Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 115-127.DOI: 10.11686/cyxb2023239
Shuang LIU(), Jia-ni YAO, Jun-jie ZHANG, Jin-xia DAI()
Received:
2023-07-12
Revised:
2023-09-19
Online:
2024-05-20
Published:
2024-02-03
Contact:
Jin-xia DAI
Shuang LIU, Jia-ni YAO, Jun-jie ZHANG, Jin-xia DAI. Functional gene abundance and community diversity of ammonia-oxidizing and denitrifying microorganisms in the rhizosphere soil of desert leguminous shrubs[J]. Acta Prataculturae Sinica, 2024, 33(5): 115-127.
功能基因Functional genes | 引物Primers | 引物序列Primer sequence (5′-3′) | 长度Length (bp) | 参考文献Reference |
---|---|---|---|---|
amoA | amoAF | STAATGGTCTGGCTTAGACG | 600 | [ |
amoAR | GCGGCCATCCATCTGTATGT | |||
bamoA | bamoA1F | GGGGTTTCTACTGGTGGT | 491 | [ |
bamoA2R | CCCCTCKGSAAAGCCTTCTTC | |||
nirK | nirK1aCuF | ATCATGGTSCTGCCGCG | 459 | [ |
nirK3aCuR | GCCTCGATCAGRTTGTGGTT | |||
nirS | nirS4F | TTCRTCAAGACSCAYCCGAA | 332 | [ |
nirS6R | CGTTGAACTTRCCGGT |
Table 1 Primers for real-time fluorescent quantitative PCR of functional genes related to ammonia oxidation and denitrification
功能基因Functional genes | 引物Primers | 引物序列Primer sequence (5′-3′) | 长度Length (bp) | 参考文献Reference |
---|---|---|---|---|
amoA | amoAF | STAATGGTCTGGCTTAGACG | 600 | [ |
amoAR | GCGGCCATCCATCTGTATGT | |||
bamoA | bamoA1F | GGGGTTTCTACTGGTGGT | 491 | [ |
bamoA2R | CCCCTCKGSAAAGCCTTCTTC | |||
nirK | nirK1aCuF | ATCATGGTSCTGCCGCG | 459 | [ |
nirK3aCuR | GCCTCGATCAGRTTGTGGTT | |||
nirS | nirS4F | TTCRTCAAGACSCAYCCGAA | 332 | [ |
nirS6R | CGTTGAACTTRCCGGT |
样品编号 Sample number | 氨氧化古菌 Ammonia-oxidizing archaea | 氨氧化细菌 Ammonia-oxidizing bacteria | nirK型反硝化菌 nirK-type denitrifying bacteria | nirS型反硝化菌 nirS-type denitrifying bacteria | ||||
---|---|---|---|---|---|---|---|---|
Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | Shannon | |
SDQ1 | 23.00 | 1.4690 | 22.00 | 1.7425 | 274.69 | 3.9031 | 105.60 | 2.0859 |
SDQ2 | 30.00 | 1.8068 | 23.00 | 1.7253 | 169.50 | 3.4446 | 119.43 | 3.5405 |
SDQ3 | 27.50 | 1.3555 | 19.00 | 1.8469 | 211.50 | 3.3924 | 92.33 | 2.7693 |
NT1 | 23.00 | 1.2244 | 35.00 | 2.2478 | 291.13 | 3.3304 | 152.20 | 3.2573 |
NT2 | 18.00 | 1.2407 | 30.00 | 2.3161 | 271.02 | 3.4343 | 155.24 | 3.1518 |
NT3 | 24.00 | 1.3009 | 32.00 | 2.4139 | 298.03 | 4.1252 | 114.50 | 3.5996 |
MTC1 | 28.00 | 1.9160 | 24.00 | 1.6897 | 204.45 | 3.3538 | 113.00 | 2.9958 |
MTC2 | 24.50 | 1.5782 | 37.00 | 1.6630 | 220.30 | 3.5430 | 136.65 | 3.3694 |
MTC3 | 24.33 | 1.5728 | 38.00 | 2.0907 | 205.12 | 3.1738 | 68.00 | 2.0021 |
MC1 | 23.33 | 0.6176 | 10.00 | 1.1828 | 162.00 | 2.5022 | 66.00 | 3.0166 |
MC2 | 20.00 | 0.7633 | 16.00 | 1.7892 | 177.96 | 3.1210 | 100.43 | 3.0036 |
MC3 | 23.20 | 0.5309 | 25.50 | 1.7542 | 160.00 | 2.4473 | 82.50 | 3.0530 |
Table 2 Diversity index of ammonia-oxidizing and denitrifying microorganisms in rhizosphere soil of four leguminous shrubs
样品编号 Sample number | 氨氧化古菌 Ammonia-oxidizing archaea | 氨氧化细菌 Ammonia-oxidizing bacteria | nirK型反硝化菌 nirK-type denitrifying bacteria | nirS型反硝化菌 nirS-type denitrifying bacteria | ||||
---|---|---|---|---|---|---|---|---|
Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | Shannon | |
SDQ1 | 23.00 | 1.4690 | 22.00 | 1.7425 | 274.69 | 3.9031 | 105.60 | 2.0859 |
SDQ2 | 30.00 | 1.8068 | 23.00 | 1.7253 | 169.50 | 3.4446 | 119.43 | 3.5405 |
SDQ3 | 27.50 | 1.3555 | 19.00 | 1.8469 | 211.50 | 3.3924 | 92.33 | 2.7693 |
NT1 | 23.00 | 1.2244 | 35.00 | 2.2478 | 291.13 | 3.3304 | 152.20 | 3.2573 |
NT2 | 18.00 | 1.2407 | 30.00 | 2.3161 | 271.02 | 3.4343 | 155.24 | 3.1518 |
NT3 | 24.00 | 1.3009 | 32.00 | 2.4139 | 298.03 | 4.1252 | 114.50 | 3.5996 |
MTC1 | 28.00 | 1.9160 | 24.00 | 1.6897 | 204.45 | 3.3538 | 113.00 | 2.9958 |
MTC2 | 24.50 | 1.5782 | 37.00 | 1.6630 | 220.30 | 3.5430 | 136.65 | 3.3694 |
MTC3 | 24.33 | 1.5728 | 38.00 | 2.0907 | 205.12 | 3.1738 | 68.00 | 2.0021 |
MC1 | 23.33 | 0.6176 | 10.00 | 1.1828 | 162.00 | 2.5022 | 66.00 | 3.0166 |
MC2 | 20.00 | 0.7633 | 16.00 | 1.7892 | 177.96 | 3.1210 | 100.43 | 3.0036 |
MC3 | 23.20 | 0.5309 | 25.50 | 1.7542 | 160.00 | 2.4473 | 82.50 | 3.0530 |
基因 Gene | 全氮 Total N | 全磷 Total P | 全钾 Total K | 有机质 Soil organic matter (SOM) | 硝态氮 Nitrate N | 铵态氮 Ammonium N | 亚硝酸盐氮Nitrite N | 速效磷 Available P | 速效钾 Available K | pH |
---|---|---|---|---|---|---|---|---|---|---|
amoA | 0.690* | 0.600* | 0.724** | 0.839** | 0.207 | 0.183 | 0.183 | 0.483 | 0.798** | 0.685* |
bamoA | 0.784** | 0.689* | 0.656* | 0.789** | 0.451 | 0.370 | 0.300 | 0.697* | 0.861** | 0.707* |
nirK | 0.663* | 0.531 | 0.540 | 0.713** | 0.302 | 0.234 | 0.051 | 0.570 | 0.791** | 0.712** |
nirS | 0.587* | 0.448 | 0.492 | 0.540 | 0.456 | 0.262 | 0.162 | 0.618* | 0.781** | 0.850** |
Table 3 Pearson correlation analysis between abundance of functional genes related to ammonia oxidation and denitrification and soil physicochemical properties
基因 Gene | 全氮 Total N | 全磷 Total P | 全钾 Total K | 有机质 Soil organic matter (SOM) | 硝态氮 Nitrate N | 铵态氮 Ammonium N | 亚硝酸盐氮Nitrite N | 速效磷 Available P | 速效钾 Available K | pH |
---|---|---|---|---|---|---|---|---|---|---|
amoA | 0.690* | 0.600* | 0.724** | 0.839** | 0.207 | 0.183 | 0.183 | 0.483 | 0.798** | 0.685* |
bamoA | 0.784** | 0.689* | 0.656* | 0.789** | 0.451 | 0.370 | 0.300 | 0.697* | 0.861** | 0.707* |
nirK | 0.663* | 0.531 | 0.540 | 0.713** | 0.302 | 0.234 | 0.051 | 0.570 | 0.791** | 0.712** |
nirS | 0.587* | 0.448 | 0.492 | 0.540 | 0.456 | 0.262 | 0.162 | 0.618* | 0.781** | 0.850** |
1 | Li T, Zhang W, Liu G X, et al. Advances in the study of microbial ecology in desert soil. Journal of Desert Research, 2018, 38(2): 329-338. |
李婷, 张威, 刘光琇, 等. 荒漠土壤微生物群落结构特征研究进展. 中国沙漠, 2018, 38(2): 329-338. | |
2 | Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities. Frontiers in Plant Science, 2018, 8: 2223. |
3 | Levy-Booth D J, Prescott C E, Grayston S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry, 2014, 75: 11-25. |
4 | Ouyang Y, Evans S E, Friesen M L, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biology and Biochemistry, 2018, 127: 71-78. |
5 | Zhang L. Effects of plant species on soil denitrification in the lakeshore zone of Yezhi Lake. Wuhan: Huazhong Agricultural University, 2022. |
张翎. 植物种类对野芷湖湖岸带土壤反硝化作用的影响. 武汉: 华中农业大学, 2022. | |
6 | Huhe, Borjigin S, Buhebaoyin, et al. Microbial nitrogen-cycle gene abundance in soil of cropland abandoned for different periods. PLoS One, 2016, 11(5): e0154697. |
7 | Zhang B H, Jin D S, Zhang Q, et al. Effects of different plant cultivations on the microbiological diversity of recultivated soil in mining area. Journal of Agricultural Resources and Environment, 2019, 36(3): 355-360. |
张变华, 靳东升, 张强, 等. 不同植物种植对矿区复垦土壤微生物多样性的影响. 农业资源与环境学报, 2019, 36(3): 355-360. | |
8 | Pan K L, Gao J F, Li H Y, et al. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing. Bioresource Technology, 2018, 256: 152-159. |
9 | Wang X D. Comprehensive scientific investigation report in Baijitan Nature Reserve in Lingwu, Ningxia. Beijing: China Forestry Publishing House, 2018. |
王兴东. 宁夏灵武白芨滩自然保护区综合科学考察报告. 北京: 中国林业出版社, 2018. | |
10 | Liu S, Yao J N, Shen C, et al. Fluorescent quantitative PCR of nifH gene and diversity analysis of nitrogen-fixing bacteria in the rhizosphere soil of Caragana spp. of desert grassland. Biotechnology Bulletin, 2022, 38(12): 252-262. |
刘爽, 姚佳妮, 沈聪, 等. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析. 生物技术通报, 2022, 38(12): 252-262. | |
11 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
12 | Zhang M, Liu J J, Liu Z X, et al. Distribution characteristics of microbial gene abundance in key processes of soil nitrogen cycling in black soil zone. Acta Pedologica Sinica, 2022, 59(5): 1258-1269. |
张淼, 刘俊杰, 刘株秀, 等. 黑土区农田土壤氮循环关键过程微生物基因丰度的分布特征. 土壤学报, 2022, 59(5): 1258-1269. | |
13 | Ren L L. Characteristics of nitrogen-cycling-related functional genes under long-term fertilization in brown earth. Shenyang: Shenyang Agricultural University, 2019. |
任灵玲. 长期施肥棕壤中氮代谢功能基因的变化特征. 沈阳: 沈阳农业大学, 2019. | |
14 | Mao Y J, Yannarell A C, Mackie R I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS One, 2011, 6(9): e24750. |
15 | Palmer K, Biasi C, Horn M A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. The ISME Journal, 2012, 6(5): 1058-1077. |
16 | Liu L, Shen G Q, Sun M X, et al. Effect of biochar on nitrous oxide emission and its potential mechanisms. Journal of the Air & Waste Management Association, 2014, 64(8): 894-902. |
17 | Guo H J, Ma L J, Liang Y C, et al. Response of ammonia-oxidizing bacteria and archaea to long-term saline water irrigation in alluvial grey desert soils. Scientific Reports, 2020, 10(1): 489. |
18 | Magalhães C M, Machado A, Frank-Fahle B, et al. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Frontiers in Microbiology, 2014, 5: 515. |
19 | Zeng T T, Li D, Xie S B, et al. A review on microbial properties of anaerobic ammonium oxidation (ANAMMOX) bacteria. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 1111-1116. |
曾涛涛, 李冬, 谢水波, 等. 厌氧氨氧化菌微生物特性研究进展. 应用与环境生物学报, 2014, 20(6): 1111-1116. | |
20 | Jones C M, Bla S, Magnus R, et al. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology & Evolution, 2008, 25(9): 1955-1966. |
21 | Desnues C, Michotey V D, Wieland A, et al. Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France). Water Research, 2007, 41(15): 3407-3419. |
22 | Gao K, Guo Z H, Xue C, et al. Effects of biochar and biochar compound fertilizer on the communities of nitrifier and denitrifier in a reclaimed soil from coal-mining area. Chinese Journal of Applied Ecology, 2021, 32(8): 2949-2957. |
高科, 郭宗昊, 薛晨, 等. 生物炭与炭基肥对采煤塌陷复垦区土壤硝化和反硝化微生物群落的影响. 应用生态学报, 2021, 32(8): 2949-2957. | |
23 | Yang L, Fan M C, Shangguan Z P. An overview of the research in soil nitrogen cycling in rhizosphere. Shaanxi Forest Science and Technology, 2022, 50(5): 116-122. |
杨乐, 樊妙春, 上官周平. 根际土壤氮循环过程研究概述. 陕西林业科技, 2022, 50(5): 116-122. | |
24 | Yin Y X. Distribution characteristics and impact factors of complete ammonia oxidizing bacteria in bioretentions. Beijing: Peking University, 2021. |
银翼翔. 深圳市生物滞留池完全氨氧化微生物的分布及其影响因素研究. 北京: 北京大学, 2021. | |
25 | Yu F M, Lin Q J, Wei J Y, et al. Community characteristics of denitrifiers from rhizosphere and bulk soil of plants in the Siding mine area. Journal of Agro-Environment Science. (2023-04-11) [2023-11-16]. http://kns.cnki.net/kcms/detail/12.1347.S.20230410.1856.002.html. |
于方明, 林秋娟, 韦嘉裕, 等. 泗顶矿区植物根际和非根际土壤反硝化细菌群落特征. 农业环境科学学报. (2023-04-11) [2023-11-16]. http://kns.cnki.net/kcms/detail/12.1347.S.20230410.1856.002.html. | |
26 | Lu Y X, Tao Y, Yin B F, et al. Nitrogen deposition stimulated winter nitrous oxide emissions from bare sand more than biological soil crusts in cold desert ecosystem. Science of the Total Environment, 2022, 841: 156779. |
27 | Han S, Luo X S, Liao H, et al. Nitrospira are more sensitive than Nitrobacter to land management in acid, fertilized soils of a rapeseed-rice rotation field trial. Science of the Total Environment, 2017, 599/600: 135-144. |
28 | Simek M, Cooper J E, Picek T, et al. Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice. Soil Biology and Biochemistry, 2000, 32(1): 101-110. |
29 | Liu X Z. Moso bamboo forest properties and bacterial community diversity of effects of highly intensive management on soil physicochemical. Hangzhou: Zhejiang A&F University, 2021. |
刘芯竹. 覆盖经营对毛竹林土壤理化性质和细菌群落多样性影响. 杭州: 浙江农林大学, 2021. | |
30 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
31 | Jiang J S, Yu D, Wang Y, et al. Use of additives in composting informed by experience from agriculture: Effects of nitrogen fertilizer synergists on gaseous nitrogen emissions and corresponding genes (amoA and nirS). Bioresource Technology, 2021, 319: 124127. |
32 | Martina K, Henry M, Ramadan E M, et al. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One, 2011, 6(9): e24452. |
33 | Zeng Y, Feng F, Medova H, et al. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(21): 7795-7800. |
34 | Zhou T T, Hu W G, Zhong Z T, et al. Community composition of nirS-type and nirK-type denitrifying bacteria in rhizosphere of Salicornia europaea in the Ebinur Lake Wetland during different seasons. Acta Ecologica Sinica, 2022, 42(13): 5314-5327. |
周婷婷, 胡文革, 钟镇涛, 等. 不同季节艾比湖湿地盐角草根际nirS-型与nirK-型反硝化细菌群落组成分析. 生态学报, 2022, 42(13): 5314-5327. | |
35 | Cui H, Sun W, Delgado-Baquerizo M, et al. Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland. Plant and Soil, 2022, 473(1): 73-87. |
36 | Shi Y, Li Y T, Xiang X J, et al. Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 2018, 6(1): 27. |
37 | Zhang Q, Li Y, He Y, et al. Elevated temperature increased nitrification activity by stimulating AOB growth and activity in an acidic paddy soil. Plant and Soil, 2019, 445: 71-83. |
[1] | Qian LIU, Yan-fen DING, Shan-shan SONG, Wen-jie XU, Wei YANG. Quantitative classification and ordination analysis of spontaneous vegetation communities in herb layer along the green belt of Nanjing Ming City Wall [J]. Acta Prataculturae Sinica, 2024, 33(5): 1-15. |
[2] | Xiao-jing SUO, Lei XIANG, He GAO, Xiang-jun YUN, Ba-gen HASI, Jin-rui WU, Wen-cheng DONG, Bo-wei HUA, Jin-yi MOU, Qi WANG. Effects of different utilization methods on community characteristics of primary vegetation of Stipa grandis steppe, Inner Mongolia, China [J]. Acta Prataculturae Sinica, 2024, 33(4): 12-21. |
[3] | Yao SU, Su-mei YE, Meng-xing LU, Yue MA, Yu-bao WANG, Shan-shan WANG, Ru-shan CHAI, Xin-xin YE, Zhen ZHANG, Chao MA. Effects of straw return on farmland weed abundance and diversity: A meta-analysis [J]. Acta Prataculturae Sinica, 2024, 33(3): 150-160. |
[4] | Ying LEI, Jie LUO, Xu-man GUO, Er-ting BI, Jin-chun LIU. Microhabitat plant diversity and biomass differences in abandoned karst farmland and their driving factors [J]. Acta Prataculturae Sinica, 2024, 33(2): 28-38. |
[5] | Zi-qi FENG, Wen-yi SUN, Xing-min MU, Peng GAO, Guang-ju ZHAO, Shuai CHEN. Factors influencing undergrowth herbaceous diversity of Cunninghamialanceolata plantations in southern mountainous areas [J]. Acta Prataculturae Sinica, 2023, 32(9): 17-26. |
[6] | Yi-nan JI, Xue-feng REN, Tian-tian GOU, Guo-zhang ZANG, Yi-qi ZHENG. A study of genetic diversity in centipedegrass populations in Henan based on SSR markers [J]. Acta Prataculturae Sinica, 2023, 32(9): 198-212. |
[7] | Yu-qi ZHE, Zhi-juan WU, Ji-kun WANG, Jin-cheng ZHONG, Zhi-xin CHAI, Jin-wei XIN. Analysis of the genetic structure of Tibetan yak populations based on mtDNA COX3 [J]. Acta Prataculturae Sinica, 2023, 32(9): 231-240. |
[8] | Zeng-hui LIU, Su-jin LU, Yu-xin WANG, Chun-hui ZHANG, Xin YIN. Effects of biodiversity on primary productivity and its mechanism in artificially sown clonal plant communities of the Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2023, 32(9): 27-38. |
[9] | Min ZHAO, Kun ZHAO, Yun-bo WANG, Guo-mei YIN, Si-bo LIU, Bao-long YAN, Wei-jun MENG, Shi-jie LYU, Guo-dong HAN. Long-term grazing disturbance reduced plant diversity in Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(9): 39-49. |
[10] | Ji-liang LIU, Wen-zhi ZHAO, Yong-zhen WANG, Yi-lin FENG, Jin-xian QI, Yong-yuan LI. Effect of fencing and grazing on soil macro- and meso-arthropod diversity in alpine grassland ecosystems in the Qilian Mountains in the fall [J]. Acta Prataculturae Sinica, 2023, 32(8): 214-221. |
[11] | Zi-li LYU, Bin LIU, Feng CHANG, Zi-jing MA, Qiu-mei CAO. Species diversity and phylogenetic diversity in Bayinbrook alpine grasslands: elevation gradient distribution patterns and drivers [J]. Acta Prataculturae Sinica, 2023, 32(7): 12-22. |
[12] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[13] | Yan-shuo CHEN, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI, Zhen-jie ZHANG. Carbon source utilization by soil bacteria at different lengths of time after introducing shrubs to the desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(6): 30-44. |
[14] | Jing MA, Fang-jun GUO, Zhi-hui ZOU, Lin SUN, Fang CHEN. Seasonal variation in vegetation during restoration of sandy grassland at the southern edge of the Tengger desert [J]. Acta Prataculturae Sinica, 2023, 32(5): 203-210. |
[15] | Mei-hui LI, Yu-hua LI, Xin-hui YAN, Hang-hang TUO, Meng-ru YANG, Zi-lin WANG, Wei LI. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion [J]. Acta Prataculturae Sinica, 2023, 32(5): 27-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||