Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 27-39.DOI: 10.11686/cyxb2022367
Previous Articles Next Articles
Mei-hui LI1(), Yu-hua LI2, Xin-hui YAN1, Hang-hang TUO1, Meng-ru YANG1, Zi-lin WANG1, Wei LI3()
Received:
2022-09-15
Revised:
2022-10-17
Online:
2023-05-20
Published:
2023-03-20
Contact:
Wei LI
Mei-hui LI, Yu-hua LI, Xin-hui YAN, Hang-hang TUO, Meng-ru YANG, Zi-lin WANG, Wei LI. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion[J]. Acta Prataculturae Sinica, 2023, 32(5): 27-39.
样地Sites | 纬度Latitude (N) | 经度Longitude (E) | 海拔Altitude (m) | 坡度Slope (°) | 白莲蒿重要值Important value of A. sacrorum |
---|---|---|---|---|---|
对照CK | 36°17′06″ | 106°23′30″ | 2011.5 | 1.5 | - |
轻度LSE | 36°15′41″ | 106°22′47″ | 2075.7 | 1.6 | 0.04 ±0.01c |
中度MSE | 36°15′06″ | 106°23′10″ | 2072.0 | 1.3 | 0.16 ±0.13b |
重度HSE | 36°16′15″ | 106°23′25″ | 2107.5 | 1.2 | 0.36 ±0.19a |
Table 1 Geographical features of the sampling sites
样地Sites | 纬度Latitude (N) | 经度Longitude (E) | 海拔Altitude (m) | 坡度Slope (°) | 白莲蒿重要值Important value of A. sacrorum |
---|---|---|---|---|---|
对照CK | 36°17′06″ | 106°23′30″ | 2011.5 | 1.5 | - |
轻度LSE | 36°15′41″ | 106°22′47″ | 2075.7 | 1.6 | 0.04 ±0.01c |
中度MSE | 36°15′06″ | 106°23′10″ | 2072.0 | 1.3 | 0.16 ±0.13b |
重度HSE | 36°16′15″ | 106°23′25″ | 2107.5 | 1.2 | 0.36 ±0.19a |
物种Species | 缩写Abbreviation | 科Family | 功能群Functional group |
---|---|---|---|
阿尔泰狗娃花H. altaicus | Hta | 菊科Compositae | 杂草Forb |
百里香T. mongolicus | Tym | 唇形科 | 杂草Forb |
白莲蒿A. sacrorum | Ats | 菊科Compositae | 杂草Forb |
白颖苔草Carex duriuscula | Crd | 莎草科Cyperaceae | 禾类草Graminoid |
本氏针茅S. bungeana | Sib | 禾本科Gramineae | 禾类草Graminoid |
大针茅S. grandis | Sig | 禾本科Gramineae | 禾类草Graminoid |
二裂委陵菜Potentilla bifurca | Ptb | 蔷薇科Rosaceae | 杂草Forb |
甘菊Dendranthema lavandulifolium | Dnl | 菊科Compositae | 杂草Forb |
火绒草Leontopodium leontopodioides | Lol | 菊科Compositae | 杂草Forb |
赖草Leymus secalinus | Lys | 禾本科Gramineae | 禾类草Graminoid |
裂叶堇菜Viola dissecta | Vod | 堇菜科Violaceae | 杂草Forb |
青海苜蓿Medicago archiducis-nicolai | Mda | 豆科Leguminosae | 豆科Legume |
翼茎风毛菊Saussurea alata | Sua | 菊科Compositae | 杂草Forb |
Table 2 Species for measuring plant functional traits
物种Species | 缩写Abbreviation | 科Family | 功能群Functional group |
---|---|---|---|
阿尔泰狗娃花H. altaicus | Hta | 菊科Compositae | 杂草Forb |
百里香T. mongolicus | Tym | 唇形科 | 杂草Forb |
白莲蒿A. sacrorum | Ats | 菊科Compositae | 杂草Forb |
白颖苔草Carex duriuscula | Crd | 莎草科Cyperaceae | 禾类草Graminoid |
本氏针茅S. bungeana | Sib | 禾本科Gramineae | 禾类草Graminoid |
大针茅S. grandis | Sig | 禾本科Gramineae | 禾类草Graminoid |
二裂委陵菜Potentilla bifurca | Ptb | 蔷薇科Rosaceae | 杂草Forb |
甘菊Dendranthema lavandulifolium | Dnl | 菊科Compositae | 杂草Forb |
火绒草Leontopodium leontopodioides | Lol | 菊科Compositae | 杂草Forb |
赖草Leymus secalinus | Lys | 禾本科Gramineae | 禾类草Graminoid |
裂叶堇菜Viola dissecta | Vod | 堇菜科Violaceae | 杂草Forb |
青海苜蓿Medicago archiducis-nicolai | Mda | 豆科Leguminosae | 豆科Legume |
翼茎风毛菊Saussurea alata | Sua | 菊科Compositae | 杂草Forb |
Fig.6 Relationship between aboveground biomass and species diversity, community level functional traits and functional diversity of subshrub expansion grassland community
Fig.7 Results of random forest model (A) and variance partition analysis (B) for factors influencing aboveground productivity of subshrub expansion grassland community
1 | Van A O W. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environmental Management, 2009, 90(10): 2931-2942. |
2 | Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. |
3 | Kieft T L, White C S, Loftin S R, et al. Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology, 1998, 79(2): 671-683. |
4 | Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 2008, 14(3): 615-623. |
5 | Rivest D, Rolo V, López-Díaz L, et al. Shrub encroachment in Mediterranean silvopastoral systems: Retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agriculture Ecosystems and Environment, 2011, 141(3): 447-454. |
6 | Wang Y X, Chen X J, Lou S N, et al. Woody-plant encroachment in grasslands: A review of mechanisms and aftereffects. Acta Prataculturae Sinica, 2018, 27(5): 219-227. |
王迎新, 陈先江, 娄珊宁, 等. 草原灌丛化入侵: 过程、机制和效应. 草业学报, 2018, 27(5): 219-227. | |
7 | Brandt J S, Haynes M A, Kuemmerle T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158(Complete): 116-127. |
8 | Zhou L, Li H, Shen H, et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry, 2017, 136: 311-324. |
9 | Zhou L H, Shen H H, Chen L Y, et al. Ecological consequences of shrub encroachment in the grasslands of northern China. Landscape Ecology, 2019, 34(1): 119-130. |
10 | Chen L Y, Shen H H, Fang J Y. Shrub-encroached grassland: A new vegetation type. Chinese Journal of Nature, 2014, 36(6): 391-396. |
陈蕾伊, 沈海花, 方精云. 灌丛化草原: 一种新的植被景观. 自然杂志, 2014, 36(6): 391-396. | |
11 | Gao Q, Liu T. Causes and consequences of shrub encroachment in arid and semiarid region: A disputable issue. Arid Land Geography, 2015, 38(6): 1202-1212. |
高琼, 刘婷. 干旱半干旱区草原灌丛化的原因及影响-争议与进展. 干旱区地理, 2015, 38(6): 1202-1212. | |
12 | Maestre F T, Bowker M A, Puche M D, et al. Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 2010, 12(9): 930-941. |
13 | Maestre F T, Eldridge D J, Soliveres S. A multifaceted view on the impacts of shrub encroachment. Applied Vegetation Science, 2016, 19(3): 369-370. |
14 | Yan B L, Lv S J, Wang Z W, et al. The advance of shrub encroachment in grassland and its impact on ecosystem. Chinese Journal of Grassland, 2019, 41(2): 95-101. |
闫宝龙, 吕世杰, 王忠武, 等. 草地灌丛化成因及其对生态系统的影响研究进展. 中国草地学报, 2019, 41(2): 95-101. | |
15 | Zheng Y R, Lai L M, Cai W T, et al. Mechanism of shrub-encroached grasslands restoration in the Ordos Plateau. Journal of Shanxi University (Natural Science Edition), 2022, 45(3): 844-852. |
郑元润, 来利明, 蔡文涛, 等. 鄂尔多斯高原灌丛化草地恢复机制解析. 山西大学学报(自然科学版), 2022, 45(3): 844-852. | |
16 | Sühs R B, Gieh E L H, Peroni N. Preventing traditional management can cause grassland loss within 30 years in southern Brazil. Scientific Reports, 2020, 10: 783. |
17 | Zhang Y, Gao Q, Xu L, et al. Shrubs proliferated within a six-year exclosure in a temperate grassland-Spatiotemporal relationships between vegetation and soil variables. Sciences in Cold and Arid Regions, 2014, 6: 139-149. |
18 | O'Connor R C, Taylor J H, Nippert J B. Browsing and fire decreases dominance of a resprouting shrub in woody encroached grassland. Ecology, 2020, 101(2): e02935. |
19 | Yu L, Wang H M, Guo T D, et al. Bistable-state of vegetation shift in the desert grassland-shrubland anthropogenic Mosaic area. Acta Ecologica Sinica, 2021, 41(24): 9773-9783. |
于露, 王红梅, 郭天斗, 等. 荒漠草原-灌丛镶嵌体的植被稳态转变特征. 生态学报, 2021, 41(24): 9773-9783. | |
20 | Hooper D U, Solan M, Symstad A, et al. Species diversity, functional diversity and ecosystem functioning. Oxford: Oxford University Press, 2002: 195-208. |
21 | Steudel B, Hallmann C, Lorenz M, et al. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity. New Phytologist, 2016, 212(2): 409-420. |
22 | Dı́az S, Cabido M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 2001, 16(11): 646-655. |
23 | Petchey O L, Gaston K J. Functional diversity (FD), species richness and community composition. Ecology Letters, 2002, 5(3): 402-411. |
24 | McGill B J, Enquist B J, Weiher E, et al. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 2006, 21(4): 178-185. |
25 | Butterfield B J, Suding K N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. Journal of Ecology, 2013, 101: 9-17. |
26 | Huang X B, Su J F, Li S F, et al. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Scientific Reports, 2019, 9(1): 6979. |
27 | Grime J P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 1998, 86(6): 902-910. |
28 | Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861. |
29 | Guo Q, Wen Z M, Hossein G, et al. Shift in microbial communities mediated by vegetation-soil characteristics following subshrub encroachment in a semi-arid grassland. Ecological Indicators, 2022,137: 108768. |
30 | Chen F R, Cheng J M, Liu W, et al. Effects of different disturbances on soil physical and chemical properties in the typical grassland of Loess Region. Journal of Soil and Water Conservation, 2012, 26(2): 105-110. |
陈芙蓉, 程积民, 刘伟, 等. 不同干扰对黄土区典型草原土壤理化性质的影响. 水土保持学报, 2012, 26(2): 105-110. | |
31 | Zhu R B, Cheng J M, Liu Y J, et al. Floristic study of spermatophyte in Yunwu Mountain Natural Reserves of China. Acta Agrestia Sinica, 2012, 20(3): 439-443. |
朱仁斌, 程积民, 刘永进, 等. 宁夏云雾山自然保护区种子植物区系研究. 草地学报, 2012, 20(3): 439-443. | |
32 | Yang X, Yan X H, Li M H, et al. The relationship between species diversity and aboveground productivity at temporal scale in Yunwushan typical grassland of Ningxia. Acta Agrestia Sinica, 2022, 30(2): 259-268. |
杨雪, 晏昕辉, 李美慧, 等. 时间尺度上草地物种多样性和地上生产力的关系. 草地学报, 2022, 30(2): 259-268. | |
33 | Zhou G, Xia H, Xylab C. Changes in soil water retention and content during shrub encroachment process in Inner Mongolia, northern China. Science Direct, 2021, 206: 105528. |
34 | Bai Y F, Wu J, Pan Q, et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023-1034. |
35 | Song Y T, Wang P, Zhou D W. Methods of measuring plant community functional diversity. Chinese Journal of Ecology, 2011, 30(9): 2053-2059. |
宋彦涛, 王平, 周道玮. 植物群落功能多样性计算方法. 生态学杂志, 2011, 30(9): 2053-2059. | |
36 | Thomas A D, Elliott D R, Dougill A J, et al. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degradation and Development, 2018, 29(5): 1306-1316. |
37 | Hunter J T. Complexities of shrub encroachment: Are shrubs important for the maintenance of diversity in Themeda-dominated assemblages on coastal headlands in eastern Australia? Journal of Coastal Conservation, 2018, 22(4): 667-677. |
38 | Ban J W, Yin Z Y, Zhang Q M, et al. The changes of ecological characteristics of degraded hilly grassland during the transformation from herb dominance to shrub dominance in Heshan, Guangdong. Tropical Geography, 2008(2): 129-133. |
班嘉蔚, 殷祚云, 张倩媚, 等. 广东鹤山退化草坡从草本优势向灌木优势演变过程中的生态特征. 热带地理, 2008(2): 129-133. | |
39 | Grime J P. Competitive exclusion in herbaceous vegetation. Nature, 1999, 242: 344-347. |
40 | Zhang H, Chen S H, Yang S M. The characteristics and ecological geographical distribution of Artemisia sacrorum. Journal of Inner Mongolia Agriculture University (Natural Science Edition), 2001(1): 74-78. |
张昊, 陈世璜, 杨尚明. 白莲蒿的特性和生态地理分布的研究. 内蒙古农业大学学报(自然科学版), 2001(1): 74-78. | |
41 | Madsen B, Treier U A, Zlinszky A, et al. Detecting shrub encroachment in seminatural grasslands using UAS LiDAR. Ecology and Evolution, 2020, 10(11): 4876-4902. |
42 | Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85(9): 2630-2637. |
43 | Griffin-Nolan R J, Blumenthal D M, Collins S L, et al. Shifts in plant functional composition following long-term drought in grasslands. Journal of Ecology, 2019, 107(5): 2133-2148. |
44 | Muñoz Vallés S, Gallego Fernández J B, Dellafiore C, et al. Effects on soil, microclimate and vegetation of the native-invasive Retama monosperma (L.) in coastal dunes. Plant Ecology, 2011, 212(2): 169-179. |
45 | Li W, Zhao J, Epstein H E, et al. Community-level trait responses and intra-specific trait variability play important roles in driving community productivity in an alpine meadow on the Tibetan Plateau. Journal of Plant Ecology, 2017, 10(4): 592-600. |
46 | Lopez-Diaz M L, Rolo V R, Benítez R, et al. Shrub encroachment of Iberian dehesas: Implications on total forage productivity. Agroforestry Systems, 2015, 89(4): 587-598. |
47 | Peng H Y, Li X Y, Tong S Y. Effects of shrub encroachment on biomass and biodiversity in the typical steppe of Inner Mongolia. Acta Ecologica Sinica, 2013, 33(22): 7221-7229. |
彭海英, 李小雁, 童绍玉. 内蒙古典型草原灌丛化对生物量和生物多样性的影响. 生态学报, 2013, 33(22): 7221-7229. | |
48 | An Q Q, Qiao W Y, Li W J, et al. Effect of shrub encroachment on grassland community structure and above-ground biomass on the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 664-671. |
安琪琪, 乔文英, 李维军, 等. 灌丛化对黄土高原草地植物群落结构和地上生产力的影响. 西北植物学报, 2021, 41(4): 664-671. | |
49 | Shan G L, Xu Z, Ning F, et al. Influence of exclosure year on community structure and species diversity on a typical steppe. Acta Prataculturae Sinica, 2008, 17(6): 1-8. |
单贵莲, 徐柱, 宁发, 等. 围封年限对典型草原群落结构及物种多样性的影响. 草业学报, 2008, 17(6): 1-8. | |
50 | Guo P, Xie L N, Man L, et al. Effects of the expansion of Caragana shrubs on forage yield and plant diversity in desert steppe. Pratacultural Science, 2019, 36(5): 1215-1223. |
郭璞, 解李娜, 满良, 等. 荒漠化草原锦鸡儿属灌丛扩增对牧草产量和植物多样性的影响. 草业科学, 2019, 36(5): 1215-1223. | |
51 | Ryel R J, Ivans C Y, Peek M S, et al. Functional differences in soil water pools: A new perspective on plant water use in water-limited ecosystems. Springer Berlin Heidelberg, 2008, 69: 397-422. |
52 | Noy-Meir I. Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 1973, 4(1): 25-51. |
53 | Ogle K, Reynolds J F. Plant responses to precipitation in desert ecosystems: Integrating functional types, pulses, thresholds, and delays. Oecologia, 2004, 141(2): 282-294. |
54 | Doherty J M, Callaway J C, Zedler J B. Diversity-function relationships changed in a long-term restoration experiment. Ecological Applications, 2011, 21(6): 2143-2155. |
55 | Mittelbach G G, Steiner C F, Scheiner S M, et al. What is the observed relationship between species richness and productivity? Ecology, 2001, 82(9): 2381-2396. |
56 | Yang X, Yan X, Guo Q, et al. Effects of different management practices on plant community and soil properties in a restored grassland. Journal of Soil Science and Plant Nutrition, 2022, 22: 3811-3821. |
57 | Wright I J, Peich R B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. |
58 | He N P, Li Y, Liu C C,et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology and Evolution, 2020, 35(10): 908-918. |
59 | Pan Q, Zheng H, Wang Z H, et al. Effects of plant functional traits on ecosystem services: A review. Chinese Journal of Plant Ecology, 2021, 45(10): 1140-1153. |
60 | Suring L H. Chapter 4: Modeling threats to sagebrush and other shrubland communities in Part Ⅱ: Regional assessment of habitats for species of conservation concern in the Great Basin. Lawrence: Allen Press, 2005: 114-119. |
61 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
62 | Li W, Cheng J M, Yu K L, et al. Plant functional diversity can be independent of species diversity: Observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLoS One, 2015, 10(8): e0136040. |
[1] | Jiang-wen LI, Bang-yin HE, Cai LI, Hong-yan HUI, Bo LIU, Xiao-xi ZHANG, Hui FAN, Wen-yu SU. Analysis of grassland community-level plant functional traits and functional diversity at different times during restoration [J]. Acta Prataculturae Sinica, 2023, 32(1): 16-25. |
[2] | Ya-ling HU, Eerdun HASI, Liang MAN, Yi YANG, Ping ZHANG. Vegetation responses to sand source and supply volume in Caragana microphylla shrubland [J]. Acta Prataculturae Sinica, 2023, 32(1): 26-35. |
[3] | Li-miao ZHANG, Xue TAN, Zhi DONG, Jie ZHENG, Zhong-xun YUAN, Chang-xiao LI. Effects of Alternanthera philoxeroides invasion on plant diversity in the riparian zones of downtown Chongqing in the Three Gorges Reservoir area [J]. Acta Prataculturae Sinica, 2022, 31(9): 13-25. |
[4] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[5] | Yuan-yuan LI, Ting-ting XU, Zhe AI, Zhao-na ZHOU, Fei MA. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species [J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49. |
[6] | Rui GAO, Ning AI, Guang-quan LIU, Chang-hai LIU, Fang-fang QIANG. Characteristics of understory herb communities across time during restoration in coal mine reclamation areas and their coupling with soil properties [J]. Acta Prataculturae Sinica, 2022, 31(6): 61-68. |
[7] | Jun-yan LU, Mei HONG, Bayinnamula ZHAO, Wuyingga ZHAO, Wen-dong WANG, Shang-fei MA, Dian-lin YANG. Response of plant community structure and biomass to long-term nutrient addition in a Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2022, 31(4): 22-31. |
[8] | Yuan-yuan DUAN, Jing ZHANG, Ling-ling WANG, Cai-feng LIU, Yi-mo WANG, Su ZHOU, Zheng-gang GUO. Effects of plateau pika on the relationship between plant species diversity and functional diversity in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(11): 25-35. |
[9] | Qiao-yu LUO, Yan-long WANG, Lei DU, Nian LIU, Li LI, Yu-shou MA. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2021, 30(4): 80-89. |
[10] | Guo-bao HE. Distribution characteristics and plant community diversity on the north slopes of the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 194-201. |
[11] | Ying-ying NIE, Jin-qiang CHEN, Xiao-ping XIN, Li-jun XU, Gui-xia YANG, Xu WANG. Responses of niche characteristics and species diversity of main plant populations to duration of enclosure in the Hulun Buir meadow steppe [J]. Acta Prataculturae Sinica, 2021, 30(10): 15-25. |
[12] | Fu-gui HAN, Duo-qing MAN, Qing-zhong ZHENG, Yan-li ZHAO, Yu-nian ZHANG, Bin XIAO, Gui-quan FU, Juan DU. Species diversity and soil nutrient changes of a Nitraria tangutorum shrub community in Qingtu Lake wetland [J]. Acta Prataculturae Sinica, 2021, 30(1): 36-45. |
[13] | WANG Xiu-yu, HUANG Xiao-xia, HE Ke-jian, SUN Xiao-neng, LÜZENG Zhe-zhou, ZHANG Yong, ZHU Mei, ZENG Rui-qin. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China [J]. Acta Prataculturae Sinica, 2020, 29(8): 6-17. |
[14] | Chelmeg, LIU Xin-ping, HE Yu-hui, SUN Shan-shan, WANG Ming-ming. Response of herbaceous plant community characteristics to short-term precipitation change in semi-arid sandy land [J]. Acta Prataculturae Sinica, 2020, 29(4): 19-28. |
[15] | WU Hao, ZHANG Chen, DAI Wen-kui. Interactive effects of climate warming and species diversity on the invasiveness of the alien weed Alternanthera philoxeroides [J]. Acta Prataculturae Sinica, 2020, 29(3): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||