[1] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494(28): 459-462. [2] Niu D C, Yuan X B, Cease A J, et al. The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of the Total Environment, 2018, 618: 1529-1538. [3] Zhou Z H, Wang C K, Zheng M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 2017, 115: 433-441. [4] Zhou J, Jiang X, Zhou B K, et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology and Biochemistry, 2016, 95: 135-143. [5] Geisseler D, Scow K M.Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology and Biochemistry, 2014, 75: 54-63. [6] Singh B K, Bardgett R D, Smith P, et al. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 2010, 8(11): 779-790. [7] Hautier Y, Tilman D, Isbell F, et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science, 2015, 348: 336-340. [8] Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. [9] Li W J, Liu H M, Zhao J N, et al. Effects of nitrogen and water addition on plant species diversity and biomass of common species in the Stipa baicalensis steppe, Inner Mongolia, China. Acta Ecological Sinica, 2015, 35(19): 6460-6469. 李文娇, 刘红梅, 赵建宁, 等. 氮素和水分添加对贝加尔针茅草原植物多样性及生物量的影响. 生态学报, 2015, 35(19): 6460-6469. [10] Liu H M, Li J, Huangfu C H, et al. Effects of long-term nitrogen addition on photosynthetic characteristics and leaf traits of Stipa baicalensis in Inner Mongolia, China. Acta Prataculturae Sinica, 2016, 25(11): 76-85. 刘红梅, 李洁, 皇甫超河, 等. 贝加尔针茅光合特征与叶片功能特性对长期氮添加的响应. 草业学报, 2016, 25(11): 76-85. [11] Liu H M, Zhang H F, Huangfu C H, et al. Effects of different long-term nitrogen addition on soil microbial diversity of Stipa baicalensis steppe in Inner Mongolia, China. Journal of Agro-Environment Science, 2017, 36(4): 709-717. 刘红梅, 张海芳, 皇甫超河, 等. 长期氮添加对贝加尔针茅草原土壤微生物群落多样性的影响. 农业环境科学学报, 2017, 36(4): 709-717. [12] Zhang J L, Li J, Zhao J N, et al. Effects of nitrogen addition greenhouse gas flux in a Stipa baicalensis grassland in Inner Mongolia. Journal of Agro-Environment Science, 2017, 36(8): 1640-1648. 张金玲, 李洁, 赵建宁, 等. 氮素添加对贝加尔针茅草原温室气体通量的影响. 农业环境科学学报, 2017, 36(8): 1640-1648. [13] Song L, Tian P, Zhang J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Science of the Total Environment, 2017, 609: 1303-1311. [14] Lienhard P, Terrat S, Mathieu O, et al. Soil microbial diversity and C turnover modified by tillage and cropping in Laos tropical grassland. Environmental Chemistry Letters, 2013, 11(4): 391-398. [15] Wu Y G, Zhang G L, Lai X, et al. Effects of biochar application on bacterial diversity in fluvor-aquic soil of North China. Journal of Agro-Environment Science, 2014, 33(5): 965-971. 乌英嘎, 张贵龙, 赖欣, 等. 生物炭施用对华北潮土细菌多样性的影响. 农业环境科学学报, 2014, 33(5): 965-971. [16] Zhang H F, Liu H M, Zhao J N, et al. Effects of simulated nitrogen deposition and precipitation change on soil bacterial community structure in a Stipa baicalensis steppe. Acta Ecologica Sinica, 2018, 38(1): 244-253. 张海芳, 刘红梅, 赵建宁, 等. 模拟氮沉降和降雨变化对贝加尔针茅草原土壤细菌群落结构的影响. 生态学报, 2018, 38(1): 244-253. [17] Hao Y Q, Xie L, Chen Y M, et al. Effects of nitrogen deposition on diversity and composition of soil bacterial community in a subtropical Cunninghamia lanceolata plantation. Chinese Journal of Applied Ecology, 2018, 29(1): 53-58. 郝亚群, 谢麟, 陈岳民, 等. 中亚热带地区氮沉降对杉木幼林土壤细菌群落多样性及组成的影响. 应用生态学报, 2018, 29(1): 53-58. [18] Lin C S, Wu J T.Environmental factors affecting the diversity and abundance of soil photomicrobes in arid lands of subtropical Taiwan. Geomicrobiology Journal, 2014, 31(4): 350-359. [19] Hui L, Xu Z W, Shan Y, et al. Response of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground communtiy variation. Microbial Ecology, 2016, 71(4): 974-989. [20] Zhang Y, Zheng L X, Liu X J, et al. Evidence for organic N deposition and its anthropogenic sources in China. Atmospheric Environment, 2008, 42: 1035-1041. [21] Bao S D.Soil and agricultural chemistry analysis (Third Edition).Beijing:China Agricultural Press, 2000. 鲍士旦. 土壤农化分析(第三版). 北京:中国农业出版社, 2000. [22] Li Y J, Li G, Song X L, et al. Effect of rest-grazing on soil microbial community functional diversity in Stipa baicalensis steppe. Acta Prataculturae Sinica, 2013, 22(6): 21-30. 李玉洁, 李刚, 宋晓龙, 等. 休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响. 草业学报, 2013, 22(6): 21-30. [23] Yang S, Li X B, Wang R Z, et al. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in Northern China. Chinese Journal of Applied Ecology, 2015, 26(3): 739-746. 杨山, 李小彬, 王汝振, 等. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响. 应用生态学报, 2015, 26(3): 739-746. [24] Freitag T E, Chang L, Clegg C D, et al. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Applied and Environmental Microbiology, 2005, 71(12): 8323-8334. [25] Zeng J, Liu X J, Song L, et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 2016, 92: 41-49. [26] Li Z M, Shen J P, Zhang L M, et al. Effects of stimulated nitrogen deposition on the bacterial community structure of semiarid temperate grassland. Environmental Science, 2018, 39(12): 5665-5671. 李宗明, 沈菊培, 张丽梅, 等. 模拟氮沉降对干旱半干旱温带草原土壤细菌群落结构的影响. 环境科学, 2018, 39(12): 5665-5671. [27] Wang C, Lu X, Mori T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 2018, 121: 103-112. [28] Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analysis of soil microbial communities across nitrogen gradients. The International Society for Microbial Ecology Journal, 2012, 6(5): 1007-1017. [29] Craine J M, Morrow C, Fierer N.Microbial nitrogen limitation increases decomposition. Ecology, 2007, 88(8): 2105-2113. [30] Liu Y, Huang Y M, Zeng Q C.Soil bacterial communities under different vegetation types in the Loess Plateau. Environmental Science, 2016, 37(10): 3931-3938. 刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究. 环境科学, 2016, 37(10): 3931-3938. [31] Zhang W, Hu Y G, Huang G H, et al. Soil microbial diversity of artificial peashrub plantation on North Loess Plateau of China. Acta Microbiologica Sinica, 2007, 47(5): 751-756. 张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析. 微生物学报, 2007, 47(5): 751-756. [32] Bartram A, Jiang X, Lynch M D J, et al. Exploring links between pH and bacterial community composition in soils from the craibstone experiment farm. FEMS Microbiology Ecology, 2014, 87(2): 403-415. [33] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. [34] Wang H, Liu S R, Zhang X, et al. Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biology and Biochemistry, 2018, 127: 22-30. [35] Zhang X M, Liu W, Zhang G M, et al. Mechanisms of soil acidification reducing bacterial diversity. Soil Biology and Biochemistry, 2015, 81: 275-281. [36] Yang F, Wu J W, Zhang D D, et al. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of Southern China. Applied Soil Ecology, 2018, 128: 43-53. |