Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (5): 166-182.DOI: 10.11686/cyxb2023225
Hai-xia DUAN1(), Qian SHI1, Sheng-ping KANG1, Hai-qing GOU1, Chong-liang LUO2(), You-cai XIONG3
Received:
2023-07-03
Revised:
2023-08-28
Online:
2024-05-20
Published:
2024-02-03
Contact:
Chong-liang LUO
Hai-xia DUAN, Qian SHI, Sheng-ping KANG, Hai-qing GOU, Chong-liang LUO, You-cai XIONG. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants[J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182.
1 | Wheeler T, Braun J V. Climate change impacts on global food security. Science, 2013, 341(6145): 508-513. |
2 | Zheng W, Luo B, Hu X. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production, 2020, 272(1): 123054. |
3 | Zhu Y G, Xiong C, Wei Z, et al. Impacts of global change on phyllosphere microbiome. New Phytologist, 2022, 234(6): 1977-1986. |
4 | Sun R, Wang F, Hu C, et al. Metagenomics reveals taxon-specific responses of the nitrogen-cycling microbial community to long-term nitrogen fertilization. Soil Biology and Biochemistry, 2021, 156(1): 108214. |
5 | Wang E T. Plant-rhizobium symbiosis. China Basic Science, 2016, 18(1): 21-27, 2. |
王二涛. 植物-根瘤菌共生固氮. 中国基础科学, 2016, 18(1): 21-27, 2. | |
6 | Bauer J T, Blumenthal N, Miller A J, et al. Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities. Journal of Applied Ecology, 2017, 54(4): 1028-1039. |
7 | Smith S E, Read D J. Mycorrhizal symbiosis (third edition). London: Academic Press, 2008. |
8 | Sui X, Zhang T, Tian Y, et al. A neglected alliance in battles against parasitic plants: arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist, 2019, 221(1): 470-481. |
9 | Duan H X, Luo C L, Li J Y, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density- and moisture-dependent. Agronomy for Sustainable Development, 2021, 41(1): 1-12. |
10 | Qiao X, Bei S K, Li H G, et al. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant and Soil, 2016, 406: 173-185. |
11 | Pereira S, Mucha A, Gonçalves B, et al. Improvement of some growth and yield parameters of faba bean (Vicia faba) by inoculation with Rhizobium laguerreae and arbuscular mycorrhizal fungi. Crop and Pasture Science, 2019, 70(7): 595-605. |
12 | He S B, Guo L X, Li J, et al. Advances in arbuscular mycorrhizal fungi and legumes symbiosis research. Acta Prataculturae Sinica, 2017, 26(1): 187-194. |
何树斌, 郭理想, 李菁, 等. 丛枝菌根真菌与豆科植物共生体研究进展. 草业学报, 2017, 26(1): 187-194. | |
13 | Ossler J N, Zielinski C A, Heath K D. Tripartite mutualism: Facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts. American Journal of Botany, 2015, 102(8): 1-10. |
14 | Cavicchioli R, Ripple W J, Timmis K N, et al. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17(9): 569-586. |
15 | Coskun D, Britto D T, Shi W, et al. How plant root exudates shape the nitrogen cycle. Trends in Plant Science, 2017, 22(8): 661-673. |
16 | Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18(1): 607-621. |
17 | de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science, 2020, 368(6488): 270-274. |
18 | Wu Y F, Liu Q M, Liu W H, et al. Effects of inoculation of AMF and Rhizobium on photosynthetic and respiratory metabolism and growth of intercropping Glycine max. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(2): 231-241. |
吴艳芬, 刘秋鸣, 刘卫欢, 等. AMF与根瘤菌对间作大豆光合与呼吸代谢的影响. 广西师范大学学报(自然科学版), 2022, 40(2): 231-241. | |
19 | Endlweber K, Scheu S. Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biology and Fertility of Soils, 2007, 43(6): 741-749. |
20 | Lin J, Roswanjaya Y P, Kohlen W, et al. Nitrate inhibits nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nature Communications, 2021, 12(1): 6544. |
21 | Genre A, Lanfranco L, Perotto S, et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18(11): 649-660. |
22 | Chen W X, Wang E T, Chen W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. Scientia Agricultura Sinica, 2004, 37(1): 81-86. |
陈文新, 汪恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86. | |
23 | Liu R J, Chen Y L. Mycorrhizology. Beijing: Science Press, 2007: 22-24. |
刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007: 22-24. | |
24 | Feng G, Zhang F S, Li X L, et al. Functions of arbuscular mycorrhizal fungi in agricultural and their manipulation. Acta Pedologica Sinica, 2010, 47(5): 995-1004. |
冯固, 张福锁, 李晓林, 等. 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 2010, 47(5): 995-1004. | |
25 | Zhao Z, Wang Z H. The relationships between mycorrhizal fungi and microbe of rhizosphere and their influences on host plant. Journal of Northwest Forestry University, 2001, 16(4): 70-75. |
赵忠, 王真辉. 菌根真菌与根际微生物间的关系及其对宿主植物的影响. 西北林学院学报, 2001, 16(4): 70-75. | |
26 | Minerdi D, Fani R, Gallo R, et al. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Applied and Environmental Microbiology, 2001, 67(2): 725-732. |
27 | Alguacil M D M, Lozano Z, Campoy M J, et al. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biology and Biochemistry, 2010, 42(7): 1114-1122. |
28 | Dénarié J, Cullimore J. Lipo-oligosaccharide nodulation factors: A new class of signaling molecules mediating recognition and morphogenesis. Cell, 1993, 74(6): 951-954. |
29 | Hassan S, Mathesius U, Hassan S, et al. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany, 2012, 63(9): 3429-3444. |
30 | Oldroyd G. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11(1): 252-263. |
31 | Barker D G, Chabaud M, Russo G, et al. Nuclear Ca2+ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytologist, 2017, 214(2): 533-538. |
32 | Martin F M, Uroz S, Barker D G. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356(6340): 819. |
33 | Jiang Y N, Wang W X, Xie Q J, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 2017, 356(6343): 1172-1175. |
34 | Wang X, Feng H, Wang Y, et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 2021, 14(3): 503-516. |
35 | Yu K, Wang X L, Zhang X B, et al. Research progress on interactions between root and beneficial microbes. Plant Physiology Journal, 2020, 56(11): 2275-2287. |
禹坷, 王孝林, 张学斌, 等. 植物根系与益生菌相互作用的研究进展. 植物生理学报, 2020, 56(11): 2275-2287. | |
36 | Erik S. The nitrogen fix. Science, 2016, 353(6305): 1225-1227. |
37 | Ryu M H, Zhang J, Toth T, et al. Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 2020, 5: 314-330. |
38 | Beatty P H, Good A G. Future prospects for cereals that fix nitrogen. Science, 2011, 333(6041): 416-417. |
39 | Jian L, Bai X, Zhang H, et al. Promotion of growth and metal accumulation of alfalfa by co-inoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. PeerJ, 2019, 7: e6875. |
40 | Abd-Alla M H, El-Enany A W E, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 2014, 169(1): 49-58. |
41 | Liu Y, Yuan L. Effects of rhizobia and arbuscular mycorrhizal fungi on nodulation, yield and quality of Medicago sativa. Acta Pedologica Sinica, 2020, 57(5): 1292-1298. |
刘忆, 袁玲. 根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响. 土壤学报, 2020, 57(5): 1292-1298. | |
42 | Tavasolee A, Aliasgharzad N, SalehiJouzani G, et al. Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. African Journal of Biotechnology, 2011, 10(39): 7585-7591. |
43 | Sakamoto K, Ogiwara N, Kaji T, et al. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Journal of Plant Research, 2019, 132(4): 541-568. |
44 | Wang X Y, Ding T T, Li Y Z, et al. Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot. Acta Prataculturae Sinica, 2019, 28(8): 139-149. |
王晓瑜, 丁婷婷, 李彦忠, 等. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响. 草业学报, 2019, 28(8): 139-149. | |
45 | Liu Q, Gao Y N, Liu X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecologica Sinica, 2018, 38(17): 6143-6155. |
刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018, 38(17): 6143-6155. | |
46 | Wang X, Fang L, Beiyuan J, et al. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277(1): 116758. |
47 | Luna L, Miralles I, Andrenelli M C, et al. Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. Catena, 2016, 143(1): 256-264. |
48 | Ding X D, Zhang S R, Wang R P, et al. AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. Journal of Plant Nutrition, 2016, 39(13): 1915-1925. |
49 | Tajini F, Trabelsi M, Drevon J J. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. |
50 | van Rhijn P, Fang Y, Galili S, et al. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and rhizobium-induced nodules may be conserved. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5467-5472. |
51 | Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling and Behavior, 2012, 7(6): 636-641. |
52 | Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2016, 95(4): 1045-1054. |
53 | Kaschuk G, Leffelaar P A, Giller K E, et al. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 2010, 42(1): 125-127. |
54 | Tsimilli-Michael M, Eggenberg P, Biro B, et al. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology, 2000, 15(2): 169-182. |
55 | Liu Y, Patko D, Engelhardt I, et al. Plant-environment microscopy tracks interactions of Bacillus subtilis with plant roots across the entire rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2109176118. |
56 | Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 2016, 90(6): 635-644. |
57 | Clark R B, Zeto S K. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 2000, 23(7): 867-902. |
58 | Azcón R, Rubio R, Barea J M. Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (5N) and nutrition of Medicago sativa L. New Phytologist, 1991, 117(3): 399-404. |
59 | Ahmad M H. Compatibility and co-selection of vesicular-arbuscular mycorrhizal fungi and rhizobia for tropical legumes. Critical Reviews in Biotechnology, 1995, 15: 229-239. |
60 | Guo C, Zhou J Q, Zhang Y J. Host and nutrient mediated the synergistic effect of arbuscular mycorrhizal fungi (AMF) and rhizobium on plant growth. Acta Agrestia Sinica, 2023, 31(7): 1931-1938. |
郭川, 周冀琼, 张英俊. 宿主和养分介导了AMF和根瘤菌对植物生长的协同效应. 草地学报, 2023, 31(7): 1931-1938. | |
61 | Pan Y, Zhou J Q, Guo C, et al. Arbuscular mycorrhizal fungi and rhizobia regulate plant interspecific interaction of three legumes and grasses species. Acta Agrestia Sinica, 2021, 29(4): 644-654. |
潘越, 周冀琼, 郭川, 等. 丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响. 草地学报, 2021, 29(4): 644-654. | |
62 | Zhou X Y, Tang Y L, Wang Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1139-1146. |
周贤玉, 唐艺玲, 王志国, 等. 减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响. 中国生态农业学报, 2017, 25(8): 1139-1146. | |
63 | Scheublin T R, van Logtestijn R S P, van der Heijden M G A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 2010, 95(4): 631-638. |
64 | Diaye D N, Duponnois R, Brauman A, et al. Impact of a soil feeding termite, Cubitermes niokoloensis, on the symbiotic microflora associated with a fallow leguminous plant Crotalaria ochroleuca. Biology and Fertility of Soils, 2003, 37(5): 313-318. |
65 | Cao J, Wang C, Huang Y, et al. Effects of earthworm on soil microbes and biological fertility: A review. Chinese Journal of Applied Ecology, 2015, 26(5): 1579-1586. |
曹佳, 王冲, 皇彦, 等. 蚯蚓对土壤微生物及生物肥力的影响研究进展. 应用生态学报, 2015, 26(5): 1579-1586. | |
66 | Requena N, Jimenez I, Toro M, et al. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium ssp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytologist, 1997, 136(4): 667-677. |
67 | Tian C J, He X Y, Zhong Y, et al. Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests, 2003, 25(2): 125-131. |
68 | Ashrafi E, Zahedi M, Razmjoo J. Co-inoculations of arbuscular mycorrhizal fungi and rhizobia under salinity in alfalfa. Soil Science and Plant Nutrition, 2014, 60(5): 619-629. |
69 | Shafer S R, Schoeneberger M M, Horton S J, et al. Effects of rhizobium, arbuscular mycorrhizal fungi and anion content of simulated rain on subterranean clover. Environmental Pollution, 1996, 92(1): 55-66. |
70 | Meng C, Lu N, Chai Q. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa in acidic soil. Pratacultural Science, 2017, 34(2): 352-360. |
蒙程, 陆妮, 柴琦. 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响. 草业科学, 2017, 34(2): 352-360. | |
71 | Wu H, Yang J J, Fu W, et al. Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. Soil Biology and Biochemistry, 2023, 237(1): 279-294. |
72 | van der Heijden M G A, Verkade S, Bruin S J D. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2010, 14(11): 2626-2635. |
73 | Yasmeen S, Bano A. Combined effect of phosphate-solubilizing microorganisms, rhizobium and enterobacter on root nodulation and physiology of soybean (Glycine max L.). Communications in Soil Science and Plant Analysis, 2014, 45(18): 2373-2384. |
74 | Li X L, Cao Y P. Effects of VA mycorrhizal hyphal uptake of phosphorus on N-fixation and growth of white clover. Acta Agricultural Universitatis Pekinensis, 1992, 18(3): 299-302. |
李晓林, 曹一平. VA菌根菌丝对三叶草固氮的影响. 北京农业大学学报, 1992, 18(3): 299-302. | |
75 | Reddell P, Yun Y, Shipton W A. Cluster roots and mycorrhizae in Casuarina cunninghamiana: their occurrence and formation in relation to phosphorus supply. Australian Journal of Botany, 1997, 45(1): 41-51. |
76 | Shantz A A, Lemoine N P, Burkepile D E. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecology Letters, 2016, 19(1): 20-28. |
77 | Aryal U K, Xu H L, Fujita M. Rhizobia and AM fungal inoculation improve growth and nutrient uptake of bean plants under organic fertilization. Journal of Sustainable Agriculture, 2003, 21(3): 27-39. |
78 | Pan S, Wang Y, Qiu Y, et al. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biology, 2020, 26(11): 6568-6580. |
79 | van Diepen L T A, Lilleskov E A, Pregitzer K S, et al. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 2010, 13(5): 683-695. |
80 | Warburton L M E, Allen E B. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications, 2000, 10(2): 484-496. |
81 | Jiang Q Q, Tang J J, Chen X, et al. Effects of simulated nitrogen deposition on weeds growth and nitrogen uptake. Chinese Journal of Applied Ecology, 2005, 16(5): 951-955. |
蒋琦清, 唐建军, 陈欣, 等. 模拟氮沉降对杂草生长和氮吸收的影响. 应用生态学报, 2005, 16(5): 951-955. | |
82 | Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 2017, 63(5): 470-482. |
83 | Yang Z W, Shen Y Y, Xie T L, et al. Biological nitrogen fixation efficiency in soybean under different levels of nitrogen supply. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 574-579. |
杨子文, 沈禹颖, 谢田玲, 等. 外源供氮水平对大豆生物固氮效率的影响. 西北植物学报, 2009, 29(3): 574-579. | |
84 | Wang H, Mo J M, Lu X K, et al. Effects of elevated nitrogen deposition on soil microbial biomass carbon in the main subtropical forests of southern China. Acta Ecologica Sinica, 2008, 28(2): 470-478. |
王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应. 生态学报, 2008, 28(2): 470-478. | |
85 | Liu W, Jiang L, Hu S J, et al. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry, 2014, 72(6): 116-122. |
86 | Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196(1): 143-158. |
87 | Andrade S, Abreu C A, Abreu M, et al. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 2004, 26(2): 123-131. |
88 | Ren C G, Kong C C, Wang S X, et al. Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 2019, 217(1): 773-779. |
89 | Pelaez C, Olivares E, Cuenca G, et al. Manganese modulates the responses of nitrogen-supplied and Rhizobium-nodulated Phaseolus vulgaris L. to inoculation with arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2010, 42(11): 1924-1933. |
90 | Bitterlich M, Franken P, Graefe J. Atmospheric drought and low light impede mycorrhizal effects on leaf photosynthesis-a glasshouse study on tomato under naturally fluctuating environmental conditions. Mycorrhiza, 2019, 29(1): 13-28. |
91 | Lang M, Li X, Zheng C, et al. Shading mediates the response of mycorrhizal maize (Zea mays L.) seedlings under varying levels of phosphorus. Applied Soil Ecology, 2021, 166(1): 104060. |
92 | Clark A L, Clair S S B. Mycorrhizas and secondary succession in aspen-conifer forest: light imitation differentially affects a dominant early and late successional species. Forest Ecology and Management, 2011, 262(2): 203-207. |
93 | Zheng C, Ji B, Zhang J, et al. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytologist, 2015, 205(1): 361-368. |
94 | Taylor B N, Menge D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4(9): 655-661. |
95 | Antunes P M, Lehmann A, Hart M M, et al. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Functional Ecology, 2012, 26(2): 532-540. |
96 | Goicoechea N, Merino S, Sánchez-Díaz M. Arbuscular mycorrhizal fungi can contribute to maintain antioxidant and carbon metabolism in nodules of Anthyllis cytisoides L. subjected to drought. Journal of Plant Physiology, 2005, 162(1): 27-35. |
97 | Erman M, Demir S, Ocak E, et al. Effects of Rhizobium, arbuscular mycorrhiza and whey applications on some properties in chickpea (Cicer arietinum L.) under irrigated and rainfed conditions 1-Yield, yield components, nodulation and AMF colonization. Field Crops Research, 2011, 122(1): 14-24. |
98 | Gao W L, Chen X N, Yilinuer·Aili, et al. Effects of double inoculation with arbuscular mycorrhizal fungi and rhizobia under different water treatments on growth and nitrogen transfer of Alhagi sparsifolia. Acta Ecologica Sinica, 2022, 42(16): 6816-6826. |
高文礼, 陈晓楠, 伊力努尔·艾力, 等. 不同水分处理下双接种丛枝菌根真菌和根瘤菌对疏叶骆驼刺生长及氮素转移的影响. 生态学报, 2022, 42(16): 6816-6826. | |
99 | Yinsuo J, Myles G V, John S C. The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Annals of Botany, 2004, 94(2): 251-258. |
100 | Catford J G, Staehelin C, Lerat S, et al. Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with nod factors. Journal of Experimental Botany, 2003, 54(386): 1481-1487. |
101 | Dong C J, Zhao B. Interaction between AM fungi and Rhizobium and effects of flavonoids on it. Chinese Journal of Applied Ecology, 2004, 15(9): 1585-1588. |
董昌金, 赵斌. 丛枝菌根真菌与根瘤菌互作及类黄酮对互作效果的影响. 应用生态学报, 2004, 15(9): 1585-1588. | |
102 | Wang H. Influencing factors on the symbiosis of Ammopiptanthus mongolicus (Maxim.) with rhizobia and arbuscular mycorrhizal fungi (AMF). Beijing: Beijing Forestry University, 2008. |
王华. 沙冬青与根瘤菌和丛枝菌根真菌(AMF)共生关系影响因素的研究. 北京: 北京林业大学, 2008. | |
103 | Zhuang Q, Zhao X J, Song F Q. Amorpha fruticosa arbuscular mycorrhizal (AM) root exudate induced nodulation factors of rhizobia and their interactions. Journal of Northwest Forestry University, 2018, 33(3): 164-168. |
庄倩, 赵晓娟, 宋福强. 紫穗槐丛枝菌根(AM)根系分泌物诱导根瘤菌结瘤因子及作用研究. 西北林学院学报, 2018, 33(3): 164-168. | |
104 | Maron J L, Marler M, Klironomos J N, et al. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecology Letters, 2011, 14(1): 36-41. |
105 | Yang H Q. The effect of four herbicides on rhizobium, AMF and other soil microbe. Microbiology China, 2009, 36(4): 511-514. |
杨会青. 四种除草剂对根瘤菌、AMF等土壤微生物的影响. 微生物学通报, 2009, 36(4): 511-514. | |
106 | Niranjan R, Mohan V, Rao V M. Effect of indole acetic acid on the synergistic interactions of Bradyrhizobium and Glomus fasciculatum on growth, nodulation, and nitrogen fixation of Dalbergia sissoo Roxb. Arid Land Research and Management, 2007, 21(4): 329-342. |
107 | Wurst S, Vender V, Rillig M C. Testing for allelopathic effects in plant competition: does activated carbon disrupt plant symbioses? Plant Ecology, 2010, 211(1): 19-26. |
108 | Wang T, Guo J, Peng Y, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374(6563): 65-71. |
109 | Wang B, Zhang R, Liu J, et al. Effects of incorporated and mulched tree branches on arbuscular mycorrhizal fungi in the desertified soil and root of alfalfa in arid areas. Acta Prataculturae Sinica, 2023, 32(2): 15-25. |
王博, 张茹, 刘静, 等. 翻埋与覆盖林木枝条对干旱区沙化土壤及紫花苜蓿根系丛枝菌根真菌的影响. 草业学报, 2023, 32(2): 15-25. | |
110 | Oehl F, Laczko E, Bogenrieder A, et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry, 2010, 42(5): 724-738. |
[1] | Lu-ping MA, Zhao-yong SHI, Wen-jing WEI, Shuang YANG. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology [J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109. |
[2] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
[3] | Yan-lan ZHAO, Xin-yi ZENG, Jin-chao GONG, Xiang-jun LI, Xu-xu LI, Shan LIU, Xin-quan ZHANG, Ji-qiong ZHOU. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens [J]. Acta Prataculturae Sinica, 2023, 32(3): 179-188. |
[4] | Hong-jian WEI, Wen-yuan HE, Yue WANG, Ming TANG, Hui CHEN. The effects of arbuscular mycorrhizal fungi and melatonin on the heat tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2023, 32(12): 126-138. |
[5] | Sheng-sheng WANG, Zhen DUAN, Pei ZHOU, Ji-yu ZHANG. Phenotype and biomass analysis of nodulation-deletion mutants in Melilotus albus [J]. Acta Prataculturae Sinica, 2023, 32(10): 247-256. |
[6] | Ce YANG, Yu-xue ZHANG, He ZHANG, Chun-yan ZHENG, Feng ZHU. Recent advances in understanding the ecosystem functioning of diverse forage mixtures [J]. Acta Prataculturae Sinica, 2022, 31(9): 206-219. |
[7] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[8] | Dan-na CHANG, Xiao-tong MA, Guo-peng ZHOU, Song-juan GAO, Rui LIU, Wei-dong CAO. Symbiotic compatibility of different rhizobia strains with important Chinese milk vetch (Astragalus sinicus) cultivars [J]. Acta Prataculturae Sinica, 2022, 31(12): 171-180. |
[9] | Yong-gang CHEN, Wen-juan KANG, Fang WU, Yun A, Shang-li SHI, Cui-mei ZHANG, Zi-li LI. Boron promotes secretion of extracellular polysaccharides and indole-3-acetic acid by Rhizobium [J]. Acta Prataculturae Sinica, 2021, 30(5): 42-51. |
[10] | Zhi-min WEI, Bin SUN, Cheng FANG, Zi-wen DAI, Man-qiang LIU, Jia-guo JIAO, Feng HU, Hui-xin LI, Li XU. Co-inoculation with rhizobia and azotobacter affects the growth of Vicia villosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 94-102. |
[11] | Hong SUN, Yu-long ZHENG, Yan-li LIN, Chao CHEN, Fu-yu YANG. Effects of biochar, phosphorus addition and AMF inoculation on switchgrass growth and soil properties under Cd stress [J]. Acta Prataculturae Sinica, 2021, 30(12): 71-80. |
[12] | XING Yi-mei, DONG Li, ZHAN Li-feng, CAI Hua, YANG Sheng-qiu, SUN Na. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(9): 136-145. |
[13] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[14] | ZHAO Xin, WU Zi-long, ZHANG Hao, YANG Xu-zhao, HAN Chao, GAO Jie. Arbuscular mycorrhizal fungal infection rates of flora of the Fengfeng mining area coal gob piles and influence on plant Cd content [J]. Acta Prataculturae Sinica, 2020, 29(5): 78-87. |
[15] | XIE Kai-yun, WANG Yu-xiang, WAN Jiang-chun, ZHANG Shu-zhen, SUI Xiao-qing, ZHAO Yun, ZHANG Bo. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review [J]. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||