Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (9): 1-14.DOI: 10.11686/cyxb2023380
Jia-ni YAO(), Shuang LIU, Jun-jie ZHANG, Ming-zhu HU, Jin-xia DAI()
Received:
2023-10-11
Revised:
2023-12-11
Online:
2024-09-20
Published:
2024-06-20
Contact:
Jin-xia DAI
Jia-ni YAO, Shuang LIU, Jun-jie ZHANG, Ming-zhu HU, Jin-xia DAI. Enzyme activity and microbial metabolic diversity in typical shrub rhizosphere soil in Ningxia desert steppe[J]. Acta Prataculturae Sinica, 2024, 33(9): 1-14.
样品 Samples | 酸碱度 pH | 有机质 Soil organic matter (g·kg-1) | 土壤含水量 Soil water content (%) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 亚硝态氮 Nitrite nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
NT1 | 8.52±0.10Aa | 7.70±0.01Aa | 7.49±1.85Aa | 0.66±0.02Aa | 0.41±0.01Aa | 17.40±0.01Aa | 57.65±1.00Aa | 5.08±0.08Aa | 65.30±0.02Aa | 9.19±0.10Aa | 166.77±1.12Aa |
NT2 | 8.65±0.16Aa | 7.68±0.05Ba | 1.53±0.41Bc | 0.54±0.01Ca | 0.34±0.01Ba | 17.12±0.20Aa | 28.86±0.03Ba | 3.71±0.09Cb | 4.86±0.01Cc | 4.29±0.10Ba | 150.78±1.14Ba |
NT3 | 8.10±0.04Bb | 7.65±0.04Ca | 0.77±0.06Ba | 0.55±0.03Ba | 0.36±0.10Ba | 17.21±0.06Aa | 10.25±0.14Cb | 4.55±0.06Ba | 23.55±0.02Ba | 4.53±0.08Ba | 130.73±1.14Ca |
SD1 | 8.35±0.08Aa | 3.42±0.01Bc | 4.63±0.41Bbc | 0.37±0.02Bc | 0.30±0.01Ac | 16.75±0.03Ac | 43.24±0.16Ab | 4.29±0.06Ac | 24.69±0.44Ac | 3.67±0.10Ab | 104.44±0.01Bc |
SD2 | 7.56±0.21Bb | 3.45±0.02Ac | 6.47±0.03Ab | 0.44±0.02Ab | 0.30±0.01Ab | 16.73±0.01Ab | 11.78±0.14Bd | 3.73±0.06Bb | 15.74±0.00Bb | 1.47±0.02Cc | 98.38±1.17Cc |
SD3 | 8.35±0.03Aa | 3.39±0.01Cc | 0.60±0.20Cab | 0.31±0.01Cc | 0.28±0.03Ac | 16.66±0.04Ab | 4.26±0.00Cc | 3.40±0.03Cb | 14.17±0.01Cb | 2.36±0.10Bc | 114.48±1.15Ac |
MC1 | 7.41±0.06Bc | 6.01±0.02Ab | 6.57±0.47Aab | 0.53±0.02Ab | 0.35±0.01Ab | 17.15±0.05Ab | 19.56±0.02Ad | 4.13±0.08Ac | 29.05±0.04Bb | 3.54±0.10Ab | 128.55±0.01Ab |
MC2 | 8.00±0.07Ab | 5.95±0.04Bb | 5.83±0.98Bb | 0.34±0.03Cc | 0.30±0.02Bb | 16.98±0.07Aab | 13.11±0.13Bc | 3.58±0.06Bb | 37.11±0.04Aa | 2.26±0.08Bb | 104.51±0.02Cb |
MC3 | 7.63±0.18Bc | 5.90±0.01Cb | 0.33±0.03Cbc | 0.35±0.03Bb | 0.33±0.01Ab | 16.66±0.04Bb | 4.26±0.01Cc | 2.25±0.01Cc | 9.58±0.01Cd | 2.50±0.02Bc | 118.49±1.13Bb |
MT1 | 7.84±0.14Ab | 2.99±0.01Cd | 3.57±0.32Bc | 0.34±0.02Ad | 0.32±0.01Ac | 16.33±0.03Ad | 26.05±0.02Bc | 4.74±0.10Ab | 28.89±0.03Ab | 3.81±0.02Bb | 98.35±1.16Bd |
MT2 | 7.59±0.07Ab | 3.15±0.02Ad | 8.63±0.33Aa | 0.39±0.07Abc | 0.32±0.01Aab | 16.21±0.02Bc | 27.06±0.44Ab | 4.43±0.08Ba | 0 | 4.36±0.02Aa | 104.48±0.01Ab |
MT3 | 7.79±0.02Ac | 3.08±0.01Bd | 0.24±0.00Cc | 0.31±0.04Ac | 0.27±0.01Bc | 16.39±0.09Ac | 13.23±0.00Ca | 3.51±0.01Cb | 10.23±0.04Bc | 2.85±0.02Cb | 92.38±0.00Cd |
Table 1 Physical and chemical properties of rhizosphere soil in different development periods of legume shrub
样品 Samples | 酸碱度 pH | 有机质 Soil organic matter (g·kg-1) | 土壤含水量 Soil water content (%) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 亚硝态氮 Nitrite nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
NT1 | 8.52±0.10Aa | 7.70±0.01Aa | 7.49±1.85Aa | 0.66±0.02Aa | 0.41±0.01Aa | 17.40±0.01Aa | 57.65±1.00Aa | 5.08±0.08Aa | 65.30±0.02Aa | 9.19±0.10Aa | 166.77±1.12Aa |
NT2 | 8.65±0.16Aa | 7.68±0.05Ba | 1.53±0.41Bc | 0.54±0.01Ca | 0.34±0.01Ba | 17.12±0.20Aa | 28.86±0.03Ba | 3.71±0.09Cb | 4.86±0.01Cc | 4.29±0.10Ba | 150.78±1.14Ba |
NT3 | 8.10±0.04Bb | 7.65±0.04Ca | 0.77±0.06Ba | 0.55±0.03Ba | 0.36±0.10Ba | 17.21±0.06Aa | 10.25±0.14Cb | 4.55±0.06Ba | 23.55±0.02Ba | 4.53±0.08Ba | 130.73±1.14Ca |
SD1 | 8.35±0.08Aa | 3.42±0.01Bc | 4.63±0.41Bbc | 0.37±0.02Bc | 0.30±0.01Ac | 16.75±0.03Ac | 43.24±0.16Ab | 4.29±0.06Ac | 24.69±0.44Ac | 3.67±0.10Ab | 104.44±0.01Bc |
SD2 | 7.56±0.21Bb | 3.45±0.02Ac | 6.47±0.03Ab | 0.44±0.02Ab | 0.30±0.01Ab | 16.73±0.01Ab | 11.78±0.14Bd | 3.73±0.06Bb | 15.74±0.00Bb | 1.47±0.02Cc | 98.38±1.17Cc |
SD3 | 8.35±0.03Aa | 3.39±0.01Cc | 0.60±0.20Cab | 0.31±0.01Cc | 0.28±0.03Ac | 16.66±0.04Ab | 4.26±0.00Cc | 3.40±0.03Cb | 14.17±0.01Cb | 2.36±0.10Bc | 114.48±1.15Ac |
MC1 | 7.41±0.06Bc | 6.01±0.02Ab | 6.57±0.47Aab | 0.53±0.02Ab | 0.35±0.01Ab | 17.15±0.05Ab | 19.56±0.02Ad | 4.13±0.08Ac | 29.05±0.04Bb | 3.54±0.10Ab | 128.55±0.01Ab |
MC2 | 8.00±0.07Ab | 5.95±0.04Bb | 5.83±0.98Bb | 0.34±0.03Cc | 0.30±0.02Bb | 16.98±0.07Aab | 13.11±0.13Bc | 3.58±0.06Bb | 37.11±0.04Aa | 2.26±0.08Bb | 104.51±0.02Cb |
MC3 | 7.63±0.18Bc | 5.90±0.01Cb | 0.33±0.03Cbc | 0.35±0.03Bb | 0.33±0.01Ab | 16.66±0.04Bb | 4.26±0.01Cc | 2.25±0.01Cc | 9.58±0.01Cd | 2.50±0.02Bc | 118.49±1.13Bb |
MT1 | 7.84±0.14Ab | 2.99±0.01Cd | 3.57±0.32Bc | 0.34±0.02Ad | 0.32±0.01Ac | 16.33±0.03Ad | 26.05±0.02Bc | 4.74±0.10Ab | 28.89±0.03Ab | 3.81±0.02Bb | 98.35±1.16Bd |
MT2 | 7.59±0.07Ab | 3.15±0.02Ad | 8.63±0.33Aa | 0.39±0.07Abc | 0.32±0.01Aab | 16.21±0.02Bc | 27.06±0.44Ab | 4.43±0.08Ba | 0 | 4.36±0.02Aa | 104.48±0.01Ab |
MT3 | 7.79±0.02Ac | 3.08±0.01Bd | 0.24±0.00Cc | 0.31±0.04Ac | 0.27±0.01Bc | 16.39±0.09Ac | 13.23±0.00Ca | 3.51±0.01Cb | 10.23±0.04Bc | 2.85±0.02Cb | 92.38±0.00Cd |
土壤酶活性 Soil enzyme activity | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
土壤脲酶Soil-urease (S-UE) | 灌丛类型Shrub type | 625850.454 | 3 | 208616.818 | 385.773 | <0.001 |
发育期Development period | 49600.647 | 2 | 24800.324 | 45.861 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 421004.550 | 6 | 70167.425 | 129.753 | <0.001 | |
土壤碱性磷酸酶Soil-alkaline phosphatase (S-AKP) | 灌丛类型Shrub type | 70502929.860 | 3 | 23500976.620 | 1148.418 | <0.001 |
发育期Development period | 2665366.774 | 2 | 1332683.387 | 65.124 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 22046446.330 | 6 | 3674407.722 | 179.557 | <0.001 | |
土壤蔗糖酶Soil-sucrase (S-SC) | 灌丛类型Shrub type | 76694.584 | 3 | 25564.861 | 253.634 | <0.001 |
发育期Development period | 8186.687 | 2 | 4093.343 | 40.611 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 92174.605 | 6 | 15362.434 | 152.414 | <0.001 | |
土壤脱氢酶Soil-dehydrogenase (S-DHA) | 灌丛类型Shrub type | 67.317 | 3 | 22.439 | 412.674 | <0.001 |
发育期Development period | 9.743 | 2 | 4.872 | 89.595 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 126.875 | 6 | 21.146 | 388.888 | <0.001 |
Table 2 Two-factor variance analysis of soil enzyme activity in rhizosphere of legume shrub at different development periods
土壤酶活性 Soil enzyme activity | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
土壤脲酶Soil-urease (S-UE) | 灌丛类型Shrub type | 625850.454 | 3 | 208616.818 | 385.773 | <0.001 |
发育期Development period | 49600.647 | 2 | 24800.324 | 45.861 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 421004.550 | 6 | 70167.425 | 129.753 | <0.001 | |
土壤碱性磷酸酶Soil-alkaline phosphatase (S-AKP) | 灌丛类型Shrub type | 70502929.860 | 3 | 23500976.620 | 1148.418 | <0.001 |
发育期Development period | 2665366.774 | 2 | 1332683.387 | 65.124 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 22046446.330 | 6 | 3674407.722 | 179.557 | <0.001 | |
土壤蔗糖酶Soil-sucrase (S-SC) | 灌丛类型Shrub type | 76694.584 | 3 | 25564.861 | 253.634 | <0.001 |
发育期Development period | 8186.687 | 2 | 4093.343 | 40.611 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 92174.605 | 6 | 15362.434 | 152.414 | <0.001 | |
土壤脱氢酶Soil-dehydrogenase (S-DHA) | 灌丛类型Shrub type | 67.317 | 3 | 22.439 | 412.674 | <0.001 |
发育期Development period | 9.743 | 2 | 4.872 | 89.595 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 126.875 | 6 | 21.146 | 388.888 | <0.001 |
项目 Item | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
平均颜色变化率Average well color development (AWCD) | 灌丛类型Shrub type | 0.552 | 3 | 0.184 | 120.896 | <0.001 |
发育期Development period | 2.129 | 2 | 1.065 | 699.280 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 0.754 | 6 | 0.126 | 82.569 | <0.001 |
Table 3 Two-factor variance analysis of rhizosphere soil microbial average well color development (AWCD) in legume shrub at different development periods
项目 Item | 因素 Factor | 平方和 Quadratic sum | 自由度 Degrees of freedom | 均方 Mean square | F | P |
---|---|---|---|---|---|---|
平均颜色变化率Average well color development (AWCD) | 灌丛类型Shrub type | 0.552 | 3 | 0.184 | 120.896 | <0.001 |
发育期Development period | 2.129 | 2 | 1.065 | 699.280 | <0.001 | |
灌丛类型×发育期Shrub type×development period | 0.754 | 6 | 0.126 | 82.569 | <0.001 |
样品 Samples | 平均颜色变化率 Average well color development (AWCD) | 香农指数 Shannon index | 辛普森指数 Simpson index | 麦金塔指数 Mclntosh index |
---|---|---|---|---|
NT1 | 1.312±0.008Aa | 3.293±0.003Aa | 0.960±0.000Aa | 8.094±0.044Aa |
NT2 | 0.242±0.025Cb | 2.179±0.244Bb | 0.909±0.010Bab | 2.649±0.141Cb |
NT3 | 0.840±0.024Ba | 3.116±0.007Aa | 0.948±0.001Aa | 5.803±0.213Ba |
SD1 | 0.849±0.031Ab | 3.010±0.037Ab | 0.943±0.002Ab | 6.243±0.119Ab |
SD2 | 0.225±0.013Cb | 2.461±0.142Bab | 0.885±0.019Bb | 2.343±0.157Cb |
SD3 | 0.589±0.007Bb | 2.814±0.046Ab | 0.925±0.007Ab | 4.738±0.008Bb |
MC1 | 0.660±0.013Ac | 2.992±0.049Ab | 0.946±0.002Ab | 4.791±0.075Ac |
MC2 | 0.444±0.016Ba | 2.959±0.037Aa | 0.938±0.000Ba | 3.427±0.127Ba |
MC3 | 0.301±0.020Cd | 2.784±0.173Ab | 0.923±0.002Cb | 2.586±0.167Cd |
MT1 | 0.835±0.049Ab | 3.052±0.025Ab | 0.948±0.002Ab | 5.897±0.239Ab |
MT2 | 0.393±0.018Ba | 2.710±0.096Ba | 0.916±0.005Bab | 3.413±0.197Ba |
MT3 | 0.410±0.010Bc | 2.745±0.021Bb | 0.929±0.005Bb | 3.378±0.038Bc |
Table 4 Rhizosphere soil microbial diversity index of legume shrub at different development periods
样品 Samples | 平均颜色变化率 Average well color development (AWCD) | 香农指数 Shannon index | 辛普森指数 Simpson index | 麦金塔指数 Mclntosh index |
---|---|---|---|---|
NT1 | 1.312±0.008Aa | 3.293±0.003Aa | 0.960±0.000Aa | 8.094±0.044Aa |
NT2 | 0.242±0.025Cb | 2.179±0.244Bb | 0.909±0.010Bab | 2.649±0.141Cb |
NT3 | 0.840±0.024Ba | 3.116±0.007Aa | 0.948±0.001Aa | 5.803±0.213Ba |
SD1 | 0.849±0.031Ab | 3.010±0.037Ab | 0.943±0.002Ab | 6.243±0.119Ab |
SD2 | 0.225±0.013Cb | 2.461±0.142Bab | 0.885±0.019Bb | 2.343±0.157Cb |
SD3 | 0.589±0.007Bb | 2.814±0.046Ab | 0.925±0.007Ab | 4.738±0.008Bb |
MC1 | 0.660±0.013Ac | 2.992±0.049Ab | 0.946±0.002Ab | 4.791±0.075Ac |
MC2 | 0.444±0.016Ba | 2.959±0.037Aa | 0.938±0.000Ba | 3.427±0.127Ba |
MC3 | 0.301±0.020Cd | 2.784±0.173Ab | 0.923±0.002Cb | 2.586±0.167Cd |
MT1 | 0.835±0.049Ab | 3.052±0.025Ab | 0.948±0.002Ab | 5.897±0.239Ab |
MT2 | 0.393±0.018Ba | 2.710±0.096Ba | 0.916±0.005Bab | 3.413±0.197Ba |
MT3 | 0.410±0.010Bc | 2.745±0.021Bb | 0.929±0.005Bb | 3.378±0.038Bc |
1 | Alsharif W, Saad M M, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Frontiers in Microbiology, 2020, 11: 1666. |
2 | Li T, Zhang W, Liu G X, et al. Advances in the study of microbial ecology in desert soil. Journal of Desert Research, 2018, 38(2): 329-338. |
李婷, 张威, 刘光琇, 等. 荒漠土壤微生物群落结构特征研究进展. 中国沙漠, 2018, 38(2): 329-338. | |
3 | Liu Z, Wang C, Yang X, et al. The relationship and influencing factors between endangered plant Tetraena mongolica and soil microorganisms in West Ordos desert ecosystem, Northern China. Plants, 2023, 12(5): 1048. |
4 | Xiao C P, Yang L M, Zhang L X, et al. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. Journal of Ginseng Research, 2016, 40(1): 28-37. |
5 | Shang L, Wan L, Zhou X, et al. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS One, 2020, 15(10): e0240559. |
6 | Yin T G, Li Y Z. Research progress on factors affecting soil enzyme activity and its determination methods. Mineral Exploration, 2019, 10(6): 1523-1528. |
殷陶刚, 李玉泽. 土壤酶活性影响因素及测定方法的研究进展. 矿产勘查, 2019, 10(6): 1523-1528. | |
7 | Zhang C, Zhou X, Wang X, et al. Elaeagnus angustifolia can improve salt-alkali soil and the health level of soil: Emphasizing the driving role of core microbial communities. Journal of Environmental Management, 2022, 305: 114401. |
8 | Ma J, Qin J, Ma H, et al. Soil characteristic changes and quality evaluation of degraded desert steppe in arid windy sandy areas. PeerJ, 2022, 10: e13100. |
9 | Zhang B H, Hong J P, Zhang Q, et al. Contrast in soil microbial metabolic functional diversity to fertilization and crop rotation under rhizosphere and non-rhizosphere in the coal gangue landfill reclamation area of Loess Hills. PLoS One, 2020, 15(3): e0229341. |
10 | Song C. Radiating benefit of windbreak and sand fixation and ecological protection compensation of desert ecosystem nature reserve——a case study on the Baijitan Nature Reserve, Ningxia. Beijing: Beijing Forestry University, 2021. |
宋超. 荒漠生态系统类型自然保护区防风固沙效益和生态保护补偿研究——以宁夏灵武白芨滩国家级自然保护区为例. 北京: 北京林业大学, 2021. | |
11 | Tian S, Han W W, Han K, et al. Present situation and countermeasures of sand control in Mu Us Sandy Land——a case study of Baijitan National Nature Reserve in Lingwu, Ningxia. Modern Business Trade Industry, 2014, 26(14): 186-187. |
田帅, 韩雯雯, 韩凯, 等. 毛乌素沙地防沙治沙现状及对策——以宁夏灵武白芨滩国家级自然保护区为例. 现代商贸工业, 2014, 26(14): 186-187. | |
12 | Zhou Z, Yu M, Ding G, et al. Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants. PLoS One, 2020, 15(12): e0241057. |
13 | Lu R K. Soil agrochemical analysis methods. Beijing: Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 农业科技出版社, 2000. | |
14 | Guan S Y. Soil enzyme and its research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
15 | Tian P Y, Shen C, Zhao H, et al. Enzyme activities and microbial communities in rhizospheres of plants in salinized soil in North Yinchuan, China. Acta Pedologica Sinica, 2020, 57(1): 217-226. |
田平雅, 沈聪, 赵辉, 等. 银北盐碱区植物根际土壤酶活性及微生物群落特征. 土壤学报, 2020, 57(1): 217-226. | |
16 | Wang W X, Luo M, Pan C D. Microorganisms and its biological activity in rhizospheric soil around desert plants at the lower reaches of Tarim River, Xinjiang, China. Journal of Desert Research, 2010, 30(3): 571-576. |
王卫霞, 罗明, 潘存德. 塔里木河下游几种荒漠植物根际土壤微生物及其活性. 中国沙漠, 2010, 30(3): 571-576. | |
17 | Li Q L, Xiao Z, Ren M B, et al. Variation of bacterial community structure in Gardenia jasminoides rhizosphere at different growth stages. Chinese Journal of Soil Science, 2021, 52(2): 346-354. |
李巧玲, 肖忠, 任明波, 等. 栀子不同生育期根际土壤细菌群落结构的动态变化. 土壤通报, 2021, 52(2): 346-354. | |
18 | Xie T P, Zhang J, Liu N, et al. Changes in rhizosphere soil enzymatic activities and microbial communities across growth stages of Angelica sinensis. Chinese Journal of Soil Science, 2023, 54(1): 138-150. |
谢田朋, 张建, 柳娜, 等. 当归不同生长时期根际土壤酶活性及微生物群落结构变化. 土壤通报, 2023, 54(1): 138-150. | |
19 | Yang Z, Li X Y, Yuan Y, et al. Characteristics and influence factors of soil urease in a typical monsoon evergreen broad-leaved forest in southern Yunnan. Forest Resources Management, 2023(4): 71-79. |
杨值, 李小英, 袁勇, 等. 滇南典型季风常绿阔叶林土壤脲酶特征及其影响因子. 林业资源管理, 2023(4): 71-79. | |
20 | Liao Y X, Shu Y G, Wang C M, et al. Change characteristics of soil microbial phosphorus, alkaline phosphatase and phytase under different vegetation types in karst area. Journal of Southern Agriculture, 2023, 54(6): 1762-1770. |
廖远行, 舒英格, 王昌敏, 等. 喀斯特地区不同植被类型土壤微生物量磷、碱性磷酸酶及植酸酶的变化特征. 南方农业学报, 2023, 54(6): 1762-1770. | |
21 | Zheng W Y, Wang Y X, Wang Y J, et al. Relationship between rhizosphere soil enzyme activity of different tree species and soil physical-chemical properties and microbial quantity in rocky desertification control area. Journal of Northeast Forestry University, 2021, 49(1): 96-100. |
郑武扬, 王艳霞, 王月江, 等. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报, 2021, 49(1): 96-100. | |
22 | Liu L, Ma M C, Jiang X, et al. Effect of Rhizobia and PGPR co-inoculant on soybean characteristics and soil enzyme activities. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 644-654. |
刘丽, 马鸣超, 姜昕, 等. 根瘤菌与促生菌双接种对大豆生长和土壤酶活的影响. 植物营养与肥料学报, 2015, 21(3): 644-654. | |
23 | Li J B, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376. |
24 | Li S Y, Sun J, Wang Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 2020, 37(12): 2389-2402. |
李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 2020, 37(12): 2389-2402. | |
25 | Liu R F, Li X P, Li S J, et al. Research on relationship between soil invertase, catalase and soil nutrient in the area of Shangluo. Agricultural Research in the Arid Areas, 2011, 29(5): 182-185. |
刘瑞丰, 李新平, 李素俭, 等. 商洛地区土壤蔗糖酶及过氧化氢酶与土壤养分的关系研究. 干旱地区农业研究, 2011, 29(5): 182-185. | |
26 | Liang T Y. Spatial and temporal distribution pattern and functional prediction of soil microorganisms in the rhizosphere of Ulmus pumila var. sabulosa within the Otindag sandy land. Hohhot: Inner Mongolia Agricultural University, 2019. |
梁田雨. 浑善达克沙地榆根际土壤微生物时空分布格局及功能预测. 呼和浩特: 内蒙古农业大学, 2019. | |
27 | Zhu M L, Gong L, Zhang L L. Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River. Environmental Science, 2015, 36(7): 2678-2685. |
朱美玲, 贡璐, 张龙龙. 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析. 环境科学, 2015, 36(7): 2678-2685. | |
28 | Xie X F, Pu L J, Wang Q Q, et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Science of the Total Environment, 2017, 607/608: 1419-1427. |
29 | Hu K, Wang L B. Application of BIOLOG microplate technique to the study of soil microbial ecology. Chinese Journal of Soil Science, 2007, 38(4): 819-821. |
胡可, 王利宾. BIOLOG微平板技术在土壤微生态研究中的应用. 土壤通报, 2007, 38(4): 819-821. | |
30 | Wu Z Y, Lin W X, Chen Z F, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China. Chinese Journal of Applied Ecology, 2013, 24(8): 2301-2309. |
吴则焰, 林文雄, 陈志芳, 等. 武夷山国家自然保护区不同植被类型土壤微生物群落特征.应用生态学报, 2013, 24(8): 2301-2309. | |
31 | Zhao H, Zhou Y C, Ren Q F. Evolution of soil microbial community structure and functional diversity in Pinus massoniana plantations with age of stand. Acta Pedologica Sinica, 2020, 57(1): 227-238. |
赵辉, 周运超, 任启飞. 不同林龄马尾松人工林土壤微生物群落结构和功能多样性演变. 土壤学报, 2020, 57(1): 227-238. | |
32 | Liu W, Qiu K, Xie Y, et al. Years of sand fixation with Caragana korshinskii drive the enrichment of its rhizosphere functional microbes by accumulating soil N. PeerJ, 2022, 10: e14271. |
33 | Lu S B, Zhang Y J, Chen C R, et al. Analysis of functional differences between soil bacterial communities in three different types of forest soils based on biolog fingerprint. Acta Pedologica Sinica, 2013, 50(3): 618-623. |
鲁顺保, 张艳杰, 陈成榕, 等. 基于BIOLOG指纹解析三种不同森林类型土壤细菌群落功能差异. 土壤学报, 2013, 50(3): 618-623. | |
34 | Wang J, Li G, Xiu W M, et al. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensis steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 2014, 23(4): 343-350. |
王杰, 李刚, 修伟明, 等. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 2014, 23(4): 343-350. | |
35 | Wang D, Yi W B, Li H, et al. Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in maize cropping soil. Chinese Journal of Applied Ecology, 2022, 33(3): 793-800. |
王顶, 伊文博, 李欢, 等. 玉米间作和施氮对土壤微生物代谢功能多样性的影响. 应用生态学报, 2022, 33(3): 793-800. | |
36 | Gu S, Guo X, Cai Y, et al. Residue management alters microbial diversity and activity without affecting their community composition in black soil, Northeast China. PeerJ, 2018, 6(3): e5754. |
37 | Yin H B, Xie L H, Huang Q Y, et al. Soil microbial metabolic diversity and its influencing factors in Wudalianchi volcanic groups. Soils and Crops, 2022, 11(4): 458-469. |
阴红彬, 谢立红, 黄庆阳, 等. 五大连池火山群土壤微生物群落代谢多样性及影响因素研究. 土壤与作物, 2022, 11(4): 458-469. | |
38 | Dai Y T, Hou X Y, Yan Z J, et al. Rhizosphere microbial functional diversity affected by vegetation restoration in the Hobq Sand Land, Inner Mongolia, China. Acta Prataculturae Sinica, 2016, 25(10): 56-65. |
戴雅婷, 侯向阳, 闫志坚, 等. 库布齐沙地两种植被恢复类型根际土壤微生物群落功能多样性研究. 草业学报, 2016, 25(10): 56-65. | |
39 | Sun X, Han D X, Liu Y, et al. Responses of soil physicochemical properties and soil microorganism characteristics regarding as carbon metabolism in original Korean pine forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 18-26. |
孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应. 南京林业大学学报(自然科学版), 2017, 41(5): 18-26. |
[1] | Lin-xi HUANG, Qian CHEN, Xian-yan ZHANG, Shun YAN, Yun YANG, Pei-yao XIN, Qiong WANG. Effect of two kinds of tree litter leaf extracts on soil enzyme activities and eco-enzymatic stoichiometry of Axonopus compressus [J]. Acta Prataculturae Sinica, 2024, 33(4): 35-46. |
[2] | Peng DUAN, Rong-yi WEI, Fang-ping WANG, Bu-qing YAO, Zhi-zhong ZHAO, Bi-xia HU, Ci SONG, Ping YANG, Ting WANG. Effects of adding different nutrients on soil microbial carbon source utilization in degraded alpine wetland in the source region of the Yellow River [J]. Acta Prataculturae Sinica, 2024, 33(2): 138-153. |
[3] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[4] | Song-ke MA, Ke HUO, Dong-xia ZHANG, Jing ZHANG, Jun-hao ZHANG, Xue-ru CHAI, He-zheng WANG. Effects of maize straw return combined with nitrogen on soil enzyme activity and nitrogen fertilizer use efficiency in western dryland wheat fields of Henan Province [J]. Acta Prataculturae Sinica, 2023, 32(6): 120-133. |
[5] | Zhi-ting WANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Dong-fang LI, Xiao-yong LIU. Changes in vegetation characteristics and soil enzyme activities under different treatments in semi-arid meadow grassland [J]. Acta Prataculturae Sinica, 2023, 32(3): 41-55. |
[6] | Rong-xia SU, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI. Changes in soil bacterial carbon source utilization and soil extracellular enzyme activity after artificial planting of Caragana korshinskii at different densities on the desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(11): 93-105. |
[7] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[8] | Fen-sheng CHENG, Long-hui YOU, Jin-lin YU, Hui-chang XU, Hui-ming YOU, Sen NIE, Jian-min LI, Gong-fu YE. Effects of cold-season green manure on soil biochemical properties and the microbial community in a Castanea henryi orchard, China [J]. Acta Prataculturae Sinica, 2021, 30(11): 62-75. |
[9] | Shi-jing ZHOU, Jia-ning LUO, Zhong-miao LIU, Chao DONG, Yan QIN, Shu-juan WU, Hong-jun GAN, Fei XIE, Guang-hui ZHUANG, Bing-zhe FU, De-cao NIU. The effects of Vicia sativa planting density on soil microbial nutrient metabolism [J]. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
[10] | ZONG Wen-zhen, GUO Jia-hao, JIA Yun-long, ZHENG Yong-xing, YANG Xu, HU Fang-di, WANG Jing. Advances in research on the roles of tannins in plant-soil nitrogen cycling [J]. Acta Prataculturae Sinica, 2020, 29(7): 174-183. |
[11] | FENG Jun, SHI Chao, MEN Sheng-nan, Hafiz Athar Hussain, KE Jian-hong, Linna Cholidah, CHEN Jin-fen, GUO Xin, WU Hai-yan, RAN Tai-lin, XIANG Xin-hua, WANG Long-chang. Effects of water and fertilizer saving techniques on soil nutrient levels and enzyme activities under two different seasons with contrasting rainfall patterns [J]. Acta Prataculturae Sinica, 2020, 29(4): 51-62. |
[12] | ZHANG Jian-jun, DANG Yi, ZHAO Gang, WANG Lei, FAN Ting-lu, LI Shang-zhong, LEI Kang-ning. Effect of no-tillage with film and stubble residues on soil nutrients, microbial populations and enzyme activity in dryland maize fields [J]. Acta Prataculturae Sinica, 2020, 29(2): 123-133. |
[13] | LI Guo-qi, ZHAO Pan-pan, SHAO Wen-shan, JIN Chang-qing. Studies on the soil physical and chemical properties and enzyme activities of two fenced plant communities in desert steppe grassland [J]. Acta Prataculturae Sinica, 2019, 28(7): 49-59. |
[14] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[15] | QI Juan, YAO Tuo, BAI Xiao-Ming, GAO Meng-Ying, MENG Xiang-Jun. Impacts on alfalfa productivity and soil fertility of partially replacing phosphate fertilizers with microbial fertilizers [J]. Acta Prataculturae Sinica, 2017, 26(10): 118-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||