Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (8): 119-126.DOI: 10.11686/cyxb2020308
Feng-hui GUO1,2(), Yong DING1, Wen-jing MA3, Xian-song LI1, Xi-liang LI1(), Xiang-yang HOU1,2()
Received:
2020-06-30
Revised:
2020-10-29
Online:
2021-07-09
Published:
2021-07-09
Contact:
Xi-liang LI,Xiang-yang HOU
Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment[J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126.
根茎性状 Rhizome characters | 来源 Source | 对照 CK | 干旱处理 DT | 交互作用 Interaction | PI (%) | ? | |
---|---|---|---|---|---|---|---|
F | P | ||||||
总根茎长度 Total rhizome length (cm) | NG | 161.91±6.75Aa | 11.12±3.62Ba | 16.74 | <0.001 | 93.13 | 150.79 |
GZ | 101.66±9.50Ab | 2.15±1.14Ba | 97.89 | 99.51 | |||
总根茎节间数 Total rhizome number | NG | 55.00±4.21Aa | 5.50±1.66Ba | 4.06 | 0.05 | 90.00 | 49.50 |
GZ | 37.11±4.27Ab | 1.40±0.75Ba | 96.23 | 35.71 | |||
最长根茎长度 The longest rhizome (cm) | NG | 54.64±5.98Aa | 9.72±2.97Ba | 1.41 | 0.24 | 82.21 | 44.92 |
GZ | 38.28±4.15Ab | 2.15±1.14Bb | 94.38 | 36.13 | |||
最长根茎节间数 The largest internode number | NG | 18.00±1.94Aa | 4.50±1.23Ba | 0.12 | 0.73 | 75.00 | 13.50 |
GZ | 14.11±1.50Aa | 1.40±0.75Bb | 90.08 | 12.71 | |||
节间长 The internode length (cm) | NG | 3.05±0.18Aa | 2.09±0.30Ba | NO | NO | 31.48 | 0.96 |
GZ | 2.83±0.17Aa | 1.56±0.06Ba | 44.88 | 1.27 |
Table 1 The responses of GZ and NG to drought treatment in terms of rhizome characters
根茎性状 Rhizome characters | 来源 Source | 对照 CK | 干旱处理 DT | 交互作用 Interaction | PI (%) | ? | |
---|---|---|---|---|---|---|---|
F | P | ||||||
总根茎长度 Total rhizome length (cm) | NG | 161.91±6.75Aa | 11.12±3.62Ba | 16.74 | <0.001 | 93.13 | 150.79 |
GZ | 101.66±9.50Ab | 2.15±1.14Ba | 97.89 | 99.51 | |||
总根茎节间数 Total rhizome number | NG | 55.00±4.21Aa | 5.50±1.66Ba | 4.06 | 0.05 | 90.00 | 49.50 |
GZ | 37.11±4.27Ab | 1.40±0.75Ba | 96.23 | 35.71 | |||
最长根茎长度 The longest rhizome (cm) | NG | 54.64±5.98Aa | 9.72±2.97Ba | 1.41 | 0.24 | 82.21 | 44.92 |
GZ | 38.28±4.15Ab | 2.15±1.14Bb | 94.38 | 36.13 | |||
最长根茎节间数 The largest internode number | NG | 18.00±1.94Aa | 4.50±1.23Ba | 0.12 | 0.73 | 75.00 | 13.50 |
GZ | 14.11±1.50Aa | 1.40±0.75Bb | 90.08 | 12.71 | |||
节间长 The internode length (cm) | NG | 3.05±0.18Aa | 2.09±0.30Ba | NO | NO | 31.48 | 0.96 |
GZ | 2.83±0.17Aa | 1.56±0.06Ba | 44.88 | 1.27 |
生物量分配 Biomass allocation | 来源 Source | 交互作用Interaction | PI (%) | ? (%) | |
---|---|---|---|---|---|
F | P | ||||
地上Aboveground | NG | 7.335 | 0.011 | 15 | 8 |
GZ | -18 | -10 | |||
根系Root | NG | NO | NO | -68 | -15 |
GZ | 7 | 2 | |||
根茎Rhizome | NG | 0.249 | 0.621 | 27 | 7 |
GZ | 50 | 8 |
Table 2 Two-way ANOVA of L. chinensis biomass allocation
生物量分配 Biomass allocation | 来源 Source | 交互作用Interaction | PI (%) | ? (%) | |
---|---|---|---|---|---|
F | P | ||||
地上Aboveground | NG | 7.335 | 0.011 | 15 | 8 |
GZ | -18 | -10 | |||
根系Root | NG | NO | NO | -68 | -15 |
GZ | 7 | 2 | |||
根茎Rhizome | NG | 0.249 | 0.621 | 27 | 7 |
GZ | 50 | 8 |
1 | Cuddington K. Legacy effects: The persistent impact of ecological interactions. Biological Theory, 2011, 6(3): 203-210. |
2 | Kostenko O, Voorde T F J, Mulder P P J, et al. Legacy effects of aboveground-belowground interactions. Ecology Letters, 2012, 15(8): 813-821. |
3 | Wurst S, Ohgushi T. Do plant- and soil- mediated legacy effects impact future biotic interactions? Functional Ecology, 2015, 29(11): 1373-1382. |
4 | Valls F H, Bonnet O, Cromsigt J P G M, et al. Legacy effects of different land-use histories interact with current grazing patterns to determine grazing lawn soil properties. Ecosystems, 2015, 18(4): 720-733. |
5 | Anderegg W R L, Schwalm C, Biondi F, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 2015, 349: 528-532. |
6 | Kafle D, Wurst S. Legacy effects of herbivory enhance performance and resistance of progeny plants. Journal of Ecology, 2019, 107(1): 58-68. |
7 | Painter E L, Detling J K, Steingraeber D A. Plant morphology and grazing history: Relationships between native grasses and herbivores. Vegetatio, 1993, 106(1): 37-62. |
8 | Polley H W, Detling J K. Grazing-mediated differentiation in Agropyron smithii: Evidence from populations with different grazing histories. Oikos, 1990, 57(3): 326-332. |
9 | Tomás M A, Carrera A D, Poverene M. Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories? Plant Ecology, 2000, 147(2): 227-235. |
10 | Ren W, Hu N, Hou X, et al. Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Frontiers in Plant Science, 2017, 8: 1-13. |
11 | Li X L, Liu Z Y, Hou X Y, et al. Plant functional traits and their trade-offs in response to grazing: A review. Chinese Bulletin of Botany, 2015, 50(2): 159-170. |
李西良, 刘志英, 侯向阳, 等. 放牧对草原植物功能性状及其权衡关系的调控. 植物学报, 2015, 50(2): 159-170. | |
12 | Loreti J, Oesterheld M, Sala O. Lack of intraspecific variation in resistance to defoliation in a grass that evolved under light grazing pressure. Plant Ecology, 2001, 157(2): 197-204. |
13 | Oesterheld M, Mcnaughton S J. Intraspecific variation in the response of Themeda triandra to defoliation: The effect of time of recovery and growth rates on compensatory growth. Oecologia, 1988, 77(2): 181-186. |
14 | Wang M, Xu B, Zhang D Y, et al. Changes in plant community biomass and biodiversity along soil moisture content gradients in Xilin River basin,Inner Mongolia. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 445-449. |
王萌, 徐冰, 张大勇, 等. 内蒙古草原锡林河流域植物群落生物量及多样性沿土壤水分含量梯度的变化. 北京师范大学学报(自然科学版), 2016, 52(4): 445-449. | |
15 | Jia Z B. A comparative study on influence on plant communities and mutual species and response to different temperature gradient and combination of water and heat in Inner Mongolia steppe region of temperate zone. Hohhot: Inner Mongolia University, 2001. |
贾志斌. 不同温度梯度及其水热组合对温带草原群落与共有种的影响及其响应的比较研究. 呼和浩特: 内蒙古大学, 2001. | |
16 | Pereyra D A, Bucci S J, Arias N S, et al. Grazing increases evapotranspiration without the cost of lowering soil water storages in arid ecosystems. Ecohydrology, 2017, 10(6): e1850. |
17 | Wu Q H, Mao S J, Liu X Q, et al. Analysis of the soil water-holding capacity in alpine forb meadow under grazing gradient and relevant influence factors. Journal of Glaciology and Geocryology, 2014, 36(3): 590-598. |
吴启华, 毛绍娟, 刘晓琴, 等. 牧压梯度下高寒杂草类草甸土壤持水能力及影响因素分析. 冰川冻土, 2014, 36(3): 590-598. | |
18 | Veldhuis M P, Howison R A, Fokkema R W, et al. A novel mechanism for grazing lawn formation: Large herbivore-induced modification of the plant-soil water balance. Journal of Ecology, 2014, 102(6): 1506-1517. |
19 | Ma W J, Li J, Jimoh S O, et al. Stoichiometric ratios support plant adaption to grazing moderated by soil nutrients and root enzymes. PeerJ, 2019, 7: e7047. |
20 | Li L Z, Zhang D G, Xin X P, et al. Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica, 2009, 29(10): 5271-5279. |
李林芝, 张德罡, 辛晓平, 等. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性. 生态学报, 2009, 29(10): 5271-5279. | |
21 | Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 2006, 94(6): 1103-1116. |
22 | Liu J P. Axillary bud outgrowth and apical dominance. Plant Physiology Communications, 2007, 43(3): 575-582. |
刘进平. 植物腋芽生长与顶端优势. 植物生理学通讯, 2007, 43(3): 575-582. | |
23 | Díaz S, Lavorel S, Mcintyre S, et al. Plant trait responses to grazing-A global synthesis. Global Change Biology, 2007, 13(2): 313-341. |
24 | Lennartsson T, Ramula S, Tuomi J. Growing competitive or tolerant? Significance of apical dominance in the overcompensating herb Gentianella campestris. Ecology, 2018, 99(2): 259-269. |
25 | Li C J. The role of plant hormone in apical dominance. Plant Physiology Communications, 1995, 31(6): 401-406. |
李春俭. 植物激素在顶端优势中的作用. 植物生理学通讯, 1995, 31(6): 401-406. | |
26 | Li L, Jia Z Q, Zhu Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. |
李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. | |
27 | Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012, 17(3): 172-179. |
28 | Li J N, Li P F, Kong H Y, et al. Current progress in eco-physiology of root-sourced chemical signal in plant under drought stress. Acta Ecologica Sinica, 2011, 31(9): 2610-2620. |
李冀南, 李朴芳, 孔海燕, 等. 干旱胁迫下植物根源化学信号研究进展. 生态学报, 2011, 31(9): 2610-2620. | |
29 | Jin B H, Chen Y J, Wu Y H, et al. Response of root distribution and biomass allocation of different Poa L.varieties to drought stress. Acta Agrestia Sinica, 2009, 17(6): 813-816. |
金不换, 陈雅君, 吴艳华, 等. 早熟禾不同品种根系分布及生物量分配对干旱胁迫的响应. 草地学报, 2009, 17(6): 813-816. | |
30 | Zhu H, Lin Q F, Wang K. The research progress on plant mild drought stress. Molecular Plant Breeding, 2018, 16(22): 7521-7526. |
朱虹, 林清芳, 王凯. 植物温和干旱胁迫的研究进展. 分子植物育种, 2018, 16(22): 7521-7526. | |
31 | Walter J, Jentsch A, Beierkuhnlein C, et al. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 2013, 94(5): 3-8. |
32 | Zobel M, Moora M, Herben T. Clonal mobility and its implications for spatio-temporal patterns of plant communities: What do we need to know next? Oikos, 2010, 119(5): 802-806. |
33 | Suzuki J I, Stuefer J. On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 1999, 14(1): 11-17. |
[1] | Xiao-xu HAN, Yuan-yuan ZHAO, Li-jing ZHANG, Ding GUO, Hua FU, Yong-shan LI, Cheng-xin YANG. Interactive effects of drought and UV-B radiation on physiological defences in Artemisia sphaerocephala [J]. Acta Prataculturae Sinica, 2021, 30(8): 109-118. |
[2] | Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso [J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169. |
[3] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[4] | Xiao-qiang ZHAO, Yuan ZHONG, Wen-qi ZHOU. QTL mapping and candidate gene analysis of leaf area in maize (Zea mays) under different watering environments [J]. Acta Prataculturae Sinica, 2021, 30(5): 103-120. |
[5] | Lei PENG, Li ZHANG, Xiao-long ZHOU, Yan-bo WAN, Qing-dong SHI. Effects of water stress on life history strategy of Salsola nitraria in Zhundong, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(5): 65-74. |
[6] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[7] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[8] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[9] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[10] | Ning ZHANG, Yun-xin CAO, Wei XU, Zhi-hui CAHNG. Effects of biosolids on the growth and auxin metabolism of Poa pratensis under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(3): 167-176. |
[11] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[12] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[13] | Zhi-peng CHANG, Ying-ying SUN, Jia-yang LI, Chun-mei GONG. Cloning and transformation of the CkCAD gene in Caragana korshinskii and analysis of its drought resistance function [J]. Acta Prataculturae Sinica, 2021, 30(3): 68-80. |
[14] | Wen-rong LUO, Guo-zheng HU, Ganjurjav H, Qing-zhu GAO, Yan LI, Yi-qing Ge, Yu LI, Shi-cheng HE, Luo-bu DANJIU. Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(2): 82-92. |
[15] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||