[1] Ammer C.Diversity and forest productivity in a changing climate. New Phytologist, 2019, 221(1): 50-66. [2] Symstad A J, Chapin F S, Wall D H, et al. Long-term and large-scale perspectives on the relationship between biodiversity and ecosystem functioning. Bioscience, 2003, 53(1): 89-98. [3] Loreau M.Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 2000, 91(1): 3-17. [4] Zheng X X, Jin T T, Mu L F, et al. The Relationship between plant species richness in Hulunbeier grassland and biomass and environmental factors. Chinese Journal of Grassland, 2008, 30(6): 74-81. 郑晓翾, 靳甜甜, 木丽芬, 等. 呼伦贝尔草原物种多样性与生物量、环境因子的关系. 中国草地学报, 2008, 30(6): 74-81. [5] Zhu Y, Kang M Y, Liu Q R, et al. Relationship between biodiversity and aboveground biomass in alpine meadow on Mt. Helan, China. Chinese Journal of Applied and Environmental Biology, 2007, 13(6): 771-776. 朱源, 康慕谊, 刘全儒, 等. 贺兰山高山草甸生物多样性和地上生物量的关系. 应用与环境生物学报, 2007, 13(6): 771-776. [6] Chen D M, Lan Z C, Bai X, et al. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology, 2013, 101(5): 1322-1334. [7] Li M C, Zhu J J, Sun Y R.Uncertainty analysis in physio-ecological response of plant to climate change. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(1): 207-214. 李明财, 朱教君, 孙一荣. 植物对气候变化生理生态响应的不确定性分析. 西北植物学报, 2009, 29(1): 207-214. [8] Zheng X X, Wang R D, Jin T T, et al. Relationships between biodiversity and biomass under different regimes of grassland use in Hulunbeir, Inner Mongolia. Acta Ecologica Sinica, 2008, 28(11): 5392-5400. 郑晓翾, 王瑞东, 靳甜甜, 等. 呼伦贝尔草原不同草地利用方式下生物多样性与生物量的关系. 生态学报, 2008, 28(11): 5392-5400. [9] Waide R B, Willig M R, Steiner C F, et al. The relationship between productivity and species richness. Annual Review of Ecology & Systematics, 1999, 30(1): 257-300. [10] Mittelbach G G, Steiner C F, Scheiner S M, et al. What is the observed relationship between species richness and productivity? Ecology, 2001, 82(9): 2381-2396. [11] Veen C G F, Putten W H V D, Bezemer T M. Biodiversity-ecosystem functioning relationships in a long-term non-weeded field experiment. Ecology, 2018, 99(8): 1836-1846. [12] Jiang L, Wan S, Li L.Species diversity and productivity: Why do results of diversity-manipulation experiments differ from natural patterns? Journal of Ecology, 2010, 97(4): 603-608. [13] Bai Y F, Li L H, Wang Q B, et al. Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River basin, Inner Mongolia. Chinese Journal of Plant Ecology, 2000, 24(6): 667-673. 白永飞, 李凌浩, 王其兵, 等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究. 植物生态学报, 2000, 24(6): 667-673. [14] Wang S P, Zhou G S, Lü Y C, et al. Distribution of soil carbon, nitrogen and phosphorus along Northeast China Transect (NECT) and their relationships with climatic factors. Chinese Journal of Plant Ecology, 2002, 26(5): 513-517. 王淑平, 周广胜, 吕育财, 等. 中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系. 植物生态学报, 2002, 26(5): 513-517. [15] Storch D, Bohdalková E, Okie J.The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity-diversity relationship. Ecology Letters, 2018, 21(6): 920-937. [16] He J S, Fang J Y, Ma K P, et al. Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Chinese Journal of Plant Ecology, 2003, 27(6): 835-844. 贺金生, 方精云, 马克平, 等. 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 2003, 27(6): 835-844. [17] Chen D M, Wang Y, Lan Z C, et al. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification. Soil Biology & Biochemistry, 2015, 90: 139-147. [18] Chase J M, Leibold M A.Spatial scale dictates the productivity-biodiversity relationship. Nature, 2002, 416: 427-430. [19] Jiao F, Shi X R, Han F P, et al. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Scientific Reports, 2016, 6: e19601. [20] Fan J W, Wang K, Harris W, et al. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 2009, 73(4/5): 521-528. [21] Office of Soil Survey of Inner Mongolia Autonomous Region. Soil taxonomy of Inner Mongolia, China. Beijing: China Agriculture Press, 1994. 内蒙古自治区土壤普查办公室. 中国内蒙古土种志. 北京: 中国农业出版社, 1994. [22] Wang Y N, Xie J M, Guo X.Application of geostatistical interpolation method in ArcGIS. Software Guide, 2008, 7(12): 36-38. 王艳妮, 谢金梅, 郭祥. ArcGIS中的地统计克里格插值法及其应用. 软件导刊, 2008, 7(12): 36-38. [23] Zhang W T.SPSS11 statistical analysis course (Advanced Chapter). Beijing: Hope Electronic Press, 2002. 张文彤. SPSS11统计分析教程(高级篇). 北京: 希望电子出版社, 2002. [24] Deng X D, Li H S.Statistical data analysis method and technology. Beijing: Economy&Management Publishing House, 2014. 邓旭东, 李红松. 统计数据分析方法与技术. 北京: 经济管理出版社, 2014. [25] Sun P P, Zhuge Y P, Zhang J B, et al. Soil pH was the main controlling factor of the denitrification rates and N2/N2O emission ratios in forest and grassland soils along the Northeast China Transect (NECT). Soil Science and Plant Nutrition, 2012, 58(4): 517-525. [26] Yuan Z Y, Jiao F, Shi X R, et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. Elife, 2017, 6: e23255. [27] Wang M, Xu B, Zhang D Y, et al. Changes in plant community biomass and biodiversity along soil moisture content gradients in Xilin River basin, Inner Mongolia. Journal of Beijing Normal University (Natural Science Edition), 2016, 52(4): 445-449. 王萌, 徐冰, 张大勇, 等. 内蒙古草原锡林河流域植物群落生物量及多样性沿土壤水分含量梯度的变化. 北京师范大学学报(自然科学版), 2016, 52(4): 445-449. [28] Morin X, Fahse L, Jactel H, et al. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Scientific Reports, 2018, 8(1): e5627. [29] Aarssen L W, Laird R A, Pither J.Is the productivity of vegetation plots higher or lower when there are more species? Variable predictions from interaction of the ‘sampling effect’ and ‘competitive dominance effect’ on the habitat templet. Oikos, 2003, 102(2): 427-432. [30] Kahmen A, Perner J, Buchmann N.Diversity-dependent productivity in semi-natural grasslands following climate perturbations. Functional Ecology, 2005, 19(4): 594-601. [31] Klironomos J N, McCune J, Hart M, et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 2000, 3(2): 137-141. [32] Huston M A.Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 1997, 110(4): 449-460. [33] Hector A, Schmid B, Beierkuhnlein C, et al. Plant diversity and productivity experiments in European grasslands. Science, 1999, 286: 1123-1127. [34] Johnson K H, Vogt K A, Clark H J, et al. Biodiversity and the productivity and stability of ecosystems. Trends in Ecology & Evolution, 1996, 11(9): 372-377. [35] Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 3-35. [36] Tilman D, Wedin D, Knops J.Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 1996, 379: 718-720. |