Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (10): 105-115.DOI: 10.11686/cyxb2020375
Qian LI1,2(), Xiao-xia LI1(), Li-qin CHENG1, Shuang-yan CHEN1, Dong-mei QI1, Wei-guang YANG3, Li-jun GAO1, Ba-yin XIN1, Gong-she LIU1()
Received:
2020-08-04
Revised:
2020-09-21
Online:
2021-09-16
Published:
2021-09-16
Contact:
Xiao-xia LI,Gong-she LIU
Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis[J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115.
1 | Zhuang J, Chen J M, Yao Q H, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 2011, 38(2): 745-753. |
2 | Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406. |
3 | Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold‐induced COR gene expression. The Plant Journal, 1998, 16(4): 433-442. |
4 | Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 2002, 130(2): 639-648. |
5 | Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
6 | Eric J, Stockinger, Sarah J, et al. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3): 1035-1040. |
7 | Jaglo-Ottosen K R, Gilmour S J, Zarka D G, et al. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280(5360): 104-106. |
8 | Maceluch J, Kmieciak M, Szweykowska-Kulińska Z, et al. Cloning and characterization of Arabidopsis thaliana AtNAP57-A homologue of yeast pseudouridine synthase Cbf5p. Acta Biochimica Polonica, 2001, 48(3): 699-709. |
9 | Lermontova I, Schubert V, Börnke F, et al. ArabidopsisCBF5 interacts with the H/ACA snoRNP assembly factor NAF1. Plant Molecular Biology, 2007, 65(5): 615-626. |
10 | Magome H, Yamaguchi S, Hanada A, et al. Dwarf and delayed‐flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. The Plant Journal, 2004, 37(5): 720-729. |
11 | Magome H, Yamaguchi S, Hanada A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. The Plant Journal, 2008, 56(4): 613-626. |
12 | Sutton F, Chen D G, Ge X, et al. CBF genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant and-susceptible, winter wheat mutant lines. BMC Plant Biology, 2009, 9(1): 34. |
13 | Choi D W, Rodriguez E M, Close T J. Barley CBF3 gene identification, expression pattern, and map location. Plant Physiology, 2002, 129(4): 1781-1787. |
14 | Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal, 2003, 33(4): 751-763. |
15 | Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006, 47(1): 141-153. |
16 | Xiao H, Tattersall E A R, Siddiqua M K, et al. CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant, Cell & Environment, 2008, 31(1): 1-10. |
17 | Akhtar M, Jaiswal A, Taj G, et al. DREB1/CBF transcription factors: Their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics, 2012, 91(3): 385-395. |
18 | Zhu T C. Leymus chinensis biological ecology. Jilin: Jilin Science Technology Press, 2004. |
祝廷成. 羊草生物生态学. 吉林: 吉林科学技术出版社, 2004. | |
19 | Liu G S, Li X F. Leymus chinensis germplasm resources research. Beijing: Science Press, 2011: 89-93. |
刘公社, 李晓峰.羊草种质资源研究.北京: 科学出版社, 2011: 89-93. | |
20 | Chen S, Huang X, Yan X, et al. Transcriptome analysis in sheepgrass (Leymus chinensis): A dominant perennial grass of the Eurasian Steppe. PLoS One, 2013, 8(7): e67974. |
21 | Cheng L, Peng X, Su M, et al. Cloning and function research of sheepgrass (Leymus chinensis) genes//Sheepgrass (Leymus chinensis): An environmentally friendly native grass for animals. Singapore: Springer, 2019: 247-268. |
22 | Peng X, Zhang L, Zhang L, et al. The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue & Organ Culture, 2013, 113(2): 245-256. |
23 | Cheng L, Li X, Huang X, et al. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2013, 70: 252-260. |
24 | Li X, Gao Q, Liang Y, et al. A novel salt-induced gene from sheepgrass, LcSAIN2, enhances salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 64: 52-59. |
25 | Li X, Hou S, Gao Q, et al. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice. Plant Cell Physiology, 2013, 54(7): 1172-1185. |
26 | Gao Q, Li X, Jia J, et al. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants. Plant Biotechnology Journal, 2016, 14(3): 861-874. |
27 | Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25(3): 674-681. |
28 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25(4): 402-408. |
29 | Clough S J, Bent A F. Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743. |
30 | Gao H J, Lv X P, Wang R J, et al. Application of RNA-seq technology in research on herb, shrub and tree stress resistance. Acta Prataculturae Sinica, 2019, 28(12): 184-196. |
高慧娟, 吕昕培, 王润娟, 等. 转录组测序在林草植物抗逆性研究中的应用. 草业学报, 2019, 28(12): 184-196. | |
31 | Kidokoro S, Watanabe K, Ohori T, et al. Soybean DREB 1/CBF‐type transcription factors function in heat and drought as well as cold stress-responsive gene expression. The Plant Journal, 2015, 81(3): 505-518. |
32 | Zhang X, Fowler S G, Cheng H, et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. The Plant Journal, 2004, 39(6): 905-919. |
33 | Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology, 2004, 45(8): 1042-1052. |
34 | Zhao C, Zhang Z, Xie S, et al. Mutational evidence for the critical role of CBF genes in cold acclimation in Arabidopsis. Plant Physiology, 2016, 171: 2744-2759. |
35 | Shan L W, Zhang Q, Zhu R F, et al. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
单立文, 张强, 朱瑞芬, 等. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响. 草业学报, 2020, 29(8): 46-57. | |
36 | Badawi M, Danyluk J, Boucho B, et al. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Molecular Genetics and Genomics, 2007, 277(5): 533-554. |
37 | Skinner J S, von Zitzewitz J, Szűcs P, et al. Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Molecular Biology, 2005, 59(4): 533-551. |
38 | Peng X J. Leymus chinensis art related DREB transcription factors and SAMDC gene function research. Beijing: Institute of Botany, Chinese Academy of Sciences, 2011. |
彭献军. 羊草抗逆相关DREB转录因子及SAMDC基因功能研究. 北京: 中国科学院植物研究所, 2011. | |
39 | Xiao H, Siddiqua M, Braybrook S, et al. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell & Environment, 2006, 29(7): 1410-1421. |
[1] | Xin-tong ZHAO, Xiao-dong CHEN, Zi-ji LI, Ju-ming ZHANG, Tian-zeng LIU. An evaluation of the effects of the plant endophyte Enterobacter on the salt tolerance of bermudagrass [J]. Acta Prataculturae Sinica, 2021, 30(9): 127-136. |
[2] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[3] | Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance [J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220. |
[4] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[5] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[6] | Wu-yun BAI, Xiang-yang HOU, Zi-nian WU, Chun-yu TIAN, Yong DING. Phenotypic variations among Leymus chinensis populations from different geographical areas and effects of variations on clonal propagation of the rhizome [J]. Acta Prataculturae Sinica, 2020, 29(12): 86-94. |
[7] | Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
[8] | LI Xiao-dong, MO Ben-tian, MOU Qiong, LOU Fen, CHEN Wen-gui, CHEN Guang-ji, ZHANG Yu, HAN Yong-fen. Cloning and function analysis of the high temperature inducible promoter pMsMBF 1c in alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2019, 28(1): 128-137. |
[9] | XIONG Xue, GUI Wei-yang, LIU Mo-han, CHEN Ji-hui, ZHANG Ying-jun. Evaluation of salt tolerance in different alfalfa varieties under uniform and non-uniform salt stress [J]. Acta Prataculturae Sinica, 2018, 27(9): 67-76. |
[10] | KE Dan-xia, PENG Kun-peng, XIA Yuan-jun, ZHU Yu-ying, ZHANG Dan-dan. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus [J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106. |
[11] | MI Yong-wei, WANG Guo-xiang, GONG Cheng-wen, CAI Zi-ping, WU Wei-guo. Effects of salt stress on growth and physiology of Isatis indigotica seedlings [J]. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
[12] | WU Guo-Qiang, FENG Rui-Jun, LI Shan-Jia, WANG Chun-Mei, JIAO Qi, LIU Hai-Long. Effects of salt treatments on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris) [J]. Acta Prataculturae Sinica, 2017, 26(4): 169-177. |
[13] | ZHAO Fengjie, WANG Zhenghao, WANG Huiping, WU Huihui, LIU Hangwei, WANG Guangjun, ZHANG Zehua. The effects of hyper spectral change on grassland biomass after damage by Calliptamus abbreviates populations of different densities [J]. Acta Prataculturae Sinica, 2015, 24(3): 195-203. |
[14] | JIA Xin-Ping, DENG Yan-Ming, SUN Xiao-Bo, LIANG Li-Jian. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
[15] | ZHANG Jin-Lin, LI Hui-Ru, GUO Shu-Yuan, WANG Suo-Min, SHI Hua-Zhong, HAN Qing-Qing, BAO Ai-Ke, MA Qing. Research advances in higher plant adaptation to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 368
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||