Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 187-199.DOI: 10.11686/cyxb2021048
Zhan-jun WANG(), Bo JI, Tong JI, Qi JIANG()
Received:
2021-02-02
Revised:
2021-04-07
Online:
2023-10-20
Published:
2023-07-26
Contact:
Qi JIANG
Zhan-jun WANG, Bo JI, Tong JI, Qi JIANG. An evaluation of drought resistance of five forage legumes based on a quantile model[J]. Acta Prataculturae Sinica, 2023, 32(10): 187-199.
编号 Number | 供试牧草 Test plants | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 草木樨状黄芪A. melilotoides | 豆科黄耆属Leguminosae Astragalus | 盐池 Yanchi |
B | 牛枝子L. potaninii | 豆科胡枝子属Leguminosae Lespedeza | 盐池Yanchi |
C | 达乌里胡枝子L. davurica | 豆科胡枝子属Leguminosae Lespedeza | 西贝农林牧生态科技公司Xibei Agriculture-Forest-Stock-breeding Biology and Technology Co., Ltd. |
D | 小冠花C. varia | 豆科小冠花属Leguminosae Coronilla | 甘肃农业大学Gansu Agricultural University |
E | 鹰嘴紫云英A. cicer | 豆科黄耆属Leguminosae Astragalus | 甘肃农业大学Gansu Agricultural University |
Table 1 Information of tested forage
编号 Number | 供试牧草 Test plants | 种质类型 Germplasm type | 来源 Source |
---|---|---|---|
A | 草木樨状黄芪A. melilotoides | 豆科黄耆属Leguminosae Astragalus | 盐池 Yanchi |
B | 牛枝子L. potaninii | 豆科胡枝子属Leguminosae Lespedeza | 盐池Yanchi |
C | 达乌里胡枝子L. davurica | 豆科胡枝子属Leguminosae Lespedeza | 西贝农林牧生态科技公司Xibei Agriculture-Forest-Stock-breeding Biology and Technology Co., Ltd. |
D | 小冠花C. varia | 豆科小冠花属Leguminosae Coronilla | 甘肃农业大学Gansu Agricultural University |
E | 鹰嘴紫云英A. cicer | 豆科黄耆属Leguminosae Astragalus | 甘肃农业大学Gansu Agricultural University |
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | Average (%) | Minimum (%) |
---|---|---|---|---|---|---|---|---|---|---|
0.45±0.05 | 0.44±0.01 | 18.78±0.56 | 208.95±3.51 | 2.70±1.08 | 14.14±2.93 | 6.17±0.99 | 8.21±0.06 | 2.27±0.14 | 12.35±3.42 | 8.00 |
Table 2 Soil base conditions for testing
全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | pH | 全盐 Full salt (%) | Average (%) | Minimum (%) |
---|---|---|---|---|---|---|---|---|---|---|
0.45±0.05 | 0.44±0.01 | 18.78±0.56 | 208.95±3.51 | 2.70±1.08 | 14.14±2.93 | 6.17±0.99 | 8.21±0.06 | 2.27±0.14 | 12.35±3.42 | 8.00 |
指标 Index | 方法Method |
---|---|
叶绿素 Chlorophyll,Chl | 酒精浸提法 Alcohol extraction method [ |
脯氨酸 Proline,Pro | 磺基水杨酸法Sulfosalicylic acid method[ |
丙二醛 Malondialdehyde,MDA | 硫代巴比妥酸法Thiobarbituric acid method[ |
超氧化物歧化酶 Superoxide dismutase,SOD | 氮蓝四唑法Nitrogen blue tetrazole method[ |
过氧化物酶 Peroxidase,POD | 愈创木酚比色法Guaiacol colorimetry[ |
过氧化氢酶 Catalase,CAT | 紫外吸收法Ultraviolet absorption method[ |
可溶性糖 Soluble sugar,SS | 蒽酮法Anthrone method[ |
Table 3 Measurement of indicators
指标 Index | 方法Method |
---|---|
叶绿素 Chlorophyll,Chl | 酒精浸提法 Alcohol extraction method [ |
脯氨酸 Proline,Pro | 磺基水杨酸法Sulfosalicylic acid method[ |
丙二醛 Malondialdehyde,MDA | 硫代巴比妥酸法Thiobarbituric acid method[ |
超氧化物歧化酶 Superoxide dismutase,SOD | 氮蓝四唑法Nitrogen blue tetrazole method[ |
过氧化物酶 Peroxidase,POD | 愈创木酚比色法Guaiacol colorimetry[ |
过氧化氢酶 Catalase,CAT | 紫外吸收法Ultraviolet absorption method[ |
可溶性糖 Soluble sugar,SS | 蒽酮法Anthrone method[ |
项目 Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | |
总样本数Total number of samples | 42 | 42 | 36 | 42 | 42 | 42 | 42 | 42 | 42 | 42 |
≥0权衡样本数Weigh the number of samples | 29 | 8 | 25 | 32 | 13 | 17 | 8 | 27 | 29 | 6 |
分位点Quantile | 0.31 | 0.81 | 0.31 | 0.24 | 0.70 | 0.60 | 0.81 | 0.36 | 0.31 | 0.86 |
Table 4 Forage quantile
项目 Item | 绿叶数-土壤含水量权衡分位数模型 Quantile model of the number of green leaves-soil water content trade-off | 株高-土壤含水量权衡分位数模型 Plant height-soil water content trade-off quantile model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | |
总样本数Total number of samples | 42 | 42 | 36 | 42 | 42 | 42 | 42 | 42 | 42 | 42 |
≥0权衡样本数Weigh the number of samples | 29 | 8 | 25 | 32 | 13 | 17 | 8 | 27 | 29 | 6 |
分位点Quantile | 0.31 | 0.81 | 0.31 | 0.24 | 0.70 | 0.60 | 0.81 | 0.36 | 0.31 | 0.86 |
编号 Number | 隶属函数值Membership function value | D值 D value | 排序 Order | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶抗旱胁迫指数 POD DRI | 脯氨酸抗旱胁迫指数Pro DRI | 丙二醛抗旱胁迫指数 MDA DRI | 可溶性糖抗旱胁迫指数 SS DRI | 叶绿素抗旱胁迫指数 Chl DRI | 超氧化物歧化酶抗旱胁迫指数 SOD DRI | 过氧化氢酶抗旱胁迫指数 CAT DRI | |||
A | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.04 | 0.04 | 5 |
B | 0.01 | 0.54 | 0.11 | 0.06 | 0.00 | 0.01 | 0.02 | 0.74 | 1 |
C | 0.00 | 0.50 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.56 | 2 |
D | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.26 | 3 |
E | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.07 | 4 |
Table 5 Comprehensive evaluation D value
编号 Number | 隶属函数值Membership function value | D值 D value | 排序 Order | ||||||
---|---|---|---|---|---|---|---|---|---|
过氧化物酶抗旱胁迫指数 POD DRI | 脯氨酸抗旱胁迫指数Pro DRI | 丙二醛抗旱胁迫指数 MDA DRI | 可溶性糖抗旱胁迫指数 SS DRI | 叶绿素抗旱胁迫指数 Chl DRI | 超氧化物歧化酶抗旱胁迫指数 SOD DRI | 过氧化氢酶抗旱胁迫指数 CAT DRI | |||
A | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.04 | 0.04 | 5 |
B | 0.01 | 0.54 | 0.11 | 0.06 | 0.00 | 0.01 | 0.02 | 0.74 | 1 |
C | 0.00 | 0.50 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.56 | 2 |
D | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.26 | 3 |
E | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.07 | 4 |
1 | Zhang J H, Wu B. Research progress of soil moisture of arid and semi-arid regions. Soil and Water Conservation in China, 2012(2): 40-43, 68. |
张军红, 吴波. 干旱、半干旱地区土壤水分研究进展. 中国水土保持, 2012(2): 40-43, 68. | |
2 | Li L, Jia Z Q, Zhu Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China. Journal of Desert Research, 2010, 30(5): 1053-1059. |
李磊, 贾志清, 朱雅娟, 等. 我国干旱区植物抗旱机理研究进展. 中国沙漠, 2010, 30(5): 1053-1059. | |
3 | Che X, Liang Z S, Wu Z. Responses of two leguminous forage to drought stress and their drought resistance. Pratacultural Science, 2010, 27(11): 89-94. |
车轩, 梁宗锁, 吴珍. 2种豆科牧草对干旱的生理响应及抗旱性评价. 草业科学, 2010, 27(11): 89-94. | |
4 | Suriguga, Zhang Y X, Zhu A M. Effects of drought stress on growth development and physiological mechanisms of drought resistance of 3 wild leguminous forages. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017, 32(5): 424-428, 441. |
苏日古嘎, 张玉霞, 朱爱民. 干旱胁迫对3种野生豆科牧草生长发育和抗旱生理机制的影响. 内蒙古民族大学学报(自然科学版), 2017, 32(5): 424-428, 441. | |
5 | Hong K X, Long Z F, Zhang J B, et al. Drought resistance of five annual forages at seeding stage. Guizhou Agricultural Sciences, 2015, 43(12): 113-115. |
洪开祥, 龙忠富, 张建波, 等. 5种一年生豆科牧草苗期的抗旱性. 贵州农业科学, 2015, 43(12): 113-115. | |
6 | Wang F, Peng Y L, Fang Y F, et al. Effect of different stay-green maize on leaves senescence after flowering under drought stress. Bulletin of Soil and Water Conservation, 2018, 38(4): 60-66. |
王芳, 彭云玲, 方永丰, 等. 花后干旱胁迫对不同持绿型玉米叶片衰老的影响. 水土保持通报, 2018, 38(4): 60-66. | |
7 | Ji B, Shi L, Xu J P, et al. Drought resistance evaluation of forage germplasm resources from 10 gramineae species at germination stage. Seed, 2020, 39(7): 12-18. |
季波, 时龙, 徐金鹏, 等. 10种禾本科牧草种质资源萌发期抗旱性评价. 种子, 2020, 39(7): 12-18. | |
8 | Hu L P. Quantile model regression analysis. Sichuan Mental Health, 2018, 31(4): 296-301. |
胡良平. 分位数模型回归分析. 四川精神卫生, 2018, 31(4): 296-301. | |
9 | Zhao J D. Effective ways to improve plant drought resistance. Animal Husbandry and Feed Science, 2009, 30(2): 50-51, 117. |
赵景娣. 提高植物抗旱性的有效途径. 畜牧与饲料科学, 2009, 30(2): 50-51, 117. | |
10 | Wang Y D. Research on drought resistance of Agropyron mongolia, Agropyron cristatum and Leymus mollis under PEG 6000 simulated water stress. Yanbian Korean Autonomous Prefecture: Yanbian University, 2008. |
王怡丹. 聚乙二醇6000模拟水分胁迫下蒙古冰草、扁穗冰草和滨麦抗旱性研究. 延边朝鲜族自治州: 延边大学, 2008. | |
11 | Wang X K, Huang J L. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2015. |
王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. | |
12 | Wang P, Wang P, Sun W B, et al. Comprehensive evaluation of drought resistance of eight Elymus germlasms at seedling stage. Acta Agrestia Sinica, 2020, 28(2): 397-404. |
王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价. 草地学报, 2020, 28(2): 397-404. | |
13 | Zhang Q D, Wei W, Chen L D, et al. Spatial variation of soil moisture and species diversity patterns along a precipitation gradient in the grasslands of the Loess Plateau. Journal of Natural Resources, 2018, 33(8): 1351-1362. |
张钦弟, 卫伟, 陈利顶, 等. 黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局. 自然资源学报, 2018, 33(8): 1351-1362. | |
14 | Zhang G C, Liu X, He K N. Grading of Robinia pseudoacacia and Platycladus orientalis woodland soil’s water availability and productivity in semi-arid region of Loess Plateau. Chinese Journal of Applied Ecology, 2003, 14(6): 858-862. |
张光灿, 刘霞, 贺康宁. 黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究. 应用生态学报, 2003, 14(6): 858-862. | |
15 | Yin F. Genotypic responses of maize (Zea mays L.) to water stress and its physiological mechanisms. Zhengzhou: Henan Agricultural University, 2004. |
尹飞. 玉米对水分胁迫响应的基因型差异及其生理机制研究. 郑州: 河南农业大学, 2004. | |
16 | Chang X G. Study on drought adaptability of 7 Roegneria species. Hohhot: Inner Mongolia Agricultural University, 2011. |
常雪刚. 7种鹅观草属(Roegneria)植物耐旱适应性研究. 呼和浩特: 内蒙古农业大学, 2011. | |
17 | Lu J Y, Xiong J B, Zhang H S, et al. Effects of water stress on yield,quality and trace element composition of alfalfa. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
陆姣云, 熊军波, 张鹤山, 等. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133. | |
18 | Luo D, Wang M J, Li Y H, et al. Four legumes response to simulated drought in the stages of seed germination and seedling growth and drought resistance assessment. Ecology and Environmental Sciences, 2015, 24(2): 224-230. |
罗冬, 王明玖, 李元恒, 等. 四种豆科牧草种子萌发和幼苗生长对干旱的响应及抗旱性评价. 生态环境学报, 2015, 24(2):224-230. | |
19 | Zhang A N, Wang F M, Yu X Q, et al. Screening marker varieties with drought resistance in cultivated rice (Oryza sativa L.) using identification method with soil moisture gradient. Acta Agronomica Sinica, 2008, 34(11): 2026-2032. |
张安宁, 王飞名, 余新桥, 等. 基于土壤水分梯度鉴定法的栽培稻抗旱标识品种筛选. 作物学报, 2008, 34(11): 2026-2032. | |
20 | Zhu J N, Peng W D, Li Y H, et al. Study on the effect of the shallow ploughing used to the desert steppe on soil water and the composition of herbage. Heilongjiang Animal Husbandry and Veterinary, 2014(23): 108-111. |
朱建宁, 彭文栋, 李永华, 等. 荒漠草原采用浅翻耕改良对土壤水分及牧草组成的影响研究. 黑龙江畜牧兽医, 2014(23): 108-111. | |
21 | Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Prataculturae Sinica, 2005, 14(6): 7-13. |
韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. | |
22 | Shao H F, Chen Z, Xu J Y, et al. Physiological responses of two tobacco cultivar leaves to different drought stresses during seedling stage. Plant Physiology Communications, 2016, 52(12): 1861-1871. |
邵惠芳, 陈征, 许嘉阳, 等. 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报, 2016, 52(12): 1861-1871. | |
23 | Wang W, Cui S X. Responses in suspension cultures of two ecotypes of reed (Phragmites communis) under osmotic stress. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(2): 224-228. |
王蔚, 崔素霞. 两种生物型芦苇胚性悬浮培养物对渗透胁迫的生理响应Ⅱ. 抗氧化酶类活性的变化. 西北植物学报, 2003, 23(2): 224-228. | |
24 | Fu J M, Huang B R. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environment and Experimental Botany, 2001, 45: 105-114. |
25 | DaCosta M, Huang B R. Changes in antioxidant enzyme activities and lipid peroxidation for bent grass species in response to drought stress. Journal of the American Society for Horticultural Science, 2007, 132: 319-326. |
26 | Qi D H, Li X G, Wang L, et al. Effects of simulated low temperature stress on the activated oxygen metabolism protective enzymes of Podocarpus fleuryi seedlings. Journal of Southwest Agricultural University (Natural Science Edition), 2003(5): 385-388, 399. |
齐代华, 李旭光, 王力, 等. 模拟低温胁迫对活性氧代谢保护酶系统的影响——以长叶竹柏(Podocarpus fleuryi Hickel)幼苗为例. 西南农业大学学报(自然科学版), 2003(5): 385-388, 399. | |
27 | Zhang Y P, Wang Z M, Huang Q, et al. Changes of chloroplast ultramicrostructure and function of different green organs in wheat under limited irrigation. Acta Agronomica Sinica, 2008(7): 1213-1219. |
张永平, 王志敏, 黄琴, 等. 不同水分供给对小麦叶与非叶器官叶绿体结构和功能的影响. 作物学报, 2008(7): 1213-1219. |
[1] | Ying JIANG, Hui-hong ZHANG, Chang WEI, Zheng-yang XU, Ying ZHAO, Fang LIU, Ge-zi LI, Xue-hai ZHANG, Hai-tao LIU. Effects of exogenous melatonin on root development and physiological and biochemical characteristics of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(9): 143-159. |
[2] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[3] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[4] | Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205. |
[5] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[6] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[7] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[8] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[9] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[10] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[11] | Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
[12] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[13] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
[14] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[15] | Yu-han WU, Wen-hui LIU, Kai-qiang LIU, Yong-chao ZHANG. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings [J]. Acta Prataculturae Sinica, 2022, 31(10): 75-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||