Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (12): 95-104.DOI: 10.11686/cyxb2020036
Previous Articles Next Articles
Ying-kui WANG1(), Yu-rong YANG2, De-li WANG1,2()
Received:
2020-02-05
Revised:
2020-03-11
Online:
2020-12-28
Published:
2020-12-28
Contact:
De-li WANG
Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress[J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104.
盐碱梯度 Saline-alkaline gradient | pH | 电导率 Electrical conductance (μs·cm-1) | 全氮 Total nitrogen (%) | 全磷 Total phosphorus (g·kg-1) | K+ (g·kg-1) | Na+ (g·kg-1 ) |
---|---|---|---|---|---|---|
L | 8.35±0.02c | 267.8±14.9c | 0.23±0.03a | 1.01±0.09a | 0.05±0.01a | 0.05±0.03c |
M | 9.52±0.05b | 410.4±44.3b | 0.16±0.02b | 0.82±0.14a | 0.03±0.01ab | 0.14±0.02b |
S | 10.39±0.05a | 559.0±48.3a | 0.09±0.01c | 0.71±0.10a | 0.02±0.01b | 0.25±0.03a |
Table 1 Soil characteristics with different saline-alkaline gradients
盐碱梯度 Saline-alkaline gradient | pH | 电导率 Electrical conductance (μs·cm-1) | 全氮 Total nitrogen (%) | 全磷 Total phosphorus (g·kg-1) | K+ (g·kg-1) | Na+ (g·kg-1 ) |
---|---|---|---|---|---|---|
L | 8.35±0.02c | 267.8±14.9c | 0.23±0.03a | 1.01±0.09a | 0.05±0.01a | 0.05±0.03c |
M | 9.52±0.05b | 410.4±44.3b | 0.16±0.02b | 0.82±0.14a | 0.03±0.01ab | 0.14±0.02b |
S | 10.39±0.05a | 559.0±48.3a | 0.09±0.01c | 0.71±0.10a | 0.02±0.01b | 0.25±0.03a |
Fig.1 Effects of AMF on Na+, K+, Ca2+ and Mg2+ absorption and distribution in aboveground and belowground of L. chinensis under different saline-alkaline gradients
项目 Item | 盐碱梯度 Saline-alkaline gradient | 处理 Treatment | K+/Na+ | Ca2+/Na+ | Mg2+/Na+ |
---|---|---|---|---|---|
地上Aboveground | L | -AMF | 1.49±0.11Aa | 0.45±0.02Ab | 0.23±0.02Ab |
+AMF | 2.62±0.46Aa | 0.88±0.11Aa | 0.40±0.05Aa | ||
M | -AMF | 0.78±0.05Bb | 0.23±0.02Bb | 0.12±0.01Bb | |
+AMF | 1.25±0.13Ba | 0.44±0.05Ba | 0.22±0.02Ba | ||
S | -AMF | 0.47±0.04Ca | 0.14±0.02Cb | 0.07±0.01Bb | |
+AMF | 0.62±0.07Ba | 0.21±0.01Ca | 0.13±0.01Ca | ||
地下 Belowground | L | -AMF | 0.73±0.05Aa | 0.41±0.02Ab | 0.10±0.01Ab |
+AMF | 1.04±0.12Aa | 0.60±0.04Aa | 0.15±0.01Aa | ||
M | -AMF | 0.55±0.02Ba | 0.30±0.02Bb | 0.07±0.00Bb | |
+AMF | 0.71±0.06Ba | 0.40±0.03Ba | 0.10±0.01Ba | ||
S | -AMF | 0.45±0.03Ba | 0.24±0.02Bb | 0.05±0.00Bb | |
+AMF | 0.53±0.04Ba | 0.32±0.02Ba | 0.08±0.00Ca |
Table 2 Effects of AMF on K+/Na+, Ca2+/Na+, Mg2+/Na+ in aboveground and belowground of L. chinensis under saline-alkaline gradients
项目 Item | 盐碱梯度 Saline-alkaline gradient | 处理 Treatment | K+/Na+ | Ca2+/Na+ | Mg2+/Na+ |
---|---|---|---|---|---|
地上Aboveground | L | -AMF | 1.49±0.11Aa | 0.45±0.02Ab | 0.23±0.02Ab |
+AMF | 2.62±0.46Aa | 0.88±0.11Aa | 0.40±0.05Aa | ||
M | -AMF | 0.78±0.05Bb | 0.23±0.02Bb | 0.12±0.01Bb | |
+AMF | 1.25±0.13Ba | 0.44±0.05Ba | 0.22±0.02Ba | ||
S | -AMF | 0.47±0.04Ca | 0.14±0.02Cb | 0.07±0.01Bb | |
+AMF | 0.62±0.07Ba | 0.21±0.01Ca | 0.13±0.01Ca | ||
地下 Belowground | L | -AMF | 0.73±0.05Aa | 0.41±0.02Ab | 0.10±0.01Ab |
+AMF | 1.04±0.12Aa | 0.60±0.04Aa | 0.15±0.01Aa | ||
M | -AMF | 0.55±0.02Ba | 0.30±0.02Bb | 0.07±0.00Bb | |
+AMF | 0.71±0.06Ba | 0.40±0.03Ba | 0.10±0.01Ba | ||
S | -AMF | 0.45±0.03Ba | 0.24±0.02Bb | 0.05±0.00Bb | |
+AMF | 0.53±0.04Ba | 0.32±0.02Ba | 0.08±0.00Ca |
盐碱梯度Saline-alkaline gradient | 处理Treatment | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|
L | -AMF | 0.47±0.02Ca | 0.97±0.02Aa | 0.52±0.01Ab | 1.07±0.01Aa |
+AMF | 0.41±0.03Ca | 0.99±0.02Aa | 0.59±0.01Aa | 1.07±0.02Ca | |
M | -AMF | 0.64±0.02Ba | 0.91±0.02Ba | 0.50±0.01Ab | 1.11±0.04Aa |
+AMF | 0.52±0.03Bb | 0.91±0.02Ba | 0.55±0.01Ba | 1.13±0.01Ba | |
S | -AMF | 0.77±0.01Aa | 0.79±0.01Ca | 0.45±0.02Ba | 1.15±0.05Aa |
+AMF | 0.71±0.01Ab | 0.81±0.02Ca | 0.48±0.01Ca | 1.18±0.02Aa |
Table 3 Effects of AMF on transportation from belowground to aboveground ratio of inorganic cationsin L. chinensis under saline-alkaline gradients
盐碱梯度Saline-alkaline gradient | 处理Treatment | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|
L | -AMF | 0.47±0.02Ca | 0.97±0.02Aa | 0.52±0.01Ab | 1.07±0.01Aa |
+AMF | 0.41±0.03Ca | 0.99±0.02Aa | 0.59±0.01Aa | 1.07±0.02Ca | |
M | -AMF | 0.64±0.02Ba | 0.91±0.02Ba | 0.50±0.01Ab | 1.11±0.04Aa |
+AMF | 0.52±0.03Bb | 0.91±0.02Ba | 0.55±0.01Ba | 1.13±0.01Ba | |
S | -AMF | 0.77±0.01Aa | 0.79±0.01Ca | 0.45±0.02Ba | 1.15±0.05Aa |
+AMF | 0.71±0.01Ab | 0.81±0.02Ca | 0.48±0.01Ca | 1.18±0.02Aa |
盐碱梯度 Saline-alkaline gradient | 处理Treatment | K+/Na+ | Ca2+/Na+ | Mg2+/Na+ |
---|---|---|---|---|
L | -AMF | 2.06±0.08Aa | 1.11±0.04Ab | 2.27±0.10Aa |
+AMF | 2.45±0.20Aa | 1.46±0.11Aa | 2.66±0.20Aa | |
M | -AMF | 1.42±0.06Bb | 0.78±0.04Bb | 1.73±0.05Bb |
+AMF | 1.75±0.08Ba | 1.07±0.05Ba | 2.18±0.12Ba | |
S | -AMF | 1.04±0.02Ca | 0.58±0.03Cb | 1.50±0.07Ba |
+AMF | 1.14±0.04Ca | 0.67±0.01Ca | 1.65±0.05Ca |
Table 4 Effects of AMF on cations transport selectivity ratioin L. chinensis under saline-alkaline gradients
盐碱梯度 Saline-alkaline gradient | 处理Treatment | K+/Na+ | Ca2+/Na+ | Mg2+/Na+ |
---|---|---|---|---|
L | -AMF | 2.06±0.08Aa | 1.11±0.04Ab | 2.27±0.10Aa |
+AMF | 2.45±0.20Aa | 1.46±0.11Aa | 2.66±0.20Aa | |
M | -AMF | 1.42±0.06Bb | 0.78±0.04Bb | 1.73±0.05Bb |
+AMF | 1.75±0.08Ba | 1.07±0.05Ba | 2.18±0.12Ba | |
S | -AMF | 1.04±0.02Ca | 0.58±0.03Cb | 1.50±0.07Ba |
+AMF | 1.14±0.04Ca | 0.67±0.01Ca | 1.65±0.05Ca |
盐碱梯度 Saline-alkaline gradient | 处理 Treatment | 菌丝侵染率 Hyphae colonization (%) | 丛枝侵染率 Arbuscular colonization (%) | 泡囊侵染率 Vesicle colonization (%) | 孢子密度 Spore density (No.·100 g-1) | 菌丝密度 Hyphae density (cm·g-1) |
---|---|---|---|---|---|---|
L | +AMF | 69.10±3.53A | 11.90±0.78A | 8.29±0.85C | 704.15±52.32A | 113.81±3.21A |
M | 51.62±2.83B | 12.95±0.82A | 11.94±1.45B | 682.20±75.25A | 98.01±4.48B | |
S | 36.22±1.93C | 11.30±0.96A | 15.71±1.14A | 659.86±27.38A | 82.24±6.33C |
Table 5 The colonization characteristics of AMF under different saline-alkaline gradients
盐碱梯度 Saline-alkaline gradient | 处理 Treatment | 菌丝侵染率 Hyphae colonization (%) | 丛枝侵染率 Arbuscular colonization (%) | 泡囊侵染率 Vesicle colonization (%) | 孢子密度 Spore density (No.·100 g-1) | 菌丝密度 Hyphae density (cm·g-1) |
---|---|---|---|---|---|---|
L | +AMF | 69.10±3.53A | 11.90±0.78A | 8.29±0.85C | 704.15±52.32A | 113.81±3.21A |
M | 51.62±2.83B | 12.95±0.82A | 11.94±1.45B | 682.20±75.25A | 98.01±4.48B | |
S | 36.22±1.93C | 11.30±0.96A | 15.71±1.14A | 659.86±27.38A | 82.24±6.33C |
1 | Wang D L, Guo J X. Restoration theory and technology of Songnen saline-alkaline grasslands. Beijing: Science Press, 2019. |
王德利, 郭继勋. 松嫩盐碱化草地的恢复理论与技术. 北京: 科学出版社, 2019. | |
2 | Wang D. How the salinization and alkalization impacted the characteristics of soil celluloytic microorganism in Songnen grassland. Changchun: Northeast Normal University, 2017. |
王丹. 松嫩草地盐碱化对土壤纤维素降解菌特性的影响. 长春: 东北师范大学, 2017. | |
3 | Zhang J L, Li H R, Guo S Y, et al. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. | |
4 | Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25(2): 239-250. |
5 | Zhang Y, Wang P, Yang Y, et al. Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: Implication on vegetation restoration of extremely degraded land. Journal of Arid Environments, 2011, 75(9): 773-778. |
6 | Ba L, Ning J, Wang D, et al. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe. Plant and Soil, 2012, 352(1/2): 143-156. |
7 | Van d H, Marcel G A, Klironomos J N. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396(6706): 69-72. |
8 | Asensio D, Rapparini F, Peñuelas J. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry, 2012, 77: 149-161. |
9 | Heikham E, Thokchom S D, Samta G, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 2019, 10: 470. |
10 | Sohrabi Y, Heidari G, Weisany W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress. Symbiosis, 2012, 56(1): 5-18. |
11 | Zhu X C, Song F B, Liu S Q, et al. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil, 2011, 346(1/2): 189-199. |
12 | Hashem A, Alqarawi A A, Radhakrishnan R, et al. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 2018, 25(6): 1102-1114. |
13 | Pavithra D, Yapa N. Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustainable Development, 2018, 7: 490-494. |
14 | Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2018, 180: 149-154. |
15 | Vogel-Mikuš K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 2005, 133(2): 233-242. |
16 | Luo Q Y, Wang X J, Li Y Y, et al. Mechanism of biological control to plant diseases using arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2013, 33(19): 5997-6005. |
罗巧玉, 王晓娟, 李媛媛, 等. AM真菌在植物病虫害生物防治中的作用机制. 生态学报, 2013, 33(19): 5997-6005. | |
17 | Zhang Y F, Wang P, Bi Q, et al. The effect of the arbuscular mycorrhizal fungi on the growth of Leymus chinensis under saline stress of different intensities. Acta Ecologica Sinica, 2016, 36(17): 5467-5476. |
张义飞, 王平, 毕琪, 等. 不同强度盐胁迫下AM真菌对羊草生长的影响. 生态学报, 2016, 36(17): 5467-5476. | |
18 | Feng G, Bai D S, Yang M Q, et al. Influence of inoculating arbuscular mycorrhizal fungi on growth and salinity tolerance parameters of maize plants. Acta Agronomica Sinica, 2000, 26(6): 743-750. |
冯固, 白灯莎, 杨茂秋, 等. 盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响. 作物学报, 2000, 26(6): 743-750. | |
19 | He X L, Zhao L L, Li Y P. Effects of AM fungi on the growth and protective enzymes of cotton under NaCl stress. Acta Ecologica Sinica, 2005, 25(1): 188-193. |
贺学礼, 赵丽莉, 李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响. 生态学报, 2005, 25(1): 188-193. | |
20 | Chang W, Sui X, Fan X X, et al. Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Frontiers in Microbiology, 2018, 9: 652. |
21 | Wang Y N, Tao S, Hua X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkali stress. Acta Ecologica Sinica, 2018, 38(6): 2187-2194. |
王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响. 生态学报, 2018, 38(6): 2187-2194. | |
22 | Li J D, Zheng H Y. Studies on improving saline-alkaline grassland in Songnen Plain. Journal of Northeast Normal University (Natural Science Edition), 1995, 1: 110-115. |
李建东,郑慧莹. 松嫩平原盐碱化草地改良治理的研究. 东北师大学报(自然科学版), 1995, 1: 110-115. | |
23 | Lin J, Wang Y, Sun S, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Science of the Total Environment, 2017, 576: 234-241. |
24 | Jiang S C. Research on the distribution patterns of soil water and salinity and revegetation of bare saline-alkali patches in Songnen Grassland. Changchun: Northeast Normal University, 2010. |
姜世成. 松嫩盐碱化草地水盐分布格局及盐碱裸地植被快速恢复技术研究. 长春: 东北师范大学, 2010. | |
25 | Zhang W, Feng Y J. Physico-chemical properties and ecological recovery of saline-alkali soil in the Songnen Plain. Acta Pedologica Sinica, 2009, 46(1): 169-172. |
张巍, 冯玉杰. 松嫩平原盐碱土理化性质与生态恢复. 土壤学报, 2009, 46(1): 169-172. | |
26 | Zhang K, Zhang D Y, Wang L, et al. Study on the ionic absorption and transport in Salicornia europaea L. growing in natural habitats in Xinjiang. Arid Zone Research, 2007, 24(4): 480-486. |
张科, 张道远, 王雷, 等. 自然生境下盐角草的离子吸收-运输特征. 干旱区研究, 2007, 24(4): 480-486. | |
27 | Wang S M. Effects of salt stress on the characteristics of ion absorption and distribution in Puccinellia tenuiflora. Acta Agrestia Sinica, 1996, 4(3): 186-193. |
王锁民. 不同程度盐胁迫对碱茅离子吸收与分配的影响. 草地学报, 1996, 4(3): 186-193. | |
28 | Koske R E. Physiological and genetical aspects of mycorrhizae, V. Gianinazzi-Pearson, S. Gianinazzi (Eds.)//In: Proceedings of 1st European symposium on mycorrhizae. Transactions of the British Mycological Society, 1988, 90(3): 509. |
29 | Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 2006, 84(3): 489-500. |
30 | Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46(2): 235-244. |
31 | Xu P L. The role and mechanism of arbuscular mycorrhizal fungi on arsenate tolerance of Medicago truncatula. Beijing: China Agricultural University, 2005. |
许鹏亮. 丛枝菌根真菌对蒺藜状苜蓿抗砷酸能力的影响及其机制. 北京: 中国农业大学, 2005. | |
32 | De Herralde F, Biel C, Savé R, et al. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 1998, 139(1): 9-17. |
33 | Zhou J G, Hu H L, Zeng K, et al. Study on osmotic adjustment on inorganic ions of cucumber seedling under NaCl stress. Journal of Henan Agricultural Sciences, 2010, 39(2): 79-82. |
周俊国, 扈惠灵, 曾凯, 等. NaCl胁迫下黄瓜幼苗无机离子的渗透调节效应. 河南农业科学, 2010, 39(2): 79-82. | |
34 | Zhang H J, Zhang N, Yang R C, et al. Growth, ion distribution and salt-tolerance mechanism of eggplant seedlings under salt stress. Journal of China Agricultural University, 2013, 18(4): 77-83. |
张海军, 张娜, 杨荣超, 等. NaCl胁迫对茄子幼苗生长和K+、Na+和Ca2+分布的影响及耐盐机理. 中国农业大学学报, 2013, 18(4): 77-83. | |
35 | Che Y M, Tang J, Chen K, et al. Effects of nitric oxide on chlorophyll fluorescence parameters and photosynthetic characteristics of maize seedling under salt stress. Journal of Maize Sciences, 2009, 17(3): 91-94. |
车永梅, 唐静, 陈康, 等. 一氧化氮对盐胁迫下玉米幼苗叶绿素荧光参数和光合特性的影响. 玉米科学, 2009, 17(3): 91-94. | |
36 | Wang Q Z, Liu Q, Gao Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. |
王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577. | |
37 | Yang F, Ding F, Du T Z. Absorption and allocation characteristics of K+, Ca2+, Na+ and Cl- in different organs of Broussonetia papyrifera seedlings under NaCl stress. Chinese Journal of Applied Ecology, 2009, 20(4): 767-772. |
杨帆, 丁菲, 杜天真. 盐胁迫下构树幼苗各器官中K+、Ca2+、Na+和Cl-含量分布及吸收特征. 应用生态学报, 2009, 20(4): 767-772. | |
38 | Cao Y P, Dai P, Dai S Y, et al. Effects of arbuscular mycorrhizal fungi (AMF) on seedling growth and Na+, K+, Ca2+, Mg2+ contents and distribution in asparagus under salt stress. Chinese Journal of Ecology, 2015, 34(6): 1699-1704. |
曹岩坡, 代鹏, 戴素英, 等. 丛枝菌根真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+、K+、Ca2+、Mg2+含量和分布的影响. 生态学杂志, 2015, 34(6): 1699-1704. | |
39 | Zheng Q S, Wang R L, Liu Y L. Effects of Ca2+ on absorption and distribution of ions in salt-treated cotton seedlings. Acta Photophysiologica Sinica, 2001, 27(4): 325-330. |
郑青松, 王仁雷, 刘友良. 钙对盐胁迫下棉苗离子吸收分配的影响. 植物生理学报, 2001, 27(4): 325-330. | |
40 | Gosling P, Hodge A, Goodlass G, et al. Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems and Environment, 2006, 113(1/4): 17-35. |
41 | Juniper S, Abbott L. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 2006, 16(5): 371-379. |
42 | Hart M M, Reader R J. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist, 2002, 153(2): 335-344. |
43 | Copeman R H, Martin C A, Stutz J C. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soil. Horticultural Science, 1996, 31(3): 313-318. |
44 | Trimble M R, Knowles N R. Influence of vesicular-arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucurnis sativus L.) plants during establishment. Canadian Journal of Plant Science, 1995, 75(1): 239-250. |
[1] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[2] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[3] | Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115. |
[4] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[5] | ZHAO Xin, WU Zi-long, ZHANG Hao, YANG Xu-zhao, HAN Chao, GAO Jie. Arbuscular mycorrhizal fungal infection rates of flora of the Fengfeng mining area coal gob piles and influence on plant Cd content [J]. Acta Prataculturae Sinica, 2020, 29(5): 78-87. |
[6] | Wu-yun BAI, Xiang-yang HOU, Zi-nian WU, Chun-yu TIAN, Yong DING. Phenotypic variations among Leymus chinensis populations from different geographical areas and effects of variations on clonal propagation of the rhizome [J]. Acta Prataculturae Sinica, 2020, 29(12): 86-94. |
[7] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[8] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[9] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[10] | QI Lin, YANG Ying-bo, ZHANG Bo, ZHAO Wei, WANG Xiao-ling, LIU Yu-hua. Arbuscular mycorrhizal fungi (AMF) enhance phytoremediation of strontium-contaminated soil by Sorghum bicolor seedlings [J]. Acta Prataculturae Sinica, 2018, 27(12): 103-112. |
[11] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[12] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[13] | LI Fang, LI Yan-Zhong, DUAN Ting-Yu. Effects of interactions between a grass endophyte and an arbuscular mycorrhizal fungus on perennial ryegrass growth [J]. Acta Prataculturae Sinica, 2017, 26(9): 132-140. |
[14] | LIU Fang, JING Shu-Xuan, HU Jian, XIAO Yan, ZHANG Ying-Jun. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2017, 26(2): 69-77. |
[15] | GUO Yan-E, WANG Xiao-Yu, GAO Ping, DUAN Ting-Yu. Effects of Glomus mosseae and grass endophytes on the growth of Lolium perenne under phosphorus addition [J]. Acta Prataculturae Sinica, 2017, 26(12): 160-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||