Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (4): 150-159.DOI: 10.11686/cyxb2020411
Previous Articles Next Articles
Long WANG1(), Jie FAN1, Chang WEI1, Ge-zi LI2, Jing-jing ZHANG1, Qiu-juan JIAO1, Guo CHEN3, Luan-zi SUN4, Hai-tao LIU1()
Received:
2020-09-07
Revised:
2020-10-29
Online:
2021-04-20
Published:
2021-03-16
Contact:
Hai-tao LIU
Long WANG, Jie FAN, Chang WEI, Ge-zi LI, Jing-jing ZHANG, Qiu-juan JIAO, Guo CHEN, Luan-zi SUN, Hai-tao LIU. Mitigative effect of exogenous ascorbic acid on the growth of copper-stressed chicory (Cichorium intybus) seedlings[J]. Acta Prataculturae Sinica, 2021, 30(4): 150-159.
处理 Treatment | 根长 Root length (cm) | 茎叶长 Shoot height (cm) | 根系干重 Root dry weight (g·plant-1) | 茎叶干重 Shoot dry weight (g·plant-1) | 根系耐受指数 Tolerance index of root (%) | 茎叶耐受指数 Tolerance index of shoot (%) |
---|---|---|---|---|---|---|
CK | 33.20±2.79a | 27.57±2.81a | 0.18±0.01a | 0.97±0.08a | 100.00±0.24a | 100.00±2.08a |
AsA200 | 28.45±2.57ab | 25.13±2.09ab | 0.16±0.02a | 0.77±0.10ab | 88.89±0.44b | 79.38±1.29b |
Cu50 | 23.47±2.96b | 17.02±2.71b | 0.10±0.01b | 0.53±0.06b | 55.56±0.26c | 54.64±0.96c |
Cu50+AsA200 | 25.42±1.52b | 23.05±1.79ab | 0.13±0.01ab | 0.68±0.11ab | 77.80±0.25b | 70.10±0.67b |
Table 1 Effect of exogenous AsA on the biomass and tolerance index of chicory seedling under Cu stress
处理 Treatment | 根长 Root length (cm) | 茎叶长 Shoot height (cm) | 根系干重 Root dry weight (g·plant-1) | 茎叶干重 Shoot dry weight (g·plant-1) | 根系耐受指数 Tolerance index of root (%) | 茎叶耐受指数 Tolerance index of shoot (%) |
---|---|---|---|---|---|---|
CK | 33.20±2.79a | 27.57±2.81a | 0.18±0.01a | 0.97±0.08a | 100.00±0.24a | 100.00±2.08a |
AsA200 | 28.45±2.57ab | 25.13±2.09ab | 0.16±0.02a | 0.77±0.10ab | 88.89±0.44b | 79.38±1.29b |
Cu50 | 23.47±2.96b | 17.02±2.71b | 0.10±0.01b | 0.53±0.06b | 55.56±0.26c | 54.64±0.96c |
Cu50+AsA200 | 25.42±1.52b | 23.05±1.79ab | 0.13±0.01ab | 0.68±0.11ab | 77.80±0.25b | 70.10±0.67b |
处理 Treatment | 净光合速率 Net photosynthetic rate (μmol CO2·m-2·s-1) | 气孔导度 Stomatal conductance (mol H2O·m-2·s-1) | 胞间二氧化碳浓度Intercellular CO2 concentration (μmol CO2·mol-1) | 蒸腾速率 Transpiration rate (mmol H2O·m-2·s-1) | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 类胡萝卜素Carotenoids (mg·g-1) | 叶绿素(a+b)Chlorophyll (a+b) (mg·g-1) |
---|---|---|---|---|---|---|---|---|
CK | 19.69±1.19a | 0.30±0.05a | 572.49±56.63a | 3.46±0.35a | 1.24±0.06a | 2.53±0.04a | 0.44±0.03a | 3.76±0.10a |
AsA200 | 14.46±1.63b | 0.25±0.02a | 454.69±54.46ab | 2.87±0.36b | 1.13±0.09a | 2.41±0.07a | 0.42±0.02a | 3.54±0.16a |
Cu50 | 9.97±1.29c | 0.09±0.02c | 359.92±28.37b | 1.75±0.49c | 0.72±0.06b | 1.86±0.11b | 0.29±0.01b | 2.58±0.17b |
Cu50+AsA200 | 14.35±1.25b | 0.15±0.03b | 447.30±41.92ab | 2.94±0.27b | 1.18±0.05a | 2.18±0.07a | 0.35±0.02b | 3.36±0.13a |
Table 2 Effect of exogenous AsA on the photosynthetic parameters and chlorophyll content of chicory seedling under Cu stress
处理 Treatment | 净光合速率 Net photosynthetic rate (μmol CO2·m-2·s-1) | 气孔导度 Stomatal conductance (mol H2O·m-2·s-1) | 胞间二氧化碳浓度Intercellular CO2 concentration (μmol CO2·mol-1) | 蒸腾速率 Transpiration rate (mmol H2O·m-2·s-1) | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 类胡萝卜素Carotenoids (mg·g-1) | 叶绿素(a+b)Chlorophyll (a+b) (mg·g-1) |
---|---|---|---|---|---|---|---|---|
CK | 19.69±1.19a | 0.30±0.05a | 572.49±56.63a | 3.46±0.35a | 1.24±0.06a | 2.53±0.04a | 0.44±0.03a | 3.76±0.10a |
AsA200 | 14.46±1.63b | 0.25±0.02a | 454.69±54.46ab | 2.87±0.36b | 1.13±0.09a | 2.41±0.07a | 0.42±0.02a | 3.54±0.16a |
Cu50 | 9.97±1.29c | 0.09±0.02c | 359.92±28.37b | 1.75±0.49c | 0.72±0.06b | 1.86±0.11b | 0.29±0.01b | 2.58±0.17b |
Cu50+AsA200 | 14.35±1.25b | 0.15±0.03b | 447.30±41.92ab | 2.94±0.27b | 1.18±0.05a | 2.18±0.07a | 0.35±0.02b | 3.36±0.13a |
处理 Treatment | 根系Root | 茎叶Shoot | 转运系数 Translocation factor | ||
---|---|---|---|---|---|
Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | ||
CK | 6.32±1.12 | 1.13±0.88 | 2.43±0.52 | 2.36±0.31 | |
Cu50 | 158.19±2.68 | 15.82±1.41 | 41.44±0.84 | 21.96±2.50 | 1.39±1.13 |
Cu50+AsA200 | 118.84±2.21 | 15.45±1.69 | 27.08±0.69 | 18.41±2.19 | 1.19±0.95 |
Table 3 Effect of exogenous AsA on the Cu content and translocation factor of chicory seedling under Cu stress
处理 Treatment | 根系Root | 茎叶Shoot | 转运系数 Translocation factor | ||
---|---|---|---|---|---|
Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | ||
CK | 6.32±1.12 | 1.13±0.88 | 2.43±0.52 | 2.36±0.31 | |
Cu50 | 158.19±2.68 | 15.82±1.41 | 41.44±0.84 | 21.96±2.50 | 1.39±1.13 |
Cu50+AsA200 | 118.84±2.21 | 15.45±1.69 | 27.08±0.69 | 18.41±2.19 | 1.19±0.95 |
1 | Sun J W, Huang Y Z, Shi M C, et al. The review of heavy metals biotoxicity in soil. Acta Ecologica Sinica, 2008, 28(6): 2861-2869. |
孙晋伟, 黄益宗, 石孟春, 等. 土壤重金属生物毒性研究进展. 生态学报, 2008, 28(6): 2861-2869. | |
2 | Chen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017, 36(9): 1689-1692. | |
3 | Hansch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009,12(3): 259-266. |
4 | Xue Y W, Wang Y F, Zhao C J, et al. Effects of copper stress on germination and antioxidant system in wheat seedings. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(1): 54-59. |
薛盈文, 王玉凤, 赵长江, 等. 铜胁迫对小麦种子萌发及幼苗抗氧化系统的影响. 江西农业大学学报, 2016, 38(1): 54-59. | |
5 | Yadav S K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 2010, 76(2): 167-179. |
6 | Wang R N, Nie L C, Zhang S S, et al. Research progress on plant resistance to heavy metal stress. Acta Horticulturae Sinica, 2019, 46(1): 157-170. |
王若男, 乜兰春, 张双双, 等. 植物抗重金属胁迫研究进展. 园艺学报, 2019, 46(1): 157-170. | |
7 | Zhang X F, Xiao H P, Li Z A, et al. Forage grass in phytoremediation of heavy metals-contaminated soils: A review. Chinese Journal of Ecology, 2009, 28(8): 1640-1646. |
张杏锋, 夏汉平, 李志安, 等. 牧草对重金属污染土壤的植物修复综述. 生态学杂志, 2009, 28(8): 1640-1646. | |
8 | Zhou Q X, Tang J C, Wei S H. Discussion on geochemical bases and relevant theories of environmental green remediation. Journal of Ecology and Rural Environment, 2020, 36(1): 1-10. |
周启星, 唐景春, 魏树和. 环境绿色修复的地球化学基础与相关理论探讨. 生态与农村环境学报, 2020, 36(1): 1-10. | |
9 | Elbanna M F, Mosa A, Gao B, et al. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere, 2018, 208: 887-898. |
10 | Li H L, Tang Y J, Zeng F. Effects of multiple contamination of uranium and heavy metals on chlorophyll fluorescence characteristics of Cichorium intybus L. Journal of Natural Science of Hunan Normal University, 2015, 38(2): 17-23. |
李华丽, 唐永金, 曾峰. 铀和重金属复合污染对菊苣叶绿素荧光特性的影响. 湖南师范大学自然科学学报, 2015, 38(2): 17-23. | |
11 | Wang Q Z, Cui J. Use potential of a forage chicory: Ⅱ utilization value and exploitive potential. Pratacultural Science, 2010, 27(2): 150-156. |
王佺珍, 崔健. 牧草菊苣及其利用潜力Ⅱ利用价值和开发潜力. 草业科学, 2010, 27(2): 150-156. | |
12 | Wang Q Z, Cui J. A review on pharmic effect of chicory research and development. China Journal of Chinese Materia Medica, 2009, 34(17): 2269-2272. |
王佺珍, 崔健. 菊苣的药理药效研究及开发前景. 中国中药杂志, 2009, 34(17): 2269-2272. | |
13 | Sha L J, He L Z, Yang M B, et al. Relationship of absorption and accumulation of heavy metals by Cichorium intybus L. (partim) with soil chemistry. Southwest China Journal of Agricultural Sciences, 2018, 31(5): 1019-1024. |
沙凌杰, 和丽忠, 杨明斌, 等. 饲用欧洲菊苣吸收积累土壤重金属与土壤性质的关系. 西南农业学报, 2018, 31(5): 1019-1024. | |
14 | Pang L Y, Zhang H, Luo C Y, et al. Forage crop rotation and it’s benefit in the purple farming area of Sichuan Province. Acta Prataculturae Sinica, 2010, 19(3): 110-116. |
庞良玉, 张鸿, 罗春燕, 等. 四川紫色丘陵农区坡耕地饲草种植模式及效益. 草业学报, 2010, 19(3): 110-116. | |
15 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
16 | Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany, 2014, 64(2): 433-443. |
17 | Gallie D R, Ashihara H, Riganti C, et al. L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica, 2013, 11(24): 755-764. |
18 | Guo T R. Alleviative effects of exogenous ascorbic acid on aluminum toxicity in barley seedlings. Journal of Triticeae Crops, 2012, 32(5): 895-899. |
郭天荣. 外源抗坏血酸对铝毒害大麦幼苗的缓解效应. 麦类作物学报, 2012, 32(5): 895-899. | |
19 | Zhou X H, Gu Z H, Xu H N, et al. The effects of exogenous ascorbic acid on photosynthetic characteristics in Oryza sativa L. under aluminum stress. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(3): 73-78. |
周小华, 谷照虎, 徐慧妮, 等. 外源抗坏血酸AsA对铝胁迫下水稻光合特性的影响. 扬州大学学报(农业与生命科学版), 2015, 36(3): 73-78. | |
20 | Wu L F, Lu W D, Wei X M, et al. Effect of lead and mercury combined with ascorbic acid treatment on the genetoxic of Vicia faba. Experiment Science and Technology, 2015, 13(3): 40-42. |
吴丽芳, 陆伟东, 魏晓梅, 等. 抗坏血酸对铅、汞胁迫下蚕豆根尖染色体畸变的研究. 实验科学与技术, 2015, 13(3): 40-42. | |
21 | Xu F F, Wang A B. Effects of ascorbic acid on active oxygen metabolism of rice chloroplast under salt stress. Hybrid Rice, 2016, 31(3): 68-70, 75. |
徐芬芬, 王爱斌. 抗坏血酸对盐胁迫下水稻叶绿体活性氧代谢的影响. 杂交水稻, 2016, 31(3): 68-70,75. | |
22 | Dong Q L, Xia F S, Li X Y, et al. Effect of ascorbic acid priming on the vigor of oat seeds under NaCl stress. Acta Prataculturae Sinica, 2018, 27(4): 202-208. |
董秋丽, 夏方山, 李晓禹, 等. 抗坏血酸引发对NaCl胁迫燕麦种子活力的影响. 草业学报, 2018, 27(4): 202-208. | |
23 | Stallen N V, Noten V, Demeulemeester M, et al. Identification of commercial chicory cultivars for hydroponic forcing and their phenetic relationships revealed by random amplified polymorphic DNAs and amplified fragment length polymorphisms. Plant Breeding, 2010, 119(3): 265-270. |
24 | Li H Q, Wang W H, Jiang X W. Effects of exogenous ascorbic acid on seedling growth, copper accumulation and antioxidant enzyme activities of Pogostemon cablin under copper stress. Environmental Chemistry, 2016, 35(7): 1431-1437. |
李贺勤, 王维华, 江绪文. 抗坏血酸对铜胁迫下广藿香幼苗生长、铜积累和抗氧化酶活性的影响. 环境化学, 2016, 35(7): 1431-1437. | |
25 | Sharma R, Bhardwaj R, Thukrala K. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (Ⅱ) stress. Ecotoxicology and Environmental Safety, 2019, 182: 3814-3825. |
26 | Chen J X, Wang X F. Plant physiology experiment guide. Guangzhou: South China University of Technology Press, 2006. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. | |
27 | Wang X K, Huang J L. Experimental principles and techniques of plant physiology and biochemistry. Beijing: Higher Education Press. 2015. |
王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. | |
28 | Law M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemistry, 1983, 210(3): 899-903. |
29 | Chen Q, Zhang X D, Wang S S, et al. Transcriptional and physiological changes of alfalfa in response to aluminium stress. Journal of Agricultural Science, 2011, 149(6): 737-752. |
30 | Giannopolitis C N, Ries S K. Superoxide dismutase I. Occurrence in high plants. Plant Physiology, 1977, 59(2): 309-314. |
31 | Chance B, Mehley A C. Assay of catalase and peroxidase. Methods in Enzymology, 1955, 136(2): 764-775. |
32 | Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. |
33 | Nakano K, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880. |
34 | Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiology Plantarum, 2008, 133(3): 481-489. |
35 | Ding Y, Liu J D, Shi R R. Effects of adding cadmium and copper to chicory seedlings. Jiangxi Journal of Animal Husband & Veterinary Medicine, 2008, 11(3): 28-29. |
丁园, 刘继东, 史蓉蓉. 外源添加镉、铜对菊苣幼苗的影响. 江西畜牧兽医杂志, 2008, 11(3): 28-29. | |
36 | Raza M A S, Saleem M F, Ashraf M Y, et al. Glycine betaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil Environment, 2012, 31(1): 67-71. |
37 | Guo S K, Zhao K F. The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings. Journal of Plant Physiology and Molecular Biology, 2001, 27(6): 461-466. |
郭书奎, 赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理. 植物生理学报, 2001, 27(6): 461-466. | |
38 | Zhou X H, Zhou Z Y, Li K Z. Effects of exogenous ascorbic acid on alleviating aluminum stress in rice seedlings. Guihaia, 2020, 40(4): 526-535. |
周小华, 周泽仪, 李昆志. 外源抗坏血酸缓解水稻幼苗的铝胁迫效应. 广西植物, 2020, 40(4): 526-535. | |
39 | Laporte D, Valdés, Natalia, et al. Copper-induced increases in the level of transcripts encoding enzymes of the antioxidant system and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa. Aquatic Toxicology, 2016, 177(8): 433-440. |
40 | Asgharipour M R, Khatamipour M, Razavi-Omrani M. Phytotoxicity of cadmium on seed germination, early growth, proline and carbohydrate content in two wheat varities. Iranian Journal of Medical Physics, 2014, 5(4): 559-565. |
41 | Movahed N, Eshghi S, Jamali B, et al. Ameliorative effects of paclobutrazol on vegetative and physiological traits of grapevine cuttings under water stress condition. Acta Horticulturae, 2012, 931: 475-483. |
42 | Li H, Chang J J, Chen H J, et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science, 2017(8): 295-298. |
43 | Xiao X W, Xu X, Yang F. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 2008, 42(5): 705-719. |
44 | Tian S K, Li Y X, Yang X E, et al. Mechanisms of copper uptake, transportation and detoxification in plants. Chinese Journal of Soil Science, 2006, 37(2): 387-394. |
田生科, 李延轩, 杨肖娥, 等. 植物对铜的吸收运输及毒害机理研究进展. 土壤通报, 2006, 37(2): 387-394. | |
45 | Kim J Y, Lee S I, Kim J A, et al. Sound waves increases the ascorbic acid content of alfalfa sprouts by affecting the expression of ascorbic acid biosynthesis-related genes. Plant Biotechnology Reports, 2017, 11(5): 355-364. |
46 | Varkouhi A K, Mountrichas G, Schiffelers R M, et al. Polyplexes based on cationic polymers with strong nucleic acid binding properties. European Journal of Pharmaceutical Sciences, 2012, 45(4): 459-466. |
47 | Apel K, Hirt H. Reactive oxygen spedes: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. |
48 | Pandhair V, Sekhon B S. Reactive oxygen species and antioxidants in plants: An overview. Journal of Plant Biochemistry Biotechnology, 2006, 15(2): 71-78. |
49 | Huang S C, Wang X D, Liu X, et al. Isolation, identification, and characterization of an aluminum-tolerant Bacterium burkholderia sp. SB1 from anacidic red soil. Pedosphere, 2018, 28(6): 905-912. |
50 | Fan W, Xu J M, Wu P, et al. Alleviation by abscisic acid of Al toxicity in rice bean is not associated with citrate efflux but depends on ABI5-mediated signal transduction pathways. Journal of Integrative Plant Biology, 2019, 61(2): 140-154. |
51 | Muhammad N, Zvobgo G, Fu L, et al. Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. Journal of Plant Nutrition, 2019, 42(5): 466-476. |
52 | Venkatesh J, Park S W. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies, 2014, 55(1): 38-52. |
53 | Gul H, Ahmad R, Hamayun M. Impact of exogenously applied AsA on growth, some biochemical constituents and ionic composition of guar (Cymopsis tetragonoloba) subjected to salinity stress. Pakhtunkhwa Journal of Life Science, 2015, 3(12): 22-40. |
[1] | Hai-xia HUANG, Qi-qi YANG, Peng CUI, Gang LU, Guo-jun HAN. Changes in morphological and physiological characteristics of Gymnocarposprzewalskii roots in response to water stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 197-207. |
[2] | LI Ke, SHI Chong, HE Fei-yan, LI Hao-yu. Effects of endophyte infection on growth and physiological characteristics of Melica transsilvanica under Pb stress [J]. Acta Prataculturae Sinica, 2020, 29(3): 112-120. |
[3] | Yong HUANG, Meng GUO, Hong-rui ZHANG, Yan ZHOU, He-min LI, Zhi-ming GAO, Pan-pan WANG. Effects of salt stress on seed germination and seedling growth of carnation [J]. Acta Prataculturae Sinica, 2020, 29(12): 105-111. |
[4] | LI Zhen, YUN Lan, SHI Zi-ying, WANG Jun, ZHANG Chen, GUO Hong-yu, SHENG Yu. Physiological characteristics of Psathyrostachys juncea at seed germination and seedling growth stages under salt stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 119-129. |
[5] | WU Xiao, HE Xiu-juan, WU Chao, DONG Yu-feng, ZHANG Yan, XU Yu, QIN Wei-dong, LÜ Jun, WANG San-gen, ZONG Xue-feng. Effect of shading on photosynthetic and antioxidant characteristics of Pueraria lobata [J]. Acta Prataculturae Sinica, 2019, 28(5): 68-78. |
[6] | SUN Ming, WANG Si-qi, Aierken· Dawuti, MAO Pei-sheng. Effects of antioxidant priming on germination and seedling growth of aged seeds of smooth bromegrass [J]. Acta Prataculturae Sinica, 2019, 28(11): 105-113. |
[7] | ZHOU Wen-fei, LIU Fu-rong, YAO Zhen-ye, GONG Chun-mei. Growth adaptation characteristics of three Salsola species with different photosynthetic systems [J]. Acta Prataculturae Sinica, 2019, 28(10): 78-90. |
[8] | WANG Yu, ZHOU Rui-ying, MA Li-min, BAI Yu, GUAN Jia-li, TANG Xiao-qing. Seed germination and seedling growth responses of Isatis indigotica in five populations from saline environments [J]. Acta Prataculturae Sinica, 2018, 27(7): 145-154. |
[9] | DONG Qiu-li, XIA Fang-shan, LI Xiao-yu, WANG Ming-ya, MAO Pei-sheng, ZHU Hui-sen,TONG Li-rong, DU Li-xia. Effect of ascorbic acid priming on the vigor of oat seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2018, 27(4): 202-208. |
[10] | XU Pian-pian, WANG Jian-zhu. Drought resistance of three common slope plants determined in a simulated drought experiment [J]. Acta Prataculturae Sinica, 2018, 27(2): 36-47. |
[11] | SUN Shou-jiang, SHI Shang-li, WU Zhao-lin, HE Li-juan, JIN Xin, QI Juan. Effects of kinetin on telomerase activity and physiological characteristics of Elymus sibiricus seedings under salt stress [J]. Acta Prataculturae Sinica, 2018, 27(11): 87-94. |
[12] | YANG Hong-Wei, LIU Wen-Yu, SHEN Bao-Yun, LI Chao-Zhou. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress [J]. Acta Prataculturae Sinica, 2017, 26(8): 146-153. |
[13] | LIU Zhao-Na, GUO Shao-Xia, LI Wei. Effect of arbuscular mycorrhizal fungi on growth and physiological characteristics of Lilium brownii [J]. Acta Prataculturae Sinica, 2017, 26(11): 85-93. |
[14] | LIANG Xiao-Hong, AN Meng-Ying, SONG Zheng, XU Guang-Chen, PUYANG Xue-Hua. Effects of exogenous glycine betaine on the physiological characteristics of Zoysia japonica under low-temperature stress [J]. Acta Prataculturae Sinica, 2015, 24(9): 181-188. |
[15] | ZHU Hui-Sen, WANG Bao-Ping, DONG Xiao-Yan, DONG Kuan-Hu, LI Cun-Fu. Effects of drought stress and rewatering on the growth and physiological characteristics of Shanxi wild Poa pratensis seedlings [J]. Acta Prataculturae Sinica, 2015, 24(7): 79-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||