Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (3): 129-136.DOI: 10.11686/cyxb2020465
Previous Articles Next Articles
Jin-wei HOU(), Tao CHEN, Zhi-biao NAN()
Received:
2020-10-15
Revised:
2020-11-23
Online:
2021-03-20
Published:
2021-03-09
Contact:
Zhi-biao NAN
Jin-wei HOU, Tao CHEN, Zhi-biao NAN. Effects of fungicide and sowing treatments on seed survival of three plant species on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 129-136.
植物种 Plant species | 千粒重 Thousand seed weight (g) | 长轴 Long axis (mm) | 短轴 Short axis (mm) | 种子发芽率Seed germination (%) |
---|---|---|---|---|
胡枝子L. davurica | 2.97 | 2.26 | 1.30 | 11.2 |
长芒草S. bungeana | 1.31 | 7.63 | 0.60 | 35.7 |
狗尾草S. viridis | 0.73 | 1.88 | 0.92 | 21.4 |
Table 1 Seed parameters of tested plant species
植物种 Plant species | 千粒重 Thousand seed weight (g) | 长轴 Long axis (mm) | 短轴 Short axis (mm) | 种子发芽率Seed germination (%) |
---|---|---|---|---|
胡枝子L. davurica | 2.97 | 2.26 | 1.30 | 11.2 |
长芒草S. bungeana | 1.31 | 7.63 | 0.60 | 35.7 |
狗尾草S. viridis | 0.73 | 1.88 | 0.92 | 21.4 |
变异来源 Variation sources | 自由度 df | 田间发芽率Field germination | 田间死亡率Field mortality | 室内萌发率Lab germination |
---|---|---|---|---|
植物种 Plant species | 2 | 263.39*** | 51.46*** | 536.27*** |
埋藏方式Sowing treatment | 1 | 6.20* | 20.47*** | 5.72* |
杀菌剂处理Fungicide treatment | 1 | 0.19 | 19.28*** | 0.99 |
埋藏时间 Burial time | 1 | 105.19*** | 3.17 | 19.00*** |
植物种×埋藏方式Plant species×sowing treatment | 2 | 1.53 | 2.82 | 1.50 |
植物种×杀菌剂处理Plant species×fungicide treatment | 2 | 1.48 | 3.74* | 0.05 |
埋藏方式×杀菌剂处理Sowing treatment×fungicide treatment | 1 | 0.11 | 0.73 | 0.18 |
植物种×埋藏时间Plant species×burial length | 2 | 5.83** | 0.16 | 204.67*** |
埋藏方式×埋藏时间Sowing treatment×burial length | 1 | 0.38 | 7.29** | 2.70 |
杀菌剂处理×埋藏时间Fungicide treatment×burial length | 1 | 0.10 | 1.82 | 2.47 |
植物种×埋藏方式×杀菌剂处理Plant species×sowing treatment×fungicide treatment | 2 | 1.11 | 0.45 | 2.01 |
植物种×埋藏方式×埋藏时间Plant species×sowing treatment×burial length | 2 | 1.46 | 0.40 | 2.24 |
植物种×杀菌剂处理×埋藏时间Plant species×fungicide treatment×burial length | 2 | 1.14 | 2.31 | 2.16 |
埋藏方式×杀菌剂处理×埋藏时间Sowing treatment×fungicide treatment×burial length | 1 | 0.16 | 0.83 | 0.65 |
植物种×埋藏方式×杀菌剂处理×埋藏时间Plant species ×sowing treatment×fungicide treatment×burial length | 2 | 0.07 | 0.90 | 1.65 |
Table 2 Results from generalized linear mixed models for the effects of plant species, sowing treatment, fungicide treatment, and burial time and their interactions on field germination, field mortality, and lab germination of burial seeds
变异来源 Variation sources | 自由度 df | 田间发芽率Field germination | 田间死亡率Field mortality | 室内萌发率Lab germination |
---|---|---|---|---|
植物种 Plant species | 2 | 263.39*** | 51.46*** | 536.27*** |
埋藏方式Sowing treatment | 1 | 6.20* | 20.47*** | 5.72* |
杀菌剂处理Fungicide treatment | 1 | 0.19 | 19.28*** | 0.99 |
埋藏时间 Burial time | 1 | 105.19*** | 3.17 | 19.00*** |
植物种×埋藏方式Plant species×sowing treatment | 2 | 1.53 | 2.82 | 1.50 |
植物种×杀菌剂处理Plant species×fungicide treatment | 2 | 1.48 | 3.74* | 0.05 |
埋藏方式×杀菌剂处理Sowing treatment×fungicide treatment | 1 | 0.11 | 0.73 | 0.18 |
植物种×埋藏时间Plant species×burial length | 2 | 5.83** | 0.16 | 204.67*** |
埋藏方式×埋藏时间Sowing treatment×burial length | 1 | 0.38 | 7.29** | 2.70 |
杀菌剂处理×埋藏时间Fungicide treatment×burial length | 1 | 0.10 | 1.82 | 2.47 |
植物种×埋藏方式×杀菌剂处理Plant species×sowing treatment×fungicide treatment | 2 | 1.11 | 0.45 | 2.01 |
植物种×埋藏方式×埋藏时间Plant species×sowing treatment×burial length | 2 | 1.46 | 0.40 | 2.24 |
植物种×杀菌剂处理×埋藏时间Plant species×fungicide treatment×burial length | 2 | 1.14 | 2.31 | 2.16 |
埋藏方式×杀菌剂处理×埋藏时间Sowing treatment×fungicide treatment×burial length | 1 | 0.16 | 0.83 | 0.65 |
植物种×埋藏方式×杀菌剂处理×埋藏时间Plant species ×sowing treatment×fungicide treatment×burial length | 2 | 0.07 | 0.90 | 1.65 |
Fig.1 Field germination and mortality in the burial period and lab germination after retrieval of seeds L. davurica, S. bungeana and S. viridis following fungicide treatment and buried in the field for 1 and 3 months in monoculture or mixture (n=10)
1 | Yang L, Wang Y R, Yu J D. Review of research on seed banks of desert regions. Acta Prataculturae Sinica, 2010, 19(2): 227-234. |
杨磊, 王彦荣, 余进德. 干旱荒漠区土壤种子库研究进展. 草业学报, 2010, 19(2): 227-234. | |
2 | Wang N, He X, Zhao F, et al. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration: Soil seed bank in Loess Plateau. Restoration Ecology, 2020, doi.org/10.1111/rec.13169. |
3 | Baskin C C, Baskin J M. Seeds: Ecology, biogeography, and evolution of dormancy and germination, San Diego. USA: Academic Press, 2001. |
4 | Gómez-Aparicio L, Ibánez B, Serrano M S, et al. Spatial patterns of soil pathogens in declining Mediterranean forests: Implications for tree species regeneration. New Phytologist, 2012, 194(4): 1014-1024. |
5 | Westerman P R, Liebman M, Heggenstaller A H, et al. Integrating measurements of seed availability and removal to estimate weed seed losses due to predation. Weed Science, 2006, 54(3): 566-574. |
6 | Leishman M, Masters G, Clarke I, et al. Seed bank dynamics: The role of fungal pathogens and climate change. Functional Ecology, 2000, 14(3): 293-299. |
7 | Li Y, Shaffer J, Hall B, et al. Soil-borne fungi influence seed germination and mortality, with implications for coexistence of desert winter annual plants. PLoS One, 2019, 14: e0224417. |
8 | Mordecai E. Soil moisture and fungi affect seed survival in California grassland annual plants. PLoS One, 2012, 7: e39083. |
9 | Crist T O, Friese C F. The impact of fungi on soil seeds: Implications for plants and granivores in a semiarid shrub-steppe. Ecology, 1993, 74(8): 2231-2239. |
10 | O’Hanlon-Manners D, Kotanen P. Evidence that fungal pathogens inhibit recruitment of a shade-intolerant tree, white birch (Betula papyrifera), in understory habitats. Oecologia, 2004, 140(4): 650-653. |
11 | Moles A, Westoby M. Seedling survival and seed size: A synthesis of the literature. Journal of Ecology, 2004, 92: 372-383. |
12 | Janzen D H. Herbivores and the number of tree species in tropical forests. The American Naturalist, 1970, 104(940): 501-528. |
13 | Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees//Den Boer P J, Gradwell G R, Edition. Dynamics of Populations. The Netherlands: Centre for Agricultural Publishing and Documentation, Wageningen, 1971. |
14 | Jia S, Wang X, Yuan Z, et al. Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 2020, 11: 286. |
15 | Bagchi R, Swinfield T, Rachel G, et al. Testing the Janzen-Connell mechanism: Pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 2010, 13: 1262-1269. |
16 | Detto M, Visser M, Wright S J, et al. Bias in the detection of negative density dependence in plant communities. Ecology Letters, 2019, 22: 1923-1939. |
17 | LaManna J, Mangan S, Alonso A, et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356: 1389-1392. |
18 | Liu X, Etienne R S, Liang M, et al. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology, 2015, 96(3): 662-671. |
19 | Petermann J S, Fergus A J, Turnbull L A, et al. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 2008, 89(9): 2399-2406. |
20 | Hou F J, Xiao J Y, Nan Z B. Eco-restoration of abandoned farmland in the Loess Plateau. Chinese Journal of Applied Ecology, 2002, 13(8): 923-929. |
侯扶江, 肖金玉, 南志标. 黄土高原退耕地的生态恢复. 应用生态学报, 2002, 13(8): 923-929. | |
21 | Schafer M, Kotanen P M. Impacts of naturally-occurring soil fungi on seeds of meadow plants. Plant Ecology, 2004, 175(1): 19-35. |
22 | R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org/.2016. |
23 | Wagner M, Mitschunas N. Fungal effects on seed bank persistence and potential applications in weed biocontrol: A review. Basic and Applied Ecology, 2008, 9(3): 191-203. |
24 | Harman G. Mechanisms of seed infection and pathogenesis. Phytopathology, 1983, 73: 326-329. |
25 | Kirkpatrick B, Bazzaz F. Influence of certain fungi on seed germination and seedling survival of four colonizing annuals. Journal of Applied Ecology, 1979, 16(2): 515-527. |
26 | Chen T, Nan Z, Zhang X, et al. Does dormancy protect seeds against attack by the pathogenic fungus Fusarium tricinctum in a semiarid grassland of Northwest China? Plant & Soil, 2018, 422(1): 155-168. |
27 | Footitt S, Douterelo Soler I, Clay H, et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences, 2011, 108(50): 20236-20241. |
28 | Hoyle G L, Venn S E, Steadman K J, et al. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Global Change Biology, 2013, 19(5): 1549-1561. |
29 | Chee-Sanford J C, Williams II M M, Davis A S, et al. Do microorganisms influence seed-bank dynamics?Weed Science, 2009, 54: 575-587. |
30 | Van Mourik T A, Stomph T J, Murdoch A J. Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks. Journal of Applied Ecology, 2005, 42(2): 299-305. |
31 | Mitschunas N, Wagner M, Filser J. Evidence for a positive influence of fungivorous soil invertebrates on the seed bank persistence of grassland species. Journal of Ecology, 2006, 94(4): 791-800. |
32 | Dalling J W, Davis A S, Schutte B J, et al. Seed survival in soil: Interacting effects of predation, dormancy and the soil microbial community. Journal of Ecology, 2011, 99(1): 89-95. |
33 | Hu X W, Zhou Z Q, Li T S, et al. Environmental factors controlling seed germination and seedling recruitment of Stipa bungeana on the Loess Plateau of northwestern China. Ecological Research, 2013, 28: 801-809. |
34 | Wang N, Jiao J Y, Jia Y F, et al. Seed persistence in the soil on eroded slopes in the hilly-gullied Loess Plateau region, China. Seed Science Research, 2011, 21(4): 295-304. |
[1] | MA Ya-ling, LIU Hui, LIU Yang, LI Chun-jie. Response of biological characteristics of two color morphs of pea aphid (Acyrthosiphon pisum) to different soybean varieties [J]. Acta Prataculturae Sinica, 2020, 29(3): 96-102. |
[2] | DUAN Xin-le, XIONG Man-qiong, LIU Wen-bin, ZHAO Bi-an, HUANG Shao-kang, LI Jiang-hong. Effects of three fungicides on the activities of protective enzymes and detoxifying enzymes in Apis mellifera [J]. Acta Prataculturae Sinica, 2020, 29(11): 74-82. |
[3] | LIU Jia-he, NIU Yi-ning, LUO Zhu-zhu, CAI Li-qun, ZHANG Ren-zhi, XIE Jun-hong. Soil water utilization characteristics of slope land in hedgerow and grain crop intercropping systems on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(6): 111-119. |
[4] | CHENG Qi-ming, GE Gen-tu, YIN Qiang, LIU Li-ying, FAN Wen-qiang, JIANG Xiao-wei, LU Qiang, BAO Jian, JIA Yu-shan. Effect of moisture, bale density and CaO on storage life and quality of alfalfa hay [J]. Acta Prataculturae Sinica, 2018, 27(5): 190-200. |
[5] | ZHAO Gang, LI Shang-zhong, ZHANG Jian-jun, WANG Lei, DANG Yi, FAN Ting-lu, WANG Shu-ying*, CHENG Wan-li. Effects of sowing methods on sowing quality growth and development of maize planted under full-film mulching in double-ridge burrows in Loess Plateau East of Gansu [J]. Acta Prataculturae Sinica, 2018, 27(12): 145-155. |
[6] | ZHANG Xu-cheng, MA Yi-fan, YU Xian-feng, HOU Hui-zhi, WANG Hong-li, FANG Yan-jie. Effects of vertical rotary sub-soiling on soil water characteristics and potato tuber yield in a semi-arid area of northwest China [J]. Acta Prataculturae Sinica, 2018, 27(12): 156-165. |
[7] | WANG Chun-yan, YAN Xia, GU Meng-he. The interaction effects of vegetation and soil nutrients on vegetation succession in abandoned farmland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(11): 26-35. |
[8] | LIANG Zhi-Ting, DENG Jian-Qiang, WANG Zi-Kui, SHEN Yu-Ying, WANG Xian-Zhi. Differences in soil bacterial community composition among three forage-crop rotations on the Longdong Loess Plateau [J]. Acta Prataculturae Sinica, 2017, 26(8): 180-191. |
[9] | LIU Jia-Jia, ZHOU Yu, ZHANG Pan-Pan, CHAO Gui-Mei, ZHU Ming-Qi, FENG Bai-Li. Efficacy of fungicides for control of head smut (Sporisorium destruens) in broomcorn millet [J]. Acta Prataculturae Sinica, 2016, 25(9): 132-141. |
[10] | ZHAO Jing-Jing, LUO Zhu-Zhu, ZHANG Ren-Zhi, CAI Li-Qun, LI Ling-Ling, NIU Yi-Ning. Soil carbon fraction differences under different grass-crop rotations on the Loess Plateau, Central Gansu [J]. Acta Prataculturae Sinica, 2016, 25(2): 58-67. |
[11] | LUO Zhu-Zhu, LI Ling-Ling, NIU Yi-Ning, CAI Li-Qun, ZHANG Ren-Zhi, XIE Jun-Hong. Response of soil aggregate stability and soil organic carbon fractions to different growth years of alfalfa [J]. Acta Prataculturae Sinica, 2016, 25(10): 40-47. |
[12] | DING Xiao-Dong, ZHANG Shi-Rong, LIU Yang-Chao, FENG Gu. Study of resistance to dehydration in Haloxylon ammodendron and Suaeda physophora seedlings [J]. Acta Prataculturae Sinica, 2015, 24(11): 240-246. |
[13] | WANG Shu-zhuan,HAO Ming-de,PU Qiong,WU Zhen-hai. Ecological and productive succession process of a cultivated alfalfa grassland community on Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(6): 1-10. |
[14] | QI Jing-hua,ZHANG Feng,WANG Ying,SUN Guo-jun. Nitrogen dynamics under plastic mulching on the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 13-23. |
[15] | HU Shu,JIAO Ju-ying,DU Hua-dong,MIAO Fang. Antioxidant properties of plants on different sites in the hilly-gullied Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||