Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 247-256.DOI: 10.11686/cyxb2022464
Sheng-sheng WANG(), Zhen DUAN, Pei ZHOU, Ji-yu ZHANG()
Received:
2022-11-25
Revised:
2023-01-12
Online:
2023-10-20
Published:
2023-07-26
Contact:
Ji-yu ZHANG
Sheng-sheng WANG, Zhen DUAN, Pei ZHOU, Ji-yu ZHANG. Phenotype and biomass analysis of nodulation-deletion mutants in Melilotus albus[J]. Acta Prataculturae Sinica, 2023, 32(10): 247-256.
1 | Wang J Y. Screening and functional verification of genes related to symbiotic nitrogen fixation in mesorhizobium MAFF303099. Wuhan: Huazhong Agricultural University, 2021. |
王婧仪. 中慢生根瘤菌MAFF303099共生固氮相关基因筛选及功能验证. 武汉: 华中农业大学, 2021. | |
2 | Zheng H L, Pang B P, Jin R S, et al. Primary identification of nitrogen fixation bacteria isolated from rhizosphere of 4 species of grasses in Xilingol grassland of Inner Mongolia. Journal of Arid Land Resources and Environment, 2011, 25(9): 106-109. |
郑红丽, 庞保平, 靳润岁, 等. 内蒙古锡林郭勒天然草原禾本科牧草根际18株固氮细菌的初步分类鉴定. 干旱区资源与环境, 2011, 25(9): 106-109. | |
3 | Huo H B. Responses of Robinia pseudoacacia to rhizobial nod factor and the mechanism of heme degrading enzyme HmuS in symbiosis. Xianyang: Northwest A & F University, 2021. |
霍海波. 刺槐对根瘤菌结瘤因子的响应及血红素降解因子HmuS在共生中的作用机制研究. 咸阳: 西北农林科技大学, 2021. | |
4 | Zhang C. The phenotypic analysis and map-based cloning of nitrogen fixing deficient mutants in Medicago truncatula. Changsha: Hunan University, 2021. |
张超. 蒺藜苜蓿固氮缺失突变体的表型分析和图位克隆. 长沙: 湖南大学, 2021. | |
5 | Cui Z L, Zhang H Y, Chen X P, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363-380. |
6 | Zhang X, Eric A D, Denise L M, et al. Managing nitrogen for sustainable development. Nature, 2015, 528(5743): 51-59. |
7 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
8 | Doyle J J, Luckow M A. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiology, 2003, 131(3): 900-910. |
9 | Li J H, Xi N, Man J, et al. Effects rhizobial population and inoculation method on the efficiency of alfalfa rhizobium inoculation. Acta Agrestia Sinica, 2022, 30(3): 743-749. |
李佳欢, 希娜, 漫静, 等. 苜蓿根瘤菌接种数量与方式对接种效果的影响. 草地学报, 2022, 30(3): 743-749. | |
10 | Sutton M A, Oenema O, Erisman J W, et al. Too much of a good thing. Nature, 2011, 472(7342): 159-161. |
11 | Peoples M B, Brockwell J, Herridge D F, et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 2009, 48(1/2/3): 1-17. |
12 | Roy S, Liu W, Nandety R S, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32(1): 15-41. |
13 | Saito K, Yoshikawa M, Yano K, et al. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell, 2007, 19(2): 610-624. |
14 | Kiss E, Olah B, Kalo P, et al. LIN, a novel type of U-Box/WD40 protein, controls early infection by rhizobia in legumes. Plant Physiology, 2009, 151(3): 1239-1249. |
15 | Peters J L, Cnudde F, Gerats T. Forward genetics and map-based cloning approaches. Trends in Plant Science, 2003, 8(10): 484-491. |
16 | Stracke S, Kistner C, Yoshida S, et al. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 2002, 417(6892): 959-962. |
17 | Wang D, Griffitts J, Starker C, et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science, 2010, 327(5969): 1126-1129. |
18 | Catoira R, Galera C, de Billy F, et al. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 2000, 12(9): 1647-1665. |
19 | Di H Y, Luo K, Zhang J Y, et al. Genetic diversity analysis of Melilotus populations based on ITS and trnL-trnF sequences. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(2): 265-269. |
狄红艳, 骆凯, 张吉宇, 等. 基于ITS和trnL-trnF序列的草木樨种群遗传多样性研究. 西北植物学报, 2014, 34(2): 265-269. | |
20 | Wu F, Luo K, Yan Z Z, et al. Analysis of miRNAs and their target genes in five Melilotus albus NILs with different coumarin content. Scientific Reports, 2018, 8(1): 1-13. |
21 | Wang P L, Yan Z Z, Gao L J, et al. Analysis of genetic variation in agronomic traits of half-sib families of Melilotus albus in the second generation of recurrent selection. Acta Prataculturae Sinica, 2022, 31(1): 238-245. |
王朋磊, 剡转转, 高莉娟, 等. 白花草木樨第二次轮回选择半同胞家系农艺性状的遗传变异分析. 草业学报, 2022, 31(1): 238-245. | |
22 | Wang S S, Duan Z, Zhang J Y. Establishment of hairy root transformation system of Melilotus albus induced by Agrobacterium rhizogenes. Acta Agrestia Sinica, 2021, 29(11): 2591-2599. |
王升升, 段珍, 张吉宇. 发根农杆菌介导的白花草木樨毛状根转化体系的建立. 草地学报, 2021, 29(11): 2591-2599. | |
23 | Luo K, Jahufer M Z Z, Zhao H, et al. Genetic improvement of key agronomic traits in Melilotus albus. Crop Science, 2018, 58(1): 285-294. |
24 | Chen L J, Wang P L, Chen X M, et al. Recurrent selection of new breeding lines and yield potential, nutrient profile and in vitro rumen characteristics of Melilotus officinalis. Field Crops Research, 2022, 287: 108657. |
25 | Utrup L J, Cary A J, Norris J H. Five nodulation mutants of white sweetclover (Melilotus-alba Dser) exhibit distinct phenotypes blocked at root hair curling, infection thread development, and nodule organogenesis. Plant Physiology, 1993, 103(3): 925-932. |
26 | Lum M R, Li Y, LaRue T A, et al. Investigation of four classes of non-nodulating white sweetclover (Melilotus alba annua Desr.) mutants and their responses to arbuscular-mycorrhizal fungi. Integrative and Comparative Biology, 2002, 42(2): 295-303. |
27 | Cooper J E. Early interactions between legumes and rhizobia: Disclosing complexity in a molecular dialogue. Journal of Applied Microbiology, 2007, 103(5): 1355-1365. |
28 | Chaintreuil C, Rivallan R, Bertioli D J, et al. A gene-based map of the nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes. DNA Research, 2016, 23(4): 365-376. |
29 | Saeki K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: A focus on two legume-rhizobium model systems. Cellular and Molecular Life Sciences, 2011, 68(8): 1327-1339. |
30 | Ferguson B J, Indrasumunar A, Hayashi S, et al. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology, 2010, 52(1): 61-76. |
31 | Limpens E, Franken C, Smit P, et al. LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science, 2003, 302(5645): 630-633. |
32 | Ane J M, Kiss G B, Riely B K, et al. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 2004, 303(5662): 1364-1367. |
33 | Levy J, Bres C, Geurts R, et al. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 2004, 303(5662): 1361-1364. |
34 | Hirsch S, Kim J, Munoz A, et al. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21(2): 545-557. |
35 | Feng Y. Molecular mechanism of symbiosis receptor kinase regulating symbiosis nitrogen fixation in Lotus japonicus. Wuhan: Huazhong Agricultural University, 2020. |
冯勇. 百脉根共生受体激酶SymRK 调控共生固氮的分子机制研究. 武汉: 华中农业大学, 2020. | |
36 | Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20(3): 592-609. |
37 | Borisov A Y, Madsen L H, Tsyganov V E, et al. The sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiology, 2003, 131(3): 1009-1017. |
[1] | Si-yuan LI, Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert [J]. Acta Prataculturae Sinica, 2023, 32(6): 58-70. |
[2] | Kai-hong XU, Zhao SHI, Lei-chao MA, Ping WANG, Ang CHEN, Xing WANG, Ming CHENG, Yue-xin XIAO, Rong-tan WANG. Retrieval of grassland aboveground biomass based on airborne LiDAR and SuperView-1 data [J]. Acta Prataculturae Sinica, 2023, 32(5): 40-49. |
[3] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[4] | Rui GUO, Shuai FU, Meng-jing HOU, Jie LIU, Chun-li MIAO, Xin-yue MENG, Qi-sheng FENG, Jin-sheng HE, Da-wen QIAN, Tian-gang LIANG. Remote sensing retrieval of nature grassland biomass in Menyuan County, Qinghai Province experimental area based on Sentinel-2 data [J]. Acta Prataculturae Sinica, 2023, 32(4): 15-29. |
[5] | Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage [J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100. |
[6] | Xuan-shuai LIU, Yan-liang SUN, Xiao-xia AN, Chun-hui MA, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi and phosphorus-solubilizing bacteria on the photosynthetic characteristics and biomass of alfalfa [J]. Acta Prataculturae Sinica, 2023, 32(3): 189-199. |
[7] | Le-le SU, Yan QIN, Zhao-min WANG, Yong-chao ZHANG, Wen-hui LIU. Soil nutrient and microbial activity responses to nitrogen and phosphorus addition in oats and arrowhead peas in monocrop and mixed sowings [J]. Acta Prataculturae Sinica, 2023, 32(3): 56-66. |
[8] | Li-zhu GUO, Hui-zhen MENG, Xi-feng FAN, Ke TENG, Wen-jun TENG, Hai-feng WEN, Yue-sen YUE, Hui ZHANG, Ju-ying WU. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms [J]. Acta Prataculturae Sinica, 2023, 32(2): 65-74. |
[9] | Zheng-yong XU, Bin SUN, Wang-fei ZHANG, Yi-fu LI, Zi-yu YAN, Wei YUE, Si-han TENG. An evaluation of a remote sensing method based on optimized triangular vegetation index (TVI) for aboveground shrub biomass estimation in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(10): 1-14. |
[10] | Rong RONG, Bin SUN, Zhi-tao WU, Zhi-hai GAO, Zi-qiang DU, Si-han TENG. Study on above-ground biomass measurement of Caragana microphylla in shrub-encroached grassland [J]. Acta Prataculturae Sinica, 2023, 32(1): 36-47. |
[11] | Fang-zhen LI, Hua-ping ZHONG, Ke-hui OUYANG, Xiao-min ZHAO, Yu-zhe LI. Estimation and digital mapping of grassland belowground biomass in the Altay region, China, based on machine learning [J]. Acta Prataculturae Sinica, 2022, 31(8): 13-23. |
[12] | Yi-han ZHAO, Meng-jing HOU, Qi-sheng FENG, Hong-yuan GAO, Tian-gang LIANG, Jin-sheng HE, Da-wen QIAN. Estimation of aboveground biomass in Menyuan grassland based on Landsat 8 and random forest approach [J]. Acta Prataculturae Sinica, 2022, 31(7): 1-14. |
[13] | Yong-liang YOU, Hai-ming ZHAO, Yuan LI, Rui-xin WU, Gui-bo LIU, Jian-dong ZHOU, Jun-feng CHEN. Dynamic changes in biomass accumulation and nutritional quality of triticeae forages [J]. Acta Prataculturae Sinica, 2022, 31(6): 189-201. |
[14] | Yu-zhuo ZHANG, Zhi-gui YANG, Hong-yan YU, Qiang ZHANG, Shu-xia YANG, Ting ZHAO, Hua-hua XU, Bao-ping MENG, Yan-yan LV. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data——A case study in the Sangke grassland in Xiahe County, Gansu Province [J]. Acta Prataculturae Sinica, 2022, 31(6): 23-34. |
[15] | Yang LI, Yi WANG, Guo-dong HAN, Jian SUN, Ya-feng WANG. Soil microbial biomass carbon and nitrogen levels and their controlling factors in alpine grassland, Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 50-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||