Han WANG, Chang-qing WANG, Yu-xin PAN, Jian-rong HOU, Wen-juan KANG, Su-qin SHANG, Shang-li SHI. Responses to temperature of population parameters of the pest mite Sancassania alfalfa fed on alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(8): 181-189. |
[10] | Zheng WANG, Wei CHANG, Jun-cheng LI, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effects of alfalfa green manure on the yield, nitrogen absorption, and nitrogen translocation of feed maize [J]. Acta Prataculturae Sinica, 2024, 33(8): 63-73. |
[11] | Jin-zhu GAO, Dong-hao ZHAO, Le GAO, Xi-hao SU, Xue-qing HE. Effects of cerium nitrate and abscisic acid treatment on alfalfa seed germination and seedling physiological characteristics [J]. Acta Prataculturae Sinica, 2024, 33(6): 175-186. |
[12] | Wen-wen QI, Hong-yuan MA, Ya-xiao LI, Yan DU, Meng-dan SUN, Hai-tao WU. Progress in research on breeding methods to produce new, high-quality forage varieties [J]. Acta Prataculturae Sinica, 2024, 33(6): 187-202. |
[13] | Min WANG, Li LI, Rong JIA, Ai-ke BAO. Evaluation of physiological characteristics and cold resistance of 10 alfalfa varieties under low temperature stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 76-88. |
[14] | Hai-ming KONG, Jia-xing SONG, Jing YANG, Qian LI, Pei-zhi YANG, Yu-man CAO. Identification and transcript profiling of the CAMTA gene family under abiotic stress in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(5): 143-154. |
[15] | Meng WANG, Xue-li LU, Ju-ying WANG, Meng-chao ZHANG, Yi-ru SONG, Chen MENG, Li ZHANG, Zong-chang XU. Evaluation and screening of the salt tolerance of triticale germplasm at the germination and seedling stages [J]. Acta Prataculturae Sinica, 2024, 33(5): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||