Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (9): 5-19.DOI: 10.11686/cyxb2019532

Previous Articles     Next Articles

Energy balance analysis of farm production systems in the transitional zone between the Loess Plateau and the Qinghai Tibet Plateau, China——A case study of the Tongwei-Weiyuan-Xiahe transect

CONG Yi-ming, GAO Xiao-ye, HOU Fu-jiang*   

  1. State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
  • Received:2019-12-04 Revised:2020-03-11 Online:2020-09-20 Published:2020-09-20

Abstract: The transitional zone between the Loess Plateau and the Qinghai-Tibet Plateau (LP-QTP) has become recognized as a region with one of the most sensitive and fragile environments in China from an ecological perspective, with high susceptibility to climate change. Agriculture is important in the region and energy supply is the driving force for sustainable development of farm structure and function in agricultural production systems, and is an important indicator for measuring the ecological and production benefits of agricultural production systems. In this paper, a Tongwei (TW)-Weiyuan (WY)-Xiahe (XH) transect was established in the LP-QTP transitional zone to analyze the energy output of agricultural production systems on the altitude gradient (approx. 2000-3000 m above sea level). The results showed that: 1) In crop production systems the energy input, energy output, energy income and energy efficiency decreased from the LP to the QTP. When the farmers percentage accounted for 50% (as identified by logistic regression), energy income of farms in TW and WY were 104.80 and 44.59 GJ, respectively. 2) In livestock production systems, the energy input per household was the highest in WY and lowest in XH. Energy income of XH, TW and WY were 160.42, -47.43 and -55.25 GJ, respectively. The energy output, energy income and energy efficiency all progressively increased with the altitude. 3) In crop-livestock integrated systems energy input ranked WY>TW>XH, while energy output, energy income and energy efficiency ranked XH>TW>WY. The threshold of energy income of XH, TW and WY were 91.54, 16.50 and 76.98 GJ, respectively, when the farmers percentage accounted for 50%. The point is most sensitive to energy changes, and regulating energy behavior can maximize the benefits. 4) The Shannon-wiener diversity index, Pielou evenness index and energy efficiency of the agricultural production systems were significantly correlated (P<0.05). The structural equation model indicated that altitude was the most significant factor determining energy balance of crop-livestock production systems (P<0.05). The results provide a scientific basis for agricultural production development and policy formulation in the transition zone, based on system energy balance.

Key words: grassland, crops, livestock, system coupling, energy output, agricultural diversity