Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (12): 134-146.DOI: 10.11686/cyxb2024086
Jin-jing XIE1(), Shao-wei ZHU1, Rong HUANG1, Jie YANG1, Xuan HOU1, Zhen-fen ZHANG1,2()
Received:
2024-03-19
Revised:
2024-04-22
Online:
2024-12-20
Published:
2024-10-09
Contact:
Zhen-fen ZHANG
Jin-jing XIE, Shao-wei ZHU, Rong HUANG, Jie YANG, Xuan HOU, Zhen-fen ZHANG. A study of the diversity of cultivable seed-borne bacteria in Poa pratensis and the growth-promoting characteristics of 18 bacterial strains[J]. Acta Prataculturae Sinica, 2024, 33(12): 134-146.
菌株 Strain | 数量Number (CFU·g-1) | 属水平分类 Genus level classification | 登录号 Accession |
---|---|---|---|
BM2 | 1.95×105a | 短小杆菌属Curtobacterium sp. | PP094560 |
BM4 | 2.33×104def | 假单胞菌属Pseudomonas sp. | PP094561 |
BM8 | 3.33×103f | 芽孢杆菌属Bacillus sp. | PP094562 |
BM9 | 5.33×103ef | 芽孢杆菌属Bacillus sp. | PP094563 |
BM10 | 2.47×104de | 短小杆菌属Curtobacterium sp. | PP094564 |
BM12 | 1.46×105b | 假单胞菌属Pseudomonas sp. | PP094565 |
KTJ3 | 2.27×104def | 类芽孢杆菌属Paenibacillus sp. | PP094566 |
KTJ5 | 7.67×104c | 欧文氏菌属Erwinia sp. | PP094567 |
KTJ9 | 1.07×104def | 芽孢杆菌属Bacillus sp. | PP094568 |
KTJ14 | 2.13×104def | 芽孢杆菌属Bacillus sp. | PP094569 |
KTJ16 | 8.67×103def | 芽孢杆菌属Bacillus sp. | PP094570 |
KTJ18 | 2.67×103f | 芽孢杆菌属Bacillus sp. | PP094571 |
SW1 | 3.47×104d | 芽孢杆菌属Bacillus sp. | PP094572 |
SW3 | 6.67×103ef | 芽孢杆菌属Bacillus sp. | PP094574 |
SW5 | 4.67×103ef | 芽孢杆菌属Bacillus sp. | PP094575 |
SW9 | 3.33×103f | 芽孢杆菌属Bacillus sp. | PP094576 |
SW10 | 1.33×104def | 寡养单胞菌属Stenotrophomonas sp. | PP094573 |
SW11 | 5.93×104c | 类芽孢杆菌属Paenibacillus sp. | PP094577 |
Table 1 Number, genus level classification and accession number of cultivable seed-borne bacteria in P. pratensis
菌株 Strain | 数量Number (CFU·g-1) | 属水平分类 Genus level classification | 登录号 Accession |
---|---|---|---|
BM2 | 1.95×105a | 短小杆菌属Curtobacterium sp. | PP094560 |
BM4 | 2.33×104def | 假单胞菌属Pseudomonas sp. | PP094561 |
BM8 | 3.33×103f | 芽孢杆菌属Bacillus sp. | PP094562 |
BM9 | 5.33×103ef | 芽孢杆菌属Bacillus sp. | PP094563 |
BM10 | 2.47×104de | 短小杆菌属Curtobacterium sp. | PP094564 |
BM12 | 1.46×105b | 假单胞菌属Pseudomonas sp. | PP094565 |
KTJ3 | 2.27×104def | 类芽孢杆菌属Paenibacillus sp. | PP094566 |
KTJ5 | 7.67×104c | 欧文氏菌属Erwinia sp. | PP094567 |
KTJ9 | 1.07×104def | 芽孢杆菌属Bacillus sp. | PP094568 |
KTJ14 | 2.13×104def | 芽孢杆菌属Bacillus sp. | PP094569 |
KTJ16 | 8.67×103def | 芽孢杆菌属Bacillus sp. | PP094570 |
KTJ18 | 2.67×103f | 芽孢杆菌属Bacillus sp. | PP094571 |
SW1 | 3.47×104d | 芽孢杆菌属Bacillus sp. | PP094572 |
SW3 | 6.67×103ef | 芽孢杆菌属Bacillus sp. | PP094574 |
SW5 | 4.67×103ef | 芽孢杆菌属Bacillus sp. | PP094575 |
SW9 | 3.33×103f | 芽孢杆菌属Bacillus sp. | PP094576 |
SW10 | 1.33×104def | 寡养单胞菌属Stenotrophomonas sp. | PP094573 |
SW11 | 5.93×104c | 类芽孢杆菌属Paenibacillus sp. | PP094577 |
菌株 Strain | 固氮 NF | 产吲哚-3-乙酸 IAAP (μg·mL-1) | 溶磷 Phosphorus solubilizing (D/d ) | 产胞外酶 Producing extracellular enzymes (D/d ) | |||
---|---|---|---|---|---|---|---|
有机磷 Organic phosphorus | 无机磷 Inorganic phosphorus | 蛋白酶 Protease | 纤维素酶 Cellulase | 淀粉酶 Amylase | |||
BM2 | + | - | - | - | 2.34±0.09c | - | - |
BM4 | + | - | - | 1.20±0.024a | - | - | - |
BM8 | + | 19.21±0.16a | - | - | 1.80±0.02de | - | - |
BM9 | + | - | - | - | 2.41±0.09bc | 3.05±0.10cd | 2.42±0.05c |
BM10 | + | - | - | - | 2.63±0.02ab | 3.78±0.11b | - |
BM12 | + | - | - | 1.15±0.023a | - | - | - |
KTJ3 | + | - | - | - | - | 3.38±0.07c | 2.93±0.07b |
KTJ5 | + | - | - | - | - | - | - |
KTJ9 | + | - | - | - | 2.04±0.02d | 2.58±0.06e | 1.51±0.02d |
KTJ14 | + | 18.42±0.12b | - | - | 1.73±0.04ef | - | - |
KTJ16 | - | 18.46±0.23b | - | - | 1.30±0.02g | - | - |
KTJ18 | + | - | - | - | 1.79±0.05de | 3.07±0.03cd | - |
SW1 | - | - | - | - | 1.50±0.02fg | - | 1.37±0.02d |
SW3 | - | - | - | - | 1.29±0.01g | 2.87±0.10de | 2.27±0.04c |
SW5 | + | - | - | - | 2.30±0.08c | 2.96±0.07de | - |
SW9 | + | - | - | - | 1.87±0.02de | - | - |
SW10 | - | - | - | - | 2.75±0.13a | - | - |
SW11 | + | - | - | - | - | 4.62±0.12a | 3.34±0.08a |
Table 2 The ability of nitrogen fixation (NF), indole-3-acetic acid-producing(IAAP), phosphate solubilizing and extracellular enzyme producing of cultivable seed-borne bacteria in P. pratensis
菌株 Strain | 固氮 NF | 产吲哚-3-乙酸 IAAP (μg·mL-1) | 溶磷 Phosphorus solubilizing (D/d ) | 产胞外酶 Producing extracellular enzymes (D/d ) | |||
---|---|---|---|---|---|---|---|
有机磷 Organic phosphorus | 无机磷 Inorganic phosphorus | 蛋白酶 Protease | 纤维素酶 Cellulase | 淀粉酶 Amylase | |||
BM2 | + | - | - | - | 2.34±0.09c | - | - |
BM4 | + | - | - | 1.20±0.024a | - | - | - |
BM8 | + | 19.21±0.16a | - | - | 1.80±0.02de | - | - |
BM9 | + | - | - | - | 2.41±0.09bc | 3.05±0.10cd | 2.42±0.05c |
BM10 | + | - | - | - | 2.63±0.02ab | 3.78±0.11b | - |
BM12 | + | - | - | 1.15±0.023a | - | - | - |
KTJ3 | + | - | - | - | - | 3.38±0.07c | 2.93±0.07b |
KTJ5 | + | - | - | - | - | - | - |
KTJ9 | + | - | - | - | 2.04±0.02d | 2.58±0.06e | 1.51±0.02d |
KTJ14 | + | 18.42±0.12b | - | - | 1.73±0.04ef | - | - |
KTJ16 | - | 18.46±0.23b | - | - | 1.30±0.02g | - | - |
KTJ18 | + | - | - | - | 1.79±0.05de | 3.07±0.03cd | - |
SW1 | - | - | - | - | 1.50±0.02fg | - | 1.37±0.02d |
SW3 | - | - | - | - | 1.29±0.01g | 2.87±0.10de | 2.27±0.04c |
SW5 | + | - | - | - | 2.30±0.08c | 2.96±0.07de | - |
SW9 | + | - | - | - | 1.87±0.02de | - | - |
SW10 | - | - | - | - | 2.75±0.13a | - | - |
SW11 | + | - | - | - | - | 4.62±0.12a | 3.34±0.08a |
Fig.4 Experiments on the indole-3-acetic acid-producing, phosphate solubilizing and extracellular enzyme producing of cultivable seed-borne bacteria in P. pratensis
Fig.5 The biofilm formation ability on microtiter plate of cultivable seed-borne bacteria in P. pratensis (A) and the diameter of turbid area formed on swimming medium (B)
1 | Croce P, De Luca A, Mocioni M, et al. Warm-season turfgrass species and cultivar characterizations for a Mediterranean climate. International Turfgrass Society Research Journal, 2001, 9: 855-859. |
2 | Zabalgogeazcoa Í, Ciudad A G, de Aldana B R V, et al. Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. European Journal of Agronomy, 2006, 24(4): 374-384. |
3 | Iannone L J, Pinget A D, Nagabhyru P, et al. Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass and Forage Science, 2012, 67(3): 382-390. |
4 | Truyens S, Weyens N, Cuypers A, et al. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 2015, 7(1): 40-50. |
5 | Brader G, Compant S, Vescio K, et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annual Review of Phytopathology, 2017, 55: 61-83. |
6 | Khalaf E M, Raizada M N. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Frontiers in Microbiology, 2018, 9: 42. |
7 | Torres-Cortés G, Garcia B J, Compant S, et al. Differences in resource use lead to coexistence of seed-transmitted microbial populations. Scientific Reports, 2019, 9(1): 6648. |
8 | Roodi D, Millner J P, McGill C, et al. Methylobacterium, a major component of the culturable bacterial endophyte community of wild Brassica seed. PeerJ, 2020, 8: e9514. |
9 | Mei C, Flinn B S. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 2010, 4(1): 81-95. |
10 | Xu M S. Culturable bacterial community compositions from seeds of tomato and rice and function of plant growth promoting endophytic bacteria. Beijing: China Agricultural University, 2014. |
许明双. 番茄和水稻种子可培养内生细菌的多样性分析及促生菌功能研究. 北京: 中国农业大学, 2014. | |
11 | Shao J, Miao Y, Liu K, et al. Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biology and Biochemistry, 2021, 159: 108273. |
12 | Srivastava S, Yadav A, Seem K, et al. Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Current Microbiology, 2008, 56: 453-457. |
13 | Sun L, Cheng L, Ma Y, et al. Exopolysaccharides from Pantoea alhagi NX-11 specifically improve its root colonization and rice salt resistance. International Journal of Biological Macromolecules, 2022, 209: 396-404. |
14 | Yue Z, Shen Y, Chen Y, et al. Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms, 2019, 7(11): 508. |
15 | Li Y, Narayanan M, Shi X, et al. Biofilms formation in plant growth-promoting bacteria for alleviating agro-environmental stress. Science of the Total Environment, 2023: 167774. |
16 | Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology, 2002, 291(8): 605-614. |
17 | Palma V, Gutiérrez M S, Vargas O, et al. Methods to evaluate bacterial motility and its role in bacterial-host interactions. Microorganisms, 2022, 10(3): 563. |
18 | Ding T, Melcher U. Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One, 2016, 11(3): e0150895. |
19 | Hardoim P R, Van Overbeek L S, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 2015, 79(3): 293-320. |
20 | Doty S L, Oakley B, Xin G, et al. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis, 2009, 47: 23-33. |
21 | Wemheuer F, Kaiser K, Karlovsky P, et al. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Scientific Reports, 2017, 7(1): 40914. |
22 | Zhang Z F. Seed-borne bacteria of lucerne (Medicago sativa) and their pathogenicity. Lanzhou: Lanzhou University, 2013. |
张振粉. 紫花苜蓿种带细菌及其致病性. 兰州: 兰州大学, 2013. | |
23 | Xi L Q, Li D F, Wang J F, et al. Measurement of nitrogen fixation capability and excreted IAA capability of PGPB isolated from cotton rhizosphere in Salina. Arid Zone Research, 2008, 25(5): 690-694. |
席琳乔, 李德锋, 王静芳, 等. 棉花根际促生菌固氮和分泌生长激素能力的测定. 干旱区研究, 2008, 25(5): 690-694. | |
24 | Yang C D, Li Z D, Chen X R, et al. Identification, pathogen inhibiting and nitrogen fixation of endophytic bacterium Z19 of Polygonum viviparum. Microbiology China, 2014, 41(2): 267-273. |
杨成德, 李振东, 陈秀蓉, 等. 高寒草地珠芽蓼内生拮抗固氮菌Z19的鉴定及其固氮功能. 微生物学通报, 2014, 41(2):267-273. | |
25 | Verma S K, Kingsley K, Bergen M, et al. Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant and Soil, 2018, 422: 223-238. |
26 | Dong N, Zhang D, Yu Y, et al. Exrtacellular enzyme activity and antimicrobial activity of culturable bacteria isolated from soil of Grove Mountains, East Antarctica. Acta Microbiologica Sinica, 2013, 53(12): 1295-1306. |
董宁, 张迪, 俞勇, 等. 东南极格罗夫山土壤可培养细菌的分离鉴定及其产胞外酶和抗菌活性. 微生物学报, 2013, 53(12): 1295-1306. | |
27 | Viksne R, Racenis K, Broks R, et al. In vitro assessment of biofilm production, antibacterial resistance of Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. obtained from tonsillar crypts of healthy adults. Microorganisms, 2023, 11(2): 258. |
28 | Qu H Y, Li X P, Meng L Y, et al. Effect of inhibitors on the motilities of Vibrio parahaemolyticus. Journal of Food Science and Biotechnology, 2014, 33(5): 480-485. |
渠宏雁, 李学鹏, 孟良玉, 等. 抑制剂对副溶血性弧菌运动性的影响. 食品与生物技术学报, 2014, 33(5): 480-485. | |
29 | Bent E, Chanway C P. The growth-promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria. Canadian Journal of Microbiology, 1998, 44(10): 980-988. |
30 | Zhang X H. Marine microbiology. Qingdao: China Ocean University Press, 2007. |
张晓华. 海洋微生物学. 青岛: 中国海洋大学出版社, 2007. | |
31 | Teather R M, Wood P J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 1982, 43(4): 777-780. |
32 | Chang X B. Diversity of marine Actinomycetes in different environments and taxonomic analysis of 2 novel Actinomycetes. Qingdao: Ocean University of China, 2012. |
常显波. 不同环境海洋放线菌多样性研究及2株放线菌新菌的分类鉴定. 青岛: 中国海洋大学, 2012. | |
33 | Reisner A, Krogfelt K A, Klein B M, et al. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. Journal of Bacteriology, 2006, 188(10): 3572-3581. |
34 | Stepanović S, Vuković D, Hola V, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 2007, 115(8): 891-899. |
35 | Barret M, Briand M, Bonneau S, et al. Emergence shapes the structure of the seed microbiota. Applied and Environmental Microbiology, 2015, 81(4): 1257-1266. |
36 | Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64: 807-838. |
37 | Johnston-Monje D, Lundberg D S, Lazarovits G, et al. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil, 2016, 405: 337-355. |
38 | Liu Y, Zuo S, Xu L, et al. Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Archives of Microbiology, 2012, 194: 1001-1012. |
39 | Fierer N, Leff J W, Adams B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 2012, 109(52): 21390-21395. |
40 | Shafi S, Kamili A N, Shah M A, et al. Aquatic bacterial diversity: Magnitude, dynamics, and controlling factors. Microbial Pathogenesis, 2017, 104: 39-47. |
41 | Hardoim P R, Anderote F D, Reinhold-Hurek B, et al. Rice root-associated bacteria: insights into community structures across 10 cultivars: Insights into the bacterial community structure of rice cultivars. FEMS Microbiology Ecology, 2011, 77(1): 154-164. |
42 | Johnston-Monje D, Raizada M N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One, 2011, 6(6): e20396. |
43 | Andreote F D, Rocha U N D, Araújo W L, et al. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie van Leeuwenhoek, 2010, 97(4): 389-399. |
44 | Ding T, Palmer M W, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiology, 2013, 13(1): 1-11. |
45 | Tsotetsi T, Nepjali L, Malebe M, et al. Bacillus for plant growth promotion and stress resilience: What have we learned? Plants, 2022, 11(19): 2482. |
46 | Zhang Z F, Shi S L. Identification and biological attributes of seed-borne bacteria isolated from lucerne cv. Gannong No.3. Acta Prataculturae Sinica, 2018, 27(1): 152-160. |
张振粉, 师尚礼. 甘农三号紫花苜蓿种带细菌的生物功能分析及鉴定. 草业学报, 2018, 27(1): 152-160. | |
47 | Grobeilak A, Napora A, Kacprzak M. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering, 2015, 84: 22-28. |
48 | Zhang S, Gao P, Tong Y, et al. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agriculture, Ecosystems & Environment, 2015, 209: 89-99. |
49 | Vejan P, Abduliah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules, 2016, 21(5): 573. |
50 | Penesyan A, Paulsen I T, Kjelleberg S, et al. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms and Microbiomes, 2021, 7(1): 80. |
51 | Maitra D, Roy B, Chandra A, et al. Biofilm producing Bacillus vallismortis TR01K from tea rhizosphere acting as plant growth promoting agent. Biocatalysis and Agricultural Biotechnology, 2022, 45: 102507. |
52 | Triveni S, Prasanna R, Shukla L, et al. Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Annals of Microbiology, 2013, 63: 1147-1156. |
53 | Gutman J, Walker S L, Freger V, et al. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D). Environmental Science & Technology, 2013, 47(1): 398-404. |
[1] | Hai-xia DUAN, Qian SHI, Sheng-ping KANG, Hai-qing GOU, Chong-liang LUO, You-cai XIONG. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants [J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182. |
[2] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[3] | Sheng-sheng WANG, Zhen DUAN, Pei ZHOU, Ji-yu ZHANG. Phenotype and biomass analysis of nodulation-deletion mutants in Melilotus albus [J]. Acta Prataculturae Sinica, 2023, 32(10): 247-256. |
[4] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[5] | Jing MAN, Bo TANG, Bo DENG, Jia-huan LI, Yu-juan HE, Jia-liang ZHANG. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(1): 59-71. |
[6] | XIE Kai-yun, WANG Yu-xiang, WAN Jiang-chun, ZHANG Shu-zhen, SUI Xiao-qing, ZHAO Yun, ZHANG Bo. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review [J]. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
[7] | LIU Ting, YAO Tuo, CHEN Jian-Gang, MA Wen-Bin, LIU Huan, MA Cong-Yu, JIANG Yong-Mei. Identification and study on the effects of plant growth promoting rhizobacteria of Carex enervis [J]. Acta Prataculturae Sinica, 2016, 25(12): 130-139. |
[8] | XIE Kai-yun, ZHAO Yun, LI Xiang-lin, HE Feng, WAN Li-qiang, WANG Dan, HAN Dong-mei. Relationships between grasses and legumes in mixed grassland: a review [J]. Acta Prataculturae Sinica, 2013, 22(3): 284-. |
[9] | MA Xia, WANG Li-li, LI Wei-jun, SONG Jiang-ping, HE Yuan, LUO Ming. Effects of different nitrogen levels on nitrogen fixation and seed production of alfalfa inoculated with rhizobia [J]. Acta Prataculturae Sinica, 2013, 22(1): 95-102. |
[10] | WANG Xiao-feng, LUO Zhen, LIU Xiao-yan, ZHU Dan, XIA Zhi-qiang, ZHOU Jian-hua, ZHANG Lei. Reparations of Ca2+ and P on N-fixation of alfalfa-rhizobia after acid aluminum stress [J]. Acta Prataculturae Sinica, 2012, 21(6): 108-116. |
[11] | WANG Ping1, ZHOU Daowei2,JIANG Shicheng3. Research on biological nitrogen fixation of grass-legume mixtures in a semiarid area of China [J]. Acta Prataculturae Sinica, 2010, 19(6): 276-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||