Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 58-70.DOI: 10.11686/cyxb2022476
Previous Articles Next Articles
Xin-yue JIN1,2,3(), Li GONG1, Meng-ting WANG1,2,3, Ye TAO2,3, Duo-qi ZHOU1()
Received:
2022-12-07
Revised:
2023-02-10
Online:
2023-10-20
Published:
2023-07-26
Contact:
Duo-qi ZHOU
Xin-yue JIN, Li GONG, Meng-ting WANG, Ye TAO, Duo-qi ZHOU. Differential covariation characteristics in functional traits of two ephemerals of Boraginaceae in the Gurbantunggut Desert, China[J]. Acta Prataculturae Sinica, 2023, 32(10): 58-70.
物种 Species | 参数 Parameter | FN | H (cm) | RL (cm) | D (cm) | D/H | H/RL | AGB (g) | BGB (g) | TB (g) | R/S |
---|---|---|---|---|---|---|---|---|---|---|---|
硬萼软紫草 A. decumbens | 最大值Max | 37 | 17.6 | 62.1 | 22.85 | 1.596 | 0.446 | 5.793 | 0.701 | 6.494 | 0.192 |
最小值Min | 1 | 3.4 | 18.3 | 3.95 | 0.842 | 0.148 | 0.066 | 0.013 | 0.079 | 0.096 | |
平均值Mean | 8.967a | 10.327a | 39.010a | 10.945B | 1.138B | 0.268a | 1.010B | 0.135a | 1.145B | 0.147A | |
标准差S.D. | 6.473 | 3.104 | 10.746 | 4.085 | 0.171 | 0.064 | 1.083 | 0.128 | 1.208 | 0.026 | |
变异系数CV | 0.722 | 0.301 | 0.275 | 0.373 | 0.150 | 0.237 | 1.072 | 0.947 | 1.055 | 0.178 | |
假狼紫草 N.caspica | 最大值Max | 21 | 14.4 | 58.4 | 24.10 | 2.104 | 0.617 | 6.895 | 0.525 | 7.420 | 0.126 |
最小值Min | 3 | 6.4 | 6.5 | 6.00 | 1.088 | 0.188 | 0.504 | 0.042 | 0.546 | 0.068 | |
平均值Mean | 10.367a | 9.377a | 31.497b | 14.260A | 1.550A | 0.314a | 2.217A | 0.190a | 2.407A | 0.091B | |
标准差S.D. | 4.560 | 1.957 | 10.845 | 4.356 | 0.243 | 0.112 | 1.705 | 0.134 | 1.836 | 0.017 | |
变异系数CV | 0.440 | 0.209 | 0.344 | 0.306 | 0.157 | 0.356 | 0.769 | 0.704 | 0.763 | 0.183 |
Table 1 Comparison of functional traits of A. decumbens and N. caspica
物种 Species | 参数 Parameter | FN | H (cm) | RL (cm) | D (cm) | D/H | H/RL | AGB (g) | BGB (g) | TB (g) | R/S |
---|---|---|---|---|---|---|---|---|---|---|---|
硬萼软紫草 A. decumbens | 最大值Max | 37 | 17.6 | 62.1 | 22.85 | 1.596 | 0.446 | 5.793 | 0.701 | 6.494 | 0.192 |
最小值Min | 1 | 3.4 | 18.3 | 3.95 | 0.842 | 0.148 | 0.066 | 0.013 | 0.079 | 0.096 | |
平均值Mean | 8.967a | 10.327a | 39.010a | 10.945B | 1.138B | 0.268a | 1.010B | 0.135a | 1.145B | 0.147A | |
标准差S.D. | 6.473 | 3.104 | 10.746 | 4.085 | 0.171 | 0.064 | 1.083 | 0.128 | 1.208 | 0.026 | |
变异系数CV | 0.722 | 0.301 | 0.275 | 0.373 | 0.150 | 0.237 | 1.072 | 0.947 | 1.055 | 0.178 | |
假狼紫草 N.caspica | 最大值Max | 21 | 14.4 | 58.4 | 24.10 | 2.104 | 0.617 | 6.895 | 0.525 | 7.420 | 0.126 |
最小值Min | 3 | 6.4 | 6.5 | 6.00 | 1.088 | 0.188 | 0.504 | 0.042 | 0.546 | 0.068 | |
平均值Mean | 10.367a | 9.377a | 31.497b | 14.260A | 1.550A | 0.314a | 2.217A | 0.190a | 2.407A | 0.091B | |
标准差S.D. | 4.560 | 1.957 | 10.845 | 4.356 | 0.243 | 0.112 | 1.705 | 0.134 | 1.836 | 0.017 | |
变异系数CV | 0.440 | 0.209 | 0.344 | 0.306 | 0.157 | 0.356 | 0.769 | 0.704 | 0.763 | 0.183 |
X | Y | 物种 Species | 异速生长指数Allometric scaling exponent (a) | 等速检验Isometric test | ||||
---|---|---|---|---|---|---|---|---|
R2 | P | a | 95%置信区间95% CI | F | P | |||
H | D | AD | 0.538 | 0.000 | 1.095 | 0.844~1.420 | 0.496 | 0.487 |
NC | 0.469 | 0.000 | 1.516 | 1.148~2.003 | 9.677 | 0.004 | ||
RL | AD | 0.564 | 0.000 | 0.842 | 0.654~1.084 | 1.924 | 0.176 | |
NC | 0.090 | 0.108 | - | - | - | - | ||
FN | AD | 0.894 | 0.000 | 1.950 | 1.720~2.212 | 136.211 | 0.000 | |
NC | 0.573 | 0.000 | 2.363 | 1.840~3.036 | 61.698 | 0.000 | ||
AGB | AD | 0.563 | 0.000 | 2.566b | 1.992~3.305 | 75.949 | 0.000 | |
NC | 0.715 | 0.000 | 3.499a | 2.849~4.296 | 253.384 | 0.000 | ||
BGB | AD | 0.560 | 0.000 | 2.279b | 1.768~2.938 | 53.906 | 0.000 | |
NC | 0.729 | 0.000 | 3.181a | 2.604~3.886 | 212.255 | 0.000 | ||
TB | AD | 0.565 | 0.000 | 2.526b | 1.963~3.252 | 73.104 | 0.000 | |
NC | 0.719 | 0.000 | 3.464a | 2.825~4.247 | 251.111 | 0.000 | ||
D | RL | AD | 0.570 | 0.000 | 0.769 | 0.598~0.989 | 4.592 | 0.041 |
NC | 0.080 | 0.130 | - | - | - | - | ||
FN | AD | 0.668 | 0.000 | 1.782 | 1.428~2.223 | 31.368 | 0.000 | |
NC | 0.551 | 0.000 | 1.559 | 1.206~2.014 | 13.113 | 0.001 | ||
AGB | AD | 0.914 | 0.000 | 2.345 | 2.093~2.626 | 298.335 | 0.000 | |
NC | 0.537 | 0.000 | 2.307 | 1.778~2.993 | 53.142 | 0.000 | ||
BGB | AD | 0.918 | 0.000 | 2.082 | 1.864~2.326 | 218.161 | 0.000 | |
NC | 0.594 | 0.000 | 2.098 | 1.643~2.678 | 45.283 | 0.000 | ||
TB | AD | 0.917 | 0.000 | 2.308 | 2.065~2.580 | 297.231 | 0.000 | |
NC | 0.544 | 0.000 | 2.284 | 1.764~2.959 | 52.338 | 0.000 | ||
RL | FN | AD | 0.530 | 0.000 | 2.317a | 1.782~3.012 | 52.946 | 0.000 |
NC | 0.164 | 0.026 | 1.191b | 0.842~1.684 | 1.032 | 0.318 | ||
AGB | AD | 0.550 | 0.000 | 3.049a | 2.358~3.942 | 115.029 | 0.000 | |
NC | 0.141 | 0.041 | 1.763b | 1.240~2.505 | 11.639 | 0.002 | ||
BGB | AD | 0.590 | 0.000 | 2.707a | 2.118~3.460 | 93.354 | 0.000 | |
NC | 0.107 | 0.078 | 1.603b | 1.120~2.293 | 7.508 | 0.011 | ||
TB | AD | 0.556 | 0.000 | 3.001a | 2.325~3.874 | 112.217 | 0.000 | |
NC | 0.138 | 0.043 | 1.745b | 1.227~2.482 | 11.161 | 0.002 | ||
FN | AGB | AD | 0.681 | 0.000 | 1.316 | 1.059~1.635 | 6.780 | 0.015 |
NC | 0.874 | 0.000 | 1.480 | 1.291~1.698 | 36.004 | 0.000 | ||
BGB | AD | 0.681 | 0.000 | 1.169 | 0.941~1.452 | 2.146 | 0.154 | |
NC | 0.825 | 0.000 | 1.346 | 1.146~1.581 | 14.554 | 0.001 | ||
TB | AD | 0.683 | 0.000 | 1.296 | 1.044~1.608 | 6.060 | 0.020 | |
NC | 0.874 | 0.000 | 1.466 | 1.278~1.681 | 34.033 | 0.000 | ||
AGB | BGB | AD | 0.967 | 0.000 | 0.888 | 0.828~0.953 | 11.975 | 0.002 |
NC | 0.945 | 0.000 | 0.909 | 0.830~0.995 | 4.635 | 0.040 |
Table 2 Allometric scaling exponent and isocratic test among traits of A. decumbens and N. caspica
X | Y | 物种 Species | 异速生长指数Allometric scaling exponent (a) | 等速检验Isometric test | ||||
---|---|---|---|---|---|---|---|---|
R2 | P | a | 95%置信区间95% CI | F | P | |||
H | D | AD | 0.538 | 0.000 | 1.095 | 0.844~1.420 | 0.496 | 0.487 |
NC | 0.469 | 0.000 | 1.516 | 1.148~2.003 | 9.677 | 0.004 | ||
RL | AD | 0.564 | 0.000 | 0.842 | 0.654~1.084 | 1.924 | 0.176 | |
NC | 0.090 | 0.108 | - | - | - | - | ||
FN | AD | 0.894 | 0.000 | 1.950 | 1.720~2.212 | 136.211 | 0.000 | |
NC | 0.573 | 0.000 | 2.363 | 1.840~3.036 | 61.698 | 0.000 | ||
AGB | AD | 0.563 | 0.000 | 2.566b | 1.992~3.305 | 75.949 | 0.000 | |
NC | 0.715 | 0.000 | 3.499a | 2.849~4.296 | 253.384 | 0.000 | ||
BGB | AD | 0.560 | 0.000 | 2.279b | 1.768~2.938 | 53.906 | 0.000 | |
NC | 0.729 | 0.000 | 3.181a | 2.604~3.886 | 212.255 | 0.000 | ||
TB | AD | 0.565 | 0.000 | 2.526b | 1.963~3.252 | 73.104 | 0.000 | |
NC | 0.719 | 0.000 | 3.464a | 2.825~4.247 | 251.111 | 0.000 | ||
D | RL | AD | 0.570 | 0.000 | 0.769 | 0.598~0.989 | 4.592 | 0.041 |
NC | 0.080 | 0.130 | - | - | - | - | ||
FN | AD | 0.668 | 0.000 | 1.782 | 1.428~2.223 | 31.368 | 0.000 | |
NC | 0.551 | 0.000 | 1.559 | 1.206~2.014 | 13.113 | 0.001 | ||
AGB | AD | 0.914 | 0.000 | 2.345 | 2.093~2.626 | 298.335 | 0.000 | |
NC | 0.537 | 0.000 | 2.307 | 1.778~2.993 | 53.142 | 0.000 | ||
BGB | AD | 0.918 | 0.000 | 2.082 | 1.864~2.326 | 218.161 | 0.000 | |
NC | 0.594 | 0.000 | 2.098 | 1.643~2.678 | 45.283 | 0.000 | ||
TB | AD | 0.917 | 0.000 | 2.308 | 2.065~2.580 | 297.231 | 0.000 | |
NC | 0.544 | 0.000 | 2.284 | 1.764~2.959 | 52.338 | 0.000 | ||
RL | FN | AD | 0.530 | 0.000 | 2.317a | 1.782~3.012 | 52.946 | 0.000 |
NC | 0.164 | 0.026 | 1.191b | 0.842~1.684 | 1.032 | 0.318 | ||
AGB | AD | 0.550 | 0.000 | 3.049a | 2.358~3.942 | 115.029 | 0.000 | |
NC | 0.141 | 0.041 | 1.763b | 1.240~2.505 | 11.639 | 0.002 | ||
BGB | AD | 0.590 | 0.000 | 2.707a | 2.118~3.460 | 93.354 | 0.000 | |
NC | 0.107 | 0.078 | 1.603b | 1.120~2.293 | 7.508 | 0.011 | ||
TB | AD | 0.556 | 0.000 | 3.001a | 2.325~3.874 | 112.217 | 0.000 | |
NC | 0.138 | 0.043 | 1.745b | 1.227~2.482 | 11.161 | 0.002 | ||
FN | AGB | AD | 0.681 | 0.000 | 1.316 | 1.059~1.635 | 6.780 | 0.015 |
NC | 0.874 | 0.000 | 1.480 | 1.291~1.698 | 36.004 | 0.000 | ||
BGB | AD | 0.681 | 0.000 | 1.169 | 0.941~1.452 | 2.146 | 0.154 | |
NC | 0.825 | 0.000 | 1.346 | 1.146~1.581 | 14.554 | 0.001 | ||
TB | AD | 0.683 | 0.000 | 1.296 | 1.044~1.608 | 6.060 | 0.020 | |
NC | 0.874 | 0.000 | 1.466 | 1.278~1.681 | 34.033 | 0.000 | ||
AGB | BGB | AD | 0.967 | 0.000 | 0.888 | 0.828~0.953 | 11.975 | 0.002 |
NC | 0.945 | 0.000 | 0.909 | 0.830~0.995 | 4.635 | 0.040 |
物种 Species | 节点参数Node parameter | 整体网络参数 Network parameter | |||
---|---|---|---|---|---|
性状Trait | 度Degree | 介数Betweenness | |||
硬萼软紫草 A. decumbens | D | 8 | 8.333 | 边密度Edge density | 27 |
H | 7 | 6.250 | 平均路径长度Average path length | 1.422 | |
RL | 6 | 0 | 平均聚类系数Average clustering coefficient | 0.808 | |
FN | 6 | 0 | |||
H/RL | 2 | 0.500 | |||
D/H | 2 | 0.750 | |||
AGB | 7 | 1.583 | |||
BGB | 6 | 0 | |||
TB | 7 | 1.583 | |||
R/S | 3 | 0 | |||
假狼紫草 N. caspica | D | 6 | 8.000 | 边密度Edge density | 19 |
H | 5 | 0 | 平均路径长度Average path length | 1.800 | |
RL | 2 | 8.000 | 平均聚类系数Average clustering coefficient | 0.779 | |
FN | 7 | 20.000 | |||
H/RL | 1 | 0 | |||
D/H | 2 | 0 | |||
AGB | 5 | 0 | |||
BGB | 5 | 0 | |||
TB | 5 | 0 | |||
R/S | 1 | 0 |
Table 3 Parameters of plant trait networks of A. decumbens and N. caspica
物种 Species | 节点参数Node parameter | 整体网络参数 Network parameter | |||
---|---|---|---|---|---|
性状Trait | 度Degree | 介数Betweenness | |||
硬萼软紫草 A. decumbens | D | 8 | 8.333 | 边密度Edge density | 27 |
H | 7 | 6.250 | 平均路径长度Average path length | 1.422 | |
RL | 6 | 0 | 平均聚类系数Average clustering coefficient | 0.808 | |
FN | 6 | 0 | |||
H/RL | 2 | 0.500 | |||
D/H | 2 | 0.750 | |||
AGB | 7 | 1.583 | |||
BGB | 6 | 0 | |||
TB | 7 | 1.583 | |||
R/S | 3 | 0 | |||
假狼紫草 N. caspica | D | 6 | 8.000 | 边密度Edge density | 19 |
H | 5 | 0 | 平均路径长度Average path length | 1.800 | |
RL | 2 | 8.000 | 平均聚类系数Average clustering coefficient | 0.779 | |
FN | 7 | 20.000 | |||
H/RL | 1 | 0 | |||
D/H | 2 | 0 | |||
AGB | 5 | 0 | |||
BGB | 5 | 0 | |||
TB | 5 | 0 | |||
R/S | 1 | 0 |
1 | Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional. Oikos, 2007, 116(5): 882-892. |
2 | Arnold S J. Morphology, performance and fitness. American Zoologist, 1983, 23(2): 347-361. |
3 | Moles A T, Warton D I, Warman L, et al. Global patterns in plant height. Journal of Ecology, 2009, 97(5): 923-932. |
4 | Weiher E, Werf A, Thompson K, et al. Challenging theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 1999, 10(5): 609-620. |
5 | Zhang W H, Li H, Li J X, et al. Individual and modular biomass dynamics of Kingdonia uninflora population in Qinling Mountain. Chinese Journal of Applied Ecology, 2003, 14(4): 530-534. |
张文辉, 李红, 李景侠, 等. 秦岭独叶草种群个体和构件生物量动态研究. 应用生态学报, 2003, 14(4): 530-534. | |
6 | Yao J, Li Y, Wei L P, et al. Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing. Acta Ecologica Sinica, 2013, 33(13): 3907-3915. |
姚婧, 李颖, 魏丽萍, 等. 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化. 生态学报, 2013, 33(13): 3907-3915. | |
7 | Ma M, Li B, Chen J K. Convergent adaptation of desert plants to their arid habitats. Acta Ecologica Sinica, 2006, 26(11): 3861-3869. |
马淼, 李博, 陈家宽. 植物对荒漠生境的趋同适应. 生态学报, 2006, 26(11): 3861-3869. | |
8 | Tao Y, Zhang Y M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 2014, 23(2): 38-48. |
陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 2014, 23(2): 38-48. | |
9 | Qiu D, Zhou G L, Liu T Y. Analysis of biomass allocation and allometric growth of three Sterigmostemum species in Junggar Basin. Agricultural Research in the Arid Areas, 2014, 32(6): 215-220. |
邱东, 周桂玲, 刘同业. 3种棒果芥属植物生物量分配及异速生长分析. 干旱地区农业研究, 2014, 32(6): 215-220. | |
10 | DeLong J P. The body-size dependence of mutual interference. Biology Letters, 2014, 10(6): 20140261. |
11 | Brian J E, Karl J N. Global allocation rules for patterns of biomass partitioning in seed plants. Science, 2002, 295(5559): 1517-1520. |
12 | Niklas K J. Plant allometry: is there a grand unifying theory. Biological Reviews of the Cambridge Philosophical Society, 2004, 79(4): 871-889. |
13 | Qiu D, Wu G L, Zhou X B, et al. Characteristics of modular traits and interrelationships of the ephemeral species Plantago minuta. Pratacultural Science, 2017, 34(4): 744-752. |
邱东, 吴甘霖, 周晓兵, 等. 短命植物小车前构件属性特征及其相互关系. 草业科学, 2017, 34(4): 744-752. | |
14 | Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws: 3/4 VS. 2/3 power. Journal of Plant Ecology, 2008, 32(4): 951-960. |
韩文轩, 方精云. 幂指数异速生长机制模型综述. 植物生态学报, 2008, 32(4): 951-960. | |
15 | Cheng D L, Zhong Q L, Lin M Z, et al. The advance of allometric studies on plant metabolic rates and biomass. Acta Ecologica Sinica, 2011, 31(8): 2312-2320. |
程栋梁, 钟全林, 林茂兹, 等. 植物代谢速率与个体生物量关系研究进展. 生态学报, 2011, 31(8): 2312-2320. | |
16 | Qiu T. Biological and ecological characterization of Phragmites australis in Songnen Prairie. Pratacultural Science, 2014, 31(2): 300-305. |
邱天. 松嫩平原芦苇的生物学和生态学特征. 草业科学, 2014, 31(2): 300-305. | |
17 | Bruelheide H, Dengler J, Purschke O, et al. Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2018, 2(12): 1906-1917. |
18 | de la Riva E G, Olmo M, Poorter H, et al. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One, 2016, 11(2): e0148788. |
19 | Shipley B, Lechowicz M J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience, 2016, 7(2): 183-194. |
20 | Díaz S, Kattge J, Cornelissen J H, et al. The global spectrum of plant form and function. Nature, 2016, 529(7585): 167-171. |
21 | Westoby M, Wright I J. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 2006, 21(5): 261-268. |
22 | Qiu D, Wang M, Zhang S H, et al. Variations in functional traits of twigs between wild and cultivated Pinus dabeshanensis. Resources and Environment in the Yangtze Basin, 2020, 29(11): 2470-2478. |
邱东, 汪漫, 张世航, 等. 野生与栽培大别山五针松小枝功能性状变异特征. 长江流域资源与环境, 2020, 29(11): 2470-2478. | |
23 | He N, Li Y, Liu C, et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 2020, 35(10): 908-918. |
24 | Li Y. Variation of leaf trait network among different vegetation types and its influencing factors. Beijing: Beijing Forestry University, 2020. |
李颖. 叶片性状网络在不同植被类型间的变异规律及其影响因素. 北京: 北京林业大学, 2020. | |
25 | Mao Z M, Zhang D M. The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 1994, 11(3): 1-26. |
毛祖美, 张佃民. 新疆北部早春短命植物区系纲要. 干旱区研究, 1994, 11(3): 1-26. | |
26 | Qiu J, Tan D Y, Fan D Y. Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Junggar desert. Journal of Plant Ecology, 2007, 31(5): 883-891. |
邱娟, 谭敦炎, 樊大勇. 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 2007, 31(5): 883-891. | |
27 | Tao Y, Qiu D, Gong Y M, et al. Leaf-root-soil N∶P stoichiometry of ephemeral plants in a temperate desert in Central Asia. Journal of Plant Research, 2022, 135(1): 55-67. |
28 | Wang X Q, Jiang J, Lei J Q, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica, 2003, 58(4): 598-605. |
王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 2003, 58(4): 598-605. | |
29 | Yuan S F, Tang H P. Research advances in the eco-physiological characteristics of ephemerals adaptation to habitats. Acta Prataculturae Sinica, 2010, 19(1): 240-247. |
袁素芬, 唐海萍. 短命植物生理生态特性对生境的适应性研究进展. 草业学报, 2010, 19(1): 240-247. | |
30 | Zhang C X, Zhao W Q, Dang H L, et al. Effects of different slope aspect on biomass allocation and stoichiometry of ephemeral plants in the southern margin of Junggar Basin. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 151-158. |
张彩霞, 赵文勤, 党寒利, 等. 准噶尔盆地南缘不同坡向对短命植物生物量分配和化学计量特征的影响. 西北植物学报, 2021, 41(1): 151-158. | |
31 | Jannathan M, Cheng X J, Tan D Y. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb. Biodiversity Science, 2018, 26(5): 498-509. |
吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性. 生物多样性, 2018, 26(5): 498-509. | |
32 | Zhang Y L, Yin B F, Tao Y, et al. Effects of freezing and thawing cycle on seed germination of desert ephemeral plants. Chinese Journal of Ecology, 2021, 40(2): 301-312. |
张玉林, 尹本丰, 陶冶, 等. 冻融过程对荒漠短命植物种子萌发的影响. 生态学杂志, 2021, 40(2): 301-312. | |
33 | Lan H Y, Zhang F C. Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 2008 (7): 1478-1485. |
兰海燕, 张富春. 新疆早春短命植物适应荒漠环境的机理研究进展. 西北植物学报, 2008(7): 1478-1485. | |
34 | Zhang L Y, Chen C D. On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica, 2002, 22(11): 1923-1932. |
张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 2002, 22(11): 1923-1932. | |
35 | Xie R, Tao Y, Chang S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China. Chinese Journal of Ecology, 2015, 34(3): 648-655. |
谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系. 生态学杂志, 2015, 34(3): 648-655. | |
36 | Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences, 2001, 98(5): 2922-2927. |
37 | West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology. Science, 1997, 276(5309): 122-126. |
38 | Yan J M, Li Y G, Maisupova B, et al. Effects of growth decline on twig functional traits of wild apple trees in two long-term monitoring plots in Yili Valley: Implication for their conservation. Global Ecology and Conservation, 2022, 33: e01998. |
39 | Tao Y, Zhou X B, Li Y G, et al. Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environmental and Experimental Botany, 2022, 200: 104932. |
40 | Li Y, Liu C, Xu L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants. Frontiers in Plant Science, 2021, 12: 710530. |
41 | Heilmeier H. Functional traits explaining plant responses to past and future climate changes. Flora, 2019, 254: 1-11. |
42 | Zhou X B, Zhang Y M, Wang S S, et al. Combined effects of simulated nitrogen deposition and drought stress on growth and photosynthetic physiological responses of two annual desert plants in Junggar Basin, China. Acta Phytoecologica Sinica, 2010, 34(12): 1394-1403. |
周晓兵, 张元明, 王莎莎, 等. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 2010, 34(12): 1394-1403. | |
43 | Li X H, Li X L, Jiang D M, et al. A comparative study of the individual biomass and modular biomass of 70 herbaceous species found in the Horqin sandy land. Arid Zone Research, 2009, 26(2): 200-205. |
李雪华, 李晓兰, 蒋德明, 等. 科尔沁沙地70种草本植物个体和构件生物量比较研究. 干旱区研究, 2009, 26(2): 200-205. | |
44 | Gill R A, Kelly R H, Parton W J, et al. Using simple environmental variables to estimate below-ground productivity in grasslands. Global Ecology and Biogeography, 2002, 11(1): 79-86. |
45 | Sheng J H, Qiao Y X, Liu H Y, et al. A study on the root system of Haloxylon aammodendron (C.A.Mey.) Bunge. Acta Agrestia Sinica, 2004, 12(2): 91-94. |
盛晋华, 乔永祥, 刘宏义, 等. 梭梭根系的研究. 草地学报, 2004, 12(2): 91-94. | |
46 | Zeng F J, Guo H F, Liu B, et al. Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. seedlings. Arid Land Geography, 2010, 33(1): 59-64. |
曾凡江, 郭海峰, 刘波, 等. 多枝柽柳和疏叶骆驼刺幼苗生物量分配及根系分布特征. 干旱区地理, 2010, 33(1): 59-64. | |
47 | Guo H, Zhuang W W, Li J. Biomass and stoichiometric characteristics of four species of ephemeral plant in the Guerbantongut desert. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2263-2270. |
郭浩, 庄伟伟, 李进. 古尔班通古特沙漠4种短命植物生物量与化学计量特征. 西北植物学报, 2019, 39(12): 2263-2270. | |
48 | Xie J, Tang L, Wang Z, et al. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLoS One, 2012, 7(7): e41502. |
49 | Li T. Response mechanism of desert plant allometric exponents and spatial patterns to a precipitation gradient. Lanzhou: Lanzhou University, 2010. |
李涛. 荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究. 兰州: 兰州大学, 2010. | |
50 | Makarieva A M J E C. Body size, energy consumption and allometric scaling: a new dimension in the diversity-stability debate. Ecological Complexity, 2004, 1(2): 139-175. |
51 | Cheng D L. Plant allometric study of biomass allocation pattern and biomass production rates. Lanzhou: Lanzhou University, 2007. |
程栋梁. 植物生物量分配模式与生长速率的相关规律研究. 兰州: 兰州大学, 2007. | |
52 | Zhang Y Y, Meng H H, Zhou X B, et al. Biomass allocation patterns of an ephemeral species (Erodium oxyrhinchum) in different habitats and germination types in the Gurbantunggut Desert. Arid Zone Research, 2022, 39(2): 541-550. |
张媛媛, 孟欢欢, 周晓兵, 等. 不同生境/萌发类型尖喙牻牛儿苗生物量分配特征. 干旱区研究, 2022, 39(2): 541-550. | |
53 | Gao Q. Adaptability research of morphological structure to the desert plants and environment. Hohhot: Inner Mongolia Agricultural University, 2008. |
高强. 17种荒漠植物形态结构与环境的适应性研究. 呼和浩特: 内蒙古农业大学, 2008. | |
54 | Ma K P, Gao X M, Yu S L. On the characteristics of the flora of Dongling mountain area and its relationship with a number of other mountainous floras in China. Bulletin of Botanical Research, 1995, 15(4): 501-515. |
马克平, 高贤明, 于顺利. 东灵山地区植物区系的基本特征与若干山区植物区系的关系. 植物研究, 1995,15(4): 501-515. | |
55 | Zhang Z, Yang M C, He D J. Plant leaves classification based on PCA and SVM. Journal of Agricultural Mechanization Research, 2013, 35(11): 34-37, 41. |
张昭, 杨民仓, 何东健. 基于PCA和SVM的植物叶片分类方法研究. 农机化研究, 2013, 35(11): 34-37, 41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||