Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 1-13.DOI: 10.11686/cyxb2023446
Fang LIU(), Pei-pei WANG, Yu-ying CAO, Jun-e LIU, Zheng-chao ZHOU()
Received:
2023-11-21
Revised:
2024-01-12
Online:
2024-10-20
Published:
2024-07-15
Contact:
Zheng-chao ZHOU
Fang LIU, Pei-pei WANG, Yu-ying CAO, Jun-e LIU, Zheng-chao ZHOU. Root distribution characteristics of typical herbaceous plants and their effects on soil physicochemical properties on the Loess Plateau[J]. Acta Prataculturae Sinica, 2024, 33(10): 1-13.
坡点Slope code | 经度Longitude (E) | 纬度Latitude (N) | 海拔Elevation (m) | 坡度Slope ( | 砂粒Sand (%) | 粉粒Silt (%) | 黏粒Clay (%) |
---|---|---|---|---|---|---|---|
长芒草S. bungeana-1 | 110 | 38 | 1221.60 | 13 | 59.00 | 33.93 | 4.08 |
长芒草S. bungeana-2 | 110 | 38 | 1224.12 | 15 | 56.72 | 35.34 | 4.94 |
长芒草S. bungeana-3 | 110 | 38 | 1218.77 | 15 | 54.27 | 40.49 | 5.25 |
铁杆蒿A. gmelinii-1 | 110 | 38 | 1228.15 | 15 | 58.18 | 36.67 | 5.15 |
铁杆蒿A. gmelinii-2 | 110 | 38 | 1209.74 | 13 | 52.75 | 41.57 | 5.69 |
铁杆蒿A.gmelinii-3 | 110 | 38 | 1205.14 | 16 | 51.62 | 43.70 | 4.67 |
裸地CK | 110 | 38 | 1131.42 | 16 | 70.12 | 25.90 | 3.98 |
Table 1 Basic situation of each sample
坡点Slope code | 经度Longitude (E) | 纬度Latitude (N) | 海拔Elevation (m) | 坡度Slope ( | 砂粒Sand (%) | 粉粒Silt (%) | 黏粒Clay (%) |
---|---|---|---|---|---|---|---|
长芒草S. bungeana-1 | 110 | 38 | 1221.60 | 13 | 59.00 | 33.93 | 4.08 |
长芒草S. bungeana-2 | 110 | 38 | 1224.12 | 15 | 56.72 | 35.34 | 4.94 |
长芒草S. bungeana-3 | 110 | 38 | 1218.77 | 15 | 54.27 | 40.49 | 5.25 |
铁杆蒿A. gmelinii-1 | 110 | 38 | 1228.15 | 15 | 58.18 | 36.67 | 5.15 |
铁杆蒿A. gmelinii-2 | 110 | 38 | 1209.74 | 13 | 52.75 | 41.57 | 5.69 |
铁杆蒿A.gmelinii-3 | 110 | 38 | 1205.14 | 16 | 51.62 | 43.70 | 4.67 |
裸地CK | 110 | 38 | 1131.42 | 16 | 70.12 | 25.90 | 3.98 |
植物类型 Plant type | 根质量密度 Root mass density RMD (mg·cm-3) | 平均直径 Root diameter RD (mm) | 根长密度 Root length density RLD (cm·cm-3) | 根表面积密度 Root surface area density RSAD (cm2·cm-3) | 根体积密度 Root volume density RVD (102·cm3·cm-3) |
---|---|---|---|---|---|
长芒草(S) | 0.53±0.08* | 0.26±0.01* | 1.15±0.16* | 0.10±0.01* | 0.09±0.01 |
铁杆蒿(A) | 3.10±0.42* | 0.43±0.03* | 0.66±0.07* | 0.06±0.01* | 0.13±0.04 |
Table 2 Root characteristics of different plant communities
植物类型 Plant type | 根质量密度 Root mass density RMD (mg·cm-3) | 平均直径 Root diameter RD (mm) | 根长密度 Root length density RLD (cm·cm-3) | 根表面积密度 Root surface area density RSAD (cm2·cm-3) | 根体积密度 Root volume density RVD (102·cm3·cm-3) |
---|---|---|---|---|---|
长芒草(S) | 0.53±0.08* | 0.26±0.01* | 1.15±0.16* | 0.10±0.01* | 0.09±0.01 |
铁杆蒿(A) | 3.10±0.42* | 0.43±0.03* | 0.66±0.07* | 0.06±0.01* | 0.13±0.04 |
植物类型 Plant type | 径级 Diameter (D, mm) | 根长密度Root length density (cm·cm-3) | 占根系总根长百分比 Percentage of total root length (%) | ||
---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | |||
长芒草 S. bungeana | 极细根(V) (0≤D<0.5) | 1.629±0.884a | 0.548±0.291a | 0.193±0.100a | 94.73 |
细根(F) (0.5≤D<2.0) | 0.107±0.087b | 0.012±0.006b | 0.003±0.002b | 4.76 | |
粗根(C) (D≥2.0) | 0.013±0.003b | - | - | 0.51 | |
铁杆蒿 A. gmelinii | 极细根(V) (0≤D<0.5) | 0.644±0.313a | 0.363±0.164a | 0.084±0.052a | 71.26 |
细根(F) (0.5≤D<2.0) | 0.129±0.088b | 0.059±0.015b | 0.011±0.002b | 12.46 | |
粗根(C) (D≥2.0) | 0.186±0.065b | 0.060±0.024b | 0.017±0.004b | 16.28 |
Table 3 Root length density of different plant communities with different diameters and soil depths
植物类型 Plant type | 径级 Diameter (D, mm) | 根长密度Root length density (cm·cm-3) | 占根系总根长百分比 Percentage of total root length (%) | ||
---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | |||
长芒草 S. bungeana | 极细根(V) (0≤D<0.5) | 1.629±0.884a | 0.548±0.291a | 0.193±0.100a | 94.73 |
细根(F) (0.5≤D<2.0) | 0.107±0.087b | 0.012±0.006b | 0.003±0.002b | 4.76 | |
粗根(C) (D≥2.0) | 0.013±0.003b | - | - | 0.51 | |
铁杆蒿 A. gmelinii | 极细根(V) (0≤D<0.5) | 0.644±0.313a | 0.363±0.164a | 0.084±0.052a | 71.26 |
细根(F) (0.5≤D<2.0) | 0.129±0.088b | 0.059±0.015b | 0.011±0.002b | 12.46 | |
粗根(C) (D≥2.0) | 0.186±0.065b | 0.060±0.024b | 0.017±0.004b | 16.28 |
植物类型 Plant type | 径级 Diameter (D, mm) | 根表面积密度Root surface area density (cm2·cm-3) | 占根系总根表面积百分比 Percentage of total root surface area (%) | ||
---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | |||
长芒草 S. bungeana | 极细根(V) (0≤D<0.5) | 0.141±0.074a | 0.042±0.020a | 0.015±0.007a | 90.20 |
细根(F) (0.5≤D<2.0) | 0.019±0.016b | 0.002±0.001b | 0.001±0.000b | 9.54 | |
粗根(C) (D≥2.0) | 0.011±0.001b | - | - | 0.26 | |
铁杆蒿 A. gmelinii | 极细根(V) (0≤D<0.5) | 0.044±0.025a | 0.027±0.011a | 0.006±0.004a | 45.42 |
细根(F) (0.5≤D<2.0) | 0.025±0.016a | 0.012±0.003b | 0.002±0.002b | 21.73 | |
粗根(C) (D≥2.0) | 0.043±0.013a | 0.021±0.007ab | 0.003±0.001b | 32.85 |
Table 4 Root surface area density of different plant communities with different diameters and soil depths
植物类型 Plant type | 径级 Diameter (D, mm) | 根表面积密度Root surface area density (cm2·cm-3) | 占根系总根表面积百分比 Percentage of total root surface area (%) | ||
---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | |||
长芒草 S. bungeana | 极细根(V) (0≤D<0.5) | 0.141±0.074a | 0.042±0.020a | 0.015±0.007a | 90.20 |
细根(F) (0.5≤D<2.0) | 0.019±0.016b | 0.002±0.001b | 0.001±0.000b | 9.54 | |
粗根(C) (D≥2.0) | 0.011±0.001b | - | - | 0.26 | |
铁杆蒿 A. gmelinii | 极细根(V) (0≤D<0.5) | 0.044±0.025a | 0.027±0.011a | 0.006±0.004a | 45.42 |
细根(F) (0.5≤D<2.0) | 0.025±0.016a | 0.012±0.003b | 0.002±0.002b | 21.73 | |
粗根(C) (D≥2.0) | 0.043±0.013a | 0.021±0.007ab | 0.003±0.001b | 32.85 |
指标Index | PC1 | PC2 |
---|---|---|
土壤容重Bulk density, BD | -0.994 | 0.032 |
土壤总孔隙度Total porosity, TP | 0.994 | -0.032 |
毛管持水量Capillary water holding content, CHC | 0.980 | -0.059 |
毛管孔隙度Capillary porosity, CP | 0.931 | -0.044 |
饱和持水量Saturated water holding content, SWHC | 0.510 | 0.152 |
平均重量直径Mean weight diameter, MWD | 0.163 | 0.829 |
土壤有机质含量Soil organic matter, SOM | 0.260 | -0.758 |
非毛管孔隙度Non-capillary porosity, NCP | -0.101 | 0.039 |
土壤含水量Soil water content, SWC | 0.029 | 0.531 |
特征值Eigenvalue | 4.321 | 1.836 |
方差贡献率Variance contribution ratio (%) | 48.02 | 20.40 |
累计方差贡献率Cumulative variance contribution ratio (%) | 48.02 | 68.42 |
Table 5 Principal component variance contribution rate and load matrix of soil properties
指标Index | PC1 | PC2 |
---|---|---|
土壤容重Bulk density, BD | -0.994 | 0.032 |
土壤总孔隙度Total porosity, TP | 0.994 | -0.032 |
毛管持水量Capillary water holding content, CHC | 0.980 | -0.059 |
毛管孔隙度Capillary porosity, CP | 0.931 | -0.044 |
饱和持水量Saturated water holding content, SWHC | 0.510 | 0.152 |
平均重量直径Mean weight diameter, MWD | 0.163 | 0.829 |
土壤有机质含量Soil organic matter, SOM | 0.260 | -0.758 |
非毛管孔隙度Non-capillary porosity, NCP | -0.101 | 0.039 |
土壤含水量Soil water content, SWC | 0.029 | 0.531 |
特征值Eigenvalue | 4.321 | 1.836 |
方差贡献率Variance contribution ratio (%) | 48.02 | 20.40 |
累计方差贡献率Cumulative variance contribution ratio (%) | 48.02 | 68.42 |
1 | Tan X J. Effects of grassland restoration on soil physical properties in the Loess Plateau. Yangling: Northwest A&F University, 2019. |
谭学进. 黄土高原草地恢复对土壤物理性质的影响. 杨凌: 西北农林科技大学, 2019. | |
2 | Yang Z, Jin H, Wang G. An assessment of restoration success to forests planted for ecosystem restoration in Loess Plateau, Northwestern China. Environmental Monitoring and Assessment, 2010, 164: 357-368. |
3 | Cao L, Zhang K, Zhang W. Detachment of road surface soil by flowing water. Catena, 2009, 76(2): 155-162. |
4 | Cao J, Tian H, Adamowski J F, et al. Influences of afforestation policies on soil moisture content in China’s arid and semi-arid regions. Land Use Policy, 2018, 75: 449-458. |
5 | Yu M Z, Zhang L L, Xu X X, et al. Impact of land-use changes on soil hydraulic properties of Calcaric Regosols on the Loess Plateau, NW China. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 486-498. |
6 | Wu G L, Zhang Z N, Wang D, et al. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China. Journal of Hydrology, 2014, 519: 1362-1367. |
7 | Shi Z H, Fang N F, Wu F Z, et al. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology, 2012, 454: 123-130. |
8 | Huang Z, Liu Y F, Cui Z, et al. Natural grasslands maintain soil water sustainability better than planted grasslands in arid areas. Agriculture, Ecosystems & Environment, 2019, 286: 106683. |
9 | Fitter A H, Stickland T R, Harvey M L, et al. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 1991, 118(3): 375-382. |
10 | Demenois J, Rey F, Ibanez T, et al. Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient. Plant and Soil, 2018, 424: 319-334. |
11 | Galloway A F, Pedersen M J, Merry B, et al. Xyloglucan is released by plants and promotes soil particle aggregation. New Phytologist, 2018, 217(3): 1128-1136. |
12 | Garcia L, Damour G, Gary C, et al. Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 2019, 435: 1-14. |
13 | Wang B, Li P P, Huang C H, et al. Effects of root morphological traits on soil detachment for ten herbaceous species in the Loess Plateau. Science of the Total Environment, 2021, 754: 142304. |
14 | Orwin K H, Wardle D A. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance. Plant and Soil, 2005, 278: 205-221. |
15 | Liu Y, Guo L, Huang Z, et al. Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils. Agricultural Water Management, 2020, 235: 106153. |
16 | Wan H X, Cai J J, Guo Y Z, et al. Characteristics of root distributions of typical herbs in loess hilly region of southern Ningxia. Research of Soil and Water Conservation, 2020, 27(4): 149-156, 163. |
万海霞, 蔡进军, 郭永忠, 等. 宁夏南部黄土丘陵区典型草本根系分布特征. 水土保持研究, 2020, 27(4): 149-156, 163. | |
17 | Dong L, Mao Z, Sun T. Condensed tannin effects on decomposition of very fine roots among temperate tree species. Soil Biology and Biochemistry, 2016, 103: 489-492. |
18 | Li J X, He B H, Chen Y, et al. Root distribution features of typical herb plants for slope protection and their effects on soil shear strength. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 144-152. |
李建兴, 何丙辉, 谌芸, 等. 不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响. 农业工程学报, 2013, 29(10): 144-152. | |
19 | Shi K. Root distribution and the effect on soil properties of typical sand-fixing afforestation in Gonghe Basin of Qinghai Province. Beijing: Beijing Forestry University, 2017. |
石坤. 青海共和盆地典型人工林植被根系分布及其对土壤性质影响. 北京: 北京林业大学, 2017. | |
20 | Tang B, Jiao J, Yan F, et al. Variations in soil infiltration capacity after vegetation restoration in the hilly and gully regions of the Loess Plateau, China. Journal of Soils and Sediments, 2019, 19: 1456-1466. |
21 | Lai Z, Zhang Y, Liu J, et al. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management, 2016, 359: 381-388. |
22 | Stover D B, Day F P, Drake B G, et al. The long-term effects of CO2 enrichment on fine root productivity, mortality, and survivorship in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. Environmental and Experimental Botany, 2010, 69(2): 214-222. |
23 | Zhang P, Wang Y, Xu L, et al. Factors controlling the spatial variability of soil aggregates and associated organic carbon across a semi-humid watershed. Science of the Total Environment, 2022, 809: 151155. |
24 | Gu C, Mu X, Gao P, et al. Influence of vegetation restoration on soil physical properties in the Loess Plateau, China. Journal of Soils and Sediments, 2019, 19: 716-728. |
25 | Sun W, Shao Q, Liu J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. Journal of Geographical Sciences, 2013, 23: 1091-1106. |
26 | Wang P, Su X, Zhou Z, et al. Differential effects of soil texture and root traits on the spatial variability of soil infiltrability under natural revegetation in the Loess Plateau of China. Catena, 2023, 220: 106693. |
27 | Zhang P, Wang Y, Zhang X. Effects of the sampling spacing on the spatial variability in soil organic carbon, total nitrogen, and total phosphorus across a semiarid watershed. Archives of Agronomy and Soil Science, 2021, 67(10): 1359-1374. |
28 | Laboratory of Soil Physics, Nanjing Institute of Soil Sciences, Chinese Academy of Sciences. Determination of physical properties of soil. Beijing: Science Press, 1978. |
中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社,1978. | |
29 | Liu C S, Wu P N, Wang Y L, et al. A bibliometric analysis of studies hotspots and trends in plant root system architecture. Journal of Henan Agricultural University, 2023, 57(4): 570-580, 606. |
刘长硕, 吴鹏年, 王艳丽, 等. 基于文献计量的植物根系构型研究热点及趋势分析. 河南农业大学学报, 2023, 57(4): 570-580, 606. | |
30 | Sang K X, Hu G L, Huang C, et al. Effects of root structure characteristics of 5 plant types on soil infiltration in the Yellow River riparian. Science of Soil and Water Conservation, 2020, 18(5): 1-8. |
桑凯新, 胡淦林, 黄超, 等. 黄河河岸带5种植物类型根系结构特征对土壤渗透性的影响. 中国水土保持科学, 2020, 18(5): 1-8. | |
31 | Williamson M H, Fitter A. The characters of successful invaders. Biological Conservation, 1996, 78(1/2): 163-170. |
32 | Wan H X, Ma F, Xu H, et al. Relationship between vertical distribution characteristics of roots and soil aggregates in typical herb communities in loess area of southern Ningxia. Research of Soil and Water Conservation, 2019, 26(6): 80-86, 91. |
万海霞, 马璠, 许浩, 等. 宁夏南部黄土丘陵区典型草本群落根系垂直分布特征与土壤团聚体的关系. 水土保持研究, 2019, 26(6): 80-86, 91. | |
33 | Liu Z X, Gao P, Mu X M, et al. Effect of vegetation restoration on soil hydrophysical properties in loess region. Research of Soil and Water Conservation, 2023, 30(6): 206-213. |
刘卓昕, 高鹏, 穆兴民, 等. 黄土区植被恢复对土壤水文物理性质的影响. 水土保持研究, 2023, 30(6): 206-213. | |
34 | Xia H P, Yu Q F, Zhang D Q. The soil acidity and nutrient contents and their characteristics of seasonal dynamic changes under three different forests of Dinghushan Nature Reserve. Acta Ecologica Sinica, 1997, 17(6): 83-91. |
夏汉平, 余清发, 张德强. 鼎湖山3种不同林型下的土壤酸度和养分含量差异及其季节动态变化特性. 生态学报, 1997, 17(6): 83-91. | |
35 | Zhu W Z, Sheng Z L, Shu S M. Soil physical properties and water holding capacity of natural secondary forests in a sub-alpine region of Western Sichuan, China. Journal of Soil and Water Conservation, 2019, 33(6): 205-212. |
朱万泽, 盛哲良, 舒树淼. 川西亚高山次生林恢复过程中土壤物理性质及水源涵养效应. 水土保持学报, 2019, 33(6): 205-212. | |
36 | Hou C L, Yang R, Liu Z, et al. Water holding capacity of soil covered with different herbaceous plants in caohai vegetation recovery area, Guizhou. Guizhou Agricultural Sciences, 2019, 47(8): 52-56. |
侯春兰, 杨瑞, 刘志, 等. 贵州草海植被恢复区不同草本植物的土壤持水性能. 贵州农业科学, 2019, 47(8): 52-56. | |
37 | Sun Y, Yang Y S, He Q, et al. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
孙玉, 杨永胜, 何琦, 等. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应. 草业学报, 2023, 32(6): 16-29. | |
38 | He T X, Hu B Q, Zhang J B, et al. Fine root effects on the retention and availability of soil carbon and nitrogen after ten years of vegetation restoration in a karst slope ecosystem. Acta Ecologica Sinica, 2020, 40(23): 8638-8648. |
贺同鑫, 胡宝清, 张建兵, 等. 植被恢复十年喀斯特坡地细根对土壤碳氮存留与可利用性的影响. 生态学报, 2020, 40(23): 8638-8648. | |
39 | Zhu L, Xu C Y, Geng Z C, et al. Characterization of fine roots distribution in three natural forests of Qinling Mountains and their relations with soil physical and chemical properties. Scientia Silvae Sinicae, 2020, 56(2): 24-31. |
祝乐, 许晨阳, 耿增超, 等. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系. 林业科学, 2020, 56(2): 24-31. | |
40 | Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125: 389-399. |
41 | Tefs C, Gleixner G. Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest-evidence from C, N and 14C content. Forest Ecology and Management, 2012, 263: 131-137. |
42 | Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339(6127): 1615-1618. |
43 | Wang J K, Xu Y D, Ding F, et al. Research progress on the conversion process of plant residues to soil organic matter and its stabilization mechanism. Acta Pedologica Sinica, 2019, 56(3): 528-540. |
汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540. | |
44 | Jastrow J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 1998, 30(7): 905-916. |
45 | O’Brien S L, Jastrow J D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biology and Biochemistry, 2013, 61: 1-13. |
46 | Ruess R W, Hendrick R L, Burton A J, et al. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 2003, 73(4): 643-662. |
[1] | Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China [J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78. |
[2] | Yu-ying CAO, Xue-meng SU, Zheng-chao ZHOU, Qun-wei ZHENG, Jia-hui YUE. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
[3] | Xiao-long WANG, Zhao YANG, Yong-cai LAI, Hong LI, Peng ZHONG, Yan-xia XU, Hua CHAI, Sha-sha LI, Yue WU, Min-chao SONG, Jing-ming ZHOU. Effect of root traits of Medicago sativa lines with fall dormancy on overwintering [J]. Acta Prataculturae Sinica, 2023, 32(1): 144-153. |
[4] | Jiang-wen LI, Bang-yin HE, Cai LI, Hong-yan HUI, Bo LIU, Xiao-xi ZHANG, Hui FAN, Wen-yu SU. Analysis of grassland community-level plant functional traits and functional diversity at different times during restoration [J]. Acta Prataculturae Sinica, 2023, 32(1): 16-25. |
[5] | Wei-jie LI, Li WANG, Jing-yong MA, Zi-kui WANG. Effects of a cover crop on deep soil water and root characteristics in a dryland apple orchard on the Loess Plateau [J]. Acta Prataculturae Sinica, 2023, 32(1): 63-74. |
[6] | Peng-bo ZHAO, Kai-yang QIU, Ying-zhong XIE, Wang-suo LIU, Xiao-wei LI, Lin CHEN, Ji-fei WANG, Wen-fen MENG, Ye-yun HUANG, Xiao-cong LI, Hao-nan YANG. Change in plant community characteristics along altitudinal gradients in the main browsing areas of Pseudois nayaur in the Helan Mountains [J]. Acta Prataculturae Sinica, 2022, 31(6): 79-90. |
[7] | Fang-fang NI, Shi-jie LV, Zhi-qiang QU, Lu BAI, Biao MENG, Bo-han ZHANG, Zhi-guo LI. Effects of vegetation characteristics of desert steppe in the non-growing season on near-surface dust flux under different stocking rates [J]. Acta Prataculturae Sinica, 2022, 31(3): 26-33. |
[8] | Zhan-dong PAN, Qian-qian MA, Xiao-long CHEN, Li-qun CAI, Xue-mei CAI, Bo DONG, Jun WU, Ren-zhi ZHANG. Effects of biochar addition on nutrient levels and humus and its components in dry farmland soils on the Loess Plateau [J]. Acta Prataculturae Sinica, 2022, 31(2): 14-24. |
[9] | Gulnazar Ali, Hai-ning TAO, Zi-kui WANG, Yu-ying SHEN. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM [J]. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
[10] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[11] | Jin-wei HOU, Tao CHEN, Zhi-biao NAN. Effects of fungicide and sowing treatments on seed survival of three plant species on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 129-136. |
[12] | Jie LI, Pan PAN, Chang-ting WANG, Lei HU, Ke-yu CHEN, Wen-gao YANG. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region [J]. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
[13] | Si-li LIU, Chang-ting WANG, Chang-bing ZHANG, Lei HU, Li-tao TANG, Pan PAN. A comparative study of root characteristics of three gramineous herbage species in the Northwest Sichuan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 41-53. |
[14] | Guo-bao HE. Distribution characteristics and plant community diversity on the north slopes of the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 194-201. |
[15] | Fen-sheng CHENG, Long-hui YOU, Jin-lin YU, Hui-chang XU, Hui-ming YOU, Sen NIE, Jian-min LI, Gong-fu YE. Effects of cold-season green manure on soil biochemical properties and the microbial community in a Castanea henryi orchard, China [J]. Acta Prataculturae Sinica, 2021, 30(11): 62-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||