Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (5): 171-188.DOI: 10.11686/cyxb2024238
Min ZHANG1,2(
), Rui YANG1,2, Yi-zhou HUANG3, Zhi-xin LIN2, Xian-yue ZHENG2, Qing-hua LIU2, Yu-yun GAO2, Dong-mei LIN1, Zhan-xi LIN1(
), Ling JIN1(
)
Received:2024-06-18
Revised:2024-08-30
Online:2025-05-20
Published:2025-03-20
Contact:
Zhan-xi LIN,Ling JIN
Min ZHANG, Rui YANG, Yi-zhou HUANG, Zhi-xin LIN, Xian-yue ZHENG, Qing-hua LIU, Yu-yun GAO, Dong-mei LIN, Zhan-xi LIN, Ling JIN. Effects of Pennisetum giganteum on the growth performance and intestinal health of finishing Congjiang Xiang pigs[J]. Acta Prataculturae Sinica, 2025, 34(5): 171-188.
项目 Items | 含量Content | ||
|---|---|---|---|
对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | |
| 原料Ingredients | |||
| 玉米Corn (%) | 76.97 | 69.27 | 61.57 |
| 小麦麸Wheat bran (%) | 2.04 | 1.84 | 1.63 |
| 豆粕Soybean meal (%) | 18.02 | 16.22 | 14.42 |
| 巨菌草鲜草(干物质)Fresh P. giganteum (dry matter) (%) | 0 | 10 | 20 |
| 食盐NaCl (%) | 0.30 | 0.27 | 0.24 |
| 石粉Limestone (%) | 0.86 | 0.77 | 0.69 |
| 磷酸氢钙CaHPO4 (%) | 0.70 | 0.63 | 0.56 |
| L-赖氨酸盐酸盐L-Lys·HCl (%) | 0.11 | 0.10 | 0.09 |
| 预混料Premix1) (%) | 1.00 | 0.90 | 0.80 |
| 合计Total (%) | 100.00 | 100.00 | 100.00 |
| 营养水平Nutrient levels2) | |||
| 消化能Digestible energy (MJ·kg-1) | 13.81 | 12.95 | 12.09 |
| 粗蛋白质Crude protein (%) | 14.50 | 13.88 | 13.25 |
| 中性洗涤纤维Neutral detergent fiber (%) | 10.91 | 15.04 | 19.18 |
| 酸性洗涤纤维Acid detergent fiber (%) | 4.36 | 7.47 | 10.58 |
| 钙Calcium (%) | 0.55 | 0.54 | 0.53 |
| 非植酸磷Non-phytate phosphorus (%) | 0.20 | 0.20 | 0.20 |
| 赖氨酸Lysine (%) | 0.74 | 0.71 | 0.67 |
| 蛋氨酸+胱氨酸Methionine+cystine (%) | 0.50 | 0.48 | 0.45 |
Table 1 Composition and nutrient levels of diets (air-dry basis)
项目 Items | 含量Content | ||
|---|---|---|---|
对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | |
| 原料Ingredients | |||
| 玉米Corn (%) | 76.97 | 69.27 | 61.57 |
| 小麦麸Wheat bran (%) | 2.04 | 1.84 | 1.63 |
| 豆粕Soybean meal (%) | 18.02 | 16.22 | 14.42 |
| 巨菌草鲜草(干物质)Fresh P. giganteum (dry matter) (%) | 0 | 10 | 20 |
| 食盐NaCl (%) | 0.30 | 0.27 | 0.24 |
| 石粉Limestone (%) | 0.86 | 0.77 | 0.69 |
| 磷酸氢钙CaHPO4 (%) | 0.70 | 0.63 | 0.56 |
| L-赖氨酸盐酸盐L-Lys·HCl (%) | 0.11 | 0.10 | 0.09 |
| 预混料Premix1) (%) | 1.00 | 0.90 | 0.80 |
| 合计Total (%) | 100.00 | 100.00 | 100.00 |
| 营养水平Nutrient levels2) | |||
| 消化能Digestible energy (MJ·kg-1) | 13.81 | 12.95 | 12.09 |
| 粗蛋白质Crude protein (%) | 14.50 | 13.88 | 13.25 |
| 中性洗涤纤维Neutral detergent fiber (%) | 10.91 | 15.04 | 19.18 |
| 酸性洗涤纤维Acid detergent fiber (%) | 4.36 | 7.47 | 10.58 |
| 钙Calcium (%) | 0.55 | 0.54 | 0.53 |
| 非植酸磷Non-phytate phosphorus (%) | 0.20 | 0.20 | 0.20 |
| 赖氨酸Lysine (%) | 0.74 | 0.71 | 0.67 |
| 蛋氨酸+胱氨酸Methionine+cystine (%) | 0.50 | 0.48 | 0.45 |
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
β-肌动蛋白 β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
胰岛素样生长因子-1 Insulin-like growth factor 1 (IGF-1) | F: CTGAGGAGGCTGGAGATGTACT R: CCTGAACTCCCTCTACTTGTGTTC | |
胰岛素样生长因子-1受体 Insulin-like growth factor 1 receptor (IGF-1R) | F: GGAGGAAGTGACAGGGACTAAAGG R: GGTGCCAGGTGATGATGATGC | |
胰高血糖素样肽-2 Glucagon-like peptide-2 (GLP-2) | F: ACTCACAGGGCACGTTTACCA R: AGGTCCCTTCAGCATGTCTCT |
Table 2 Primer sequences for genes related to intestinal development and reference gene
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
β-肌动蛋白 β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
胰岛素样生长因子-1 Insulin-like growth factor 1 (IGF-1) | F: CTGAGGAGGCTGGAGATGTACT R: CCTGAACTCCCTCTACTTGTGTTC | |
胰岛素样生长因子-1受体 Insulin-like growth factor 1 receptor (IGF-1R) | F: GGAGGAAGTGACAGGGACTAAAGG R: GGTGCCAGGTGATGATGATGC | |
胰高血糖素样肽-2 Glucagon-like peptide-2 (GLP-2) | F: ACTCACAGGGCACGTTTACCA R: AGGTCCCTTCAGCATGTCTCT |
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
| β-肌动蛋白β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
| 闭合蛋白-1 Claudin-1 | F: TCTTAGTTGCCACAGCATGG R: CCAGTGAAGAGAGCCTGACC | |
| 闭锁蛋白Occludin | F: ATGCTTTCTCAGCCAGCGTA R: AAGGTTCCATAGCCTCGGTC | |
| 闭合小环蛋白-1 Zonula occludens-1 (ZO-1) | F: GAGGATGGTCACACCGTGGT R: GGAGGATGCTGTTGTCTCGG |
Table 3 Primer sequences for small intestinal tight junction protein genes and reference gene
| 基因Gene | 引物序列Primer sequence (5′-3′) | 参考文献References |
|---|---|---|
| β-肌动蛋白β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | |
| 闭合蛋白-1 Claudin-1 | F: TCTTAGTTGCCACAGCATGG R: CCAGTGAAGAGAGCCTGACC | |
| 闭锁蛋白Occludin | F: ATGCTTTCTCAGCCAGCGTA R: AAGGTTCCATAGCCTCGGTC | |
| 闭合小环蛋白-1 Zonula occludens-1 (ZO-1) | F: GAGGATGGTCACACCGTGGT R: GGAGGATGCTGTTGTCTCGG |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 初重Initial weight (kg) | 28.65±0.34a | 28.65±0.23a | 28.81±0.16a | 0.895 |
| 末重Final weight (kg) | 61.75±1.20a | 61.26±1.48a | 58.83±0.57a | 0.264 |
| 平均日增重ADG (g) | 367.78±9.59a | 362.33±15.16a | 333.61±5.03a | 0.140 |
| 基础饲粮平均日采食量Basal diets ADFI (kg·d-1) | 1.30 | 1.17 | 1.04 | - |
| 巨菌草平均日采食量P. giganteum ADFI (kg·d-1) | 0 | 0.78 | 1.55 | - |
Table 4 Effects of P. giganteum on growth performance of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 初重Initial weight (kg) | 28.65±0.34a | 28.65±0.23a | 28.81±0.16a | 0.895 |
| 末重Final weight (kg) | 61.75±1.20a | 61.26±1.48a | 58.83±0.57a | 0.264 |
| 平均日增重ADG (g) | 367.78±9.59a | 362.33±15.16a | 333.61±5.03a | 0.140 |
| 基础饲粮平均日采食量Basal diets ADFI (kg·d-1) | 1.30 | 1.17 | 1.04 | - |
| 巨菌草平均日采食量P. giganteum ADFI (kg·d-1) | 0 | 0.78 | 1.55 | - |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ |
|---|---|---|---|
| 巨菌草成本按0元·kg-1计算P. giganteum are calculated at a cost of 0 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 11.50 | 11.14 |
| 节约增重成本Save weight gain costs (%) | 0 | 8.73 | 11.59 |
| 巨菌草按市场价格0.35元·kg-1计算P. giganteum are calculated at a cost of 0.35 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 12.25 | 12.77 |
| 节约增重成本Save weight gain costs (%) | 0 | 2.78 | -1.35 |
Table 5 Effects of P. giganteum on economic benefits of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ |
|---|---|---|---|
| 巨菌草成本按0元·kg-1计算P. giganteum are calculated at a cost of 0 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 11.50 | 11.14 |
| 节约增重成本Save weight gain costs (%) | 0 | 8.73 | 11.59 |
| 巨菌草按市场价格0.35元·kg-1计算P. giganteum are calculated at a cost of 0.35 CNY·kg-1 | |||
| 单位增重成本Unit weight gain cost (CNY·kg-1) | 12.60 | 12.25 | 12.77 |
| 节约增重成本Save weight gain costs (%) | 0 | 2.78 | -1.35 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 屠宰率Dressing percentage (%) | 67.44±0.78a | 68.14±1.17a | 64.93±0.84a | 0.078 |
| 板油率Leaf lard percentage (%) | 2.24±0.50a | 1.78±0.29a | 1.83±0.34a | 0.666 |
| 背膘厚Backfat thickness (mm) | 29.86±0.98a | 26.33±2.49a | 25.92±3.33a | 0.483 |
| 眼肌面积Loin-eye area (cm2) | 31.10±4.51a | 30.35±2.84a | 27.56±2.80a | 0.754 |
Table 6 Effects of P. giganteum on carcass traits of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 屠宰率Dressing percentage (%) | 67.44±0.78a | 68.14±1.17a | 64.93±0.84a | 0.078 |
| 板油率Leaf lard percentage (%) | 2.24±0.50a | 1.78±0.29a | 1.83±0.34a | 0.666 |
| 背膘厚Backfat thickness (mm) | 29.86±0.98a | 26.33±2.49a | 25.92±3.33a | 0.483 |
| 眼肌面积Loin-eye area (cm2) | 31.10±4.51a | 30.35±2.84a | 27.56±2.80a | 0.754 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 胃肠道相对重量Gastrointestinal tract relative weight (g·kg-1) | ||||
| 胃相对重量Stomach relative weight | 8.88±0.16b | 11.38±0.84a | 11.21±0.57a | 0.008 |
| 小肠相对重量Small intestine relative weight | 17.36±1.22a | 18.77±1.28a | 22.42±1.96a | 0.092 |
| 大肠相对重量Large intestine relative weight | 15.50±1.81a | 16.40±0.85a | 17.90±0.52a | 0.384 |
| 胃肠道相对长度Gastrointestinal tract relative length (cm·kg-1) | ||||
| 小肠相对长度Small intestine relative length | 22.29±1.10a | 22.86±0.94a | 24.25±0.69a | 0.338 |
| 大肠相对长度Large intestine relative length | 6.24±0.54a | 6.32±0.26a | 7.00±0.09a | 0.275 |
Table 7 Effects of P. giganteum on gastrointestinal tract (GIT) relative weight and relative length of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 胃肠道相对重量Gastrointestinal tract relative weight (g·kg-1) | ||||
| 胃相对重量Stomach relative weight | 8.88±0.16b | 11.38±0.84a | 11.21±0.57a | 0.008 |
| 小肠相对重量Small intestine relative weight | 17.36±1.22a | 18.77±1.28a | 22.42±1.96a | 0.092 |
| 大肠相对重量Large intestine relative weight | 15.50±1.81a | 16.40±0.85a | 17.90±0.52a | 0.384 |
| 胃肠道相对长度Gastrointestinal tract relative length (cm·kg-1) | ||||
| 小肠相对长度Small intestine relative length | 22.29±1.10a | 22.86±0.94a | 24.25±0.69a | 0.338 |
| 大肠相对长度Large intestine relative length | 6.24±0.54a | 6.32±0.26a | 7.00±0.09a | 0.275 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 空肠Jejunum | ||||
| 绒毛高度Villous height (V, μm) | 903.68±83.76a | 859.67±51.07a | 846.77±29.63a | 0.780 |
| 隐窝深度Crypt depth (C, μm) | 539.08±19.42a | 491.84±34.26a | 489.05±37.78a | 0.710 |
| 绒毛高度/隐窝深度V/C | 1.71±0.12a | 1.82±0.11a | 1.84±0.13a | 0.473 |
| 回肠Ileum | ||||
| 绒毛高度Villous height (V, μm) | 806.74±28.02b | 813.14±8.61b | 910.38±29.87a | 0.017 |
| 隐窝深度Crypt depth (C, μm) | 539.77±7.42a | 447.13±27.26b | 505.58±26.36ab | 0.037 |
| 绒毛高度/隐窝深度V/C | 1.51±0.05b | 1.90±0.10a | 1.90±0.12a | 0.017 |
Table 8 Effects of P. giganteum on intestinal morphology of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 空肠Jejunum | ||||
| 绒毛高度Villous height (V, μm) | 903.68±83.76a | 859.67±51.07a | 846.77±29.63a | 0.780 |
| 隐窝深度Crypt depth (C, μm) | 539.08±19.42a | 491.84±34.26a | 489.05±37.78a | 0.710 |
| 绒毛高度/隐窝深度V/C | 1.71±0.12a | 1.82±0.11a | 1.84±0.13a | 0.473 |
| 回肠Ileum | ||||
| 绒毛高度Villous height (V, μm) | 806.74±28.02b | 813.14±8.61b | 910.38±29.87a | 0.017 |
| 隐窝深度Crypt depth (C, μm) | 539.77±7.42a | 447.13±27.26b | 505.58±26.36ab | 0.037 |
| 绒毛高度/隐窝深度V/C | 1.51±0.05b | 1.90±0.10a | 1.90±0.12a | 0.017 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 338.19±26.39a | 329.35±34.87a | 375.16±54.05a | 0.691 |
| 白介素-6 Interleukin-6 (IL-6) | 482.70±27.33a | 447.46±33.76a | 468.63±36.22a | 0.731 |
| 白介素-10 Interleukin-10 (IL-10) | 136.96±6.48a | 140.27±10.82a | 147.66±17.72a | 0.829 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 99.24±4.13a | 97.67±4.60a | 105.35±1.25a | 0.323 |
| 干扰素-γ Interferon-γ (IFN-γ) | 21.61±1.40a | 22.91±1.92a | 26.89±3.28a | 0.289 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 4245±257b | 5002±497ab | 6427±602a | 0.021 |
Table 9 Effects of P. giganteum on jejunum cytokines of finishing Congjiang Xiang pigs (pg·mg-1 prot)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 338.19±26.39a | 329.35±34.87a | 375.16±54.05a | 0.691 |
| 白介素-6 Interleukin-6 (IL-6) | 482.70±27.33a | 447.46±33.76a | 468.63±36.22a | 0.731 |
| 白介素-10 Interleukin-10 (IL-10) | 136.96±6.48a | 140.27±10.82a | 147.66±17.72a | 0.829 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 99.24±4.13a | 97.67±4.60a | 105.35±1.25a | 0.323 |
| 干扰素-γ Interferon-γ (IFN-γ) | 21.61±1.40a | 22.91±1.92a | 26.89±3.28a | 0.289 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 4245±257b | 5002±497ab | 6427±602a | 0.021 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 728.76±85.09a | 586.90±46.46a | 723.17±58.09a | 0.223 |
| 白介素-6 Interleukin-6 (IL-6) | 1032.87±125.42a | 834.07±41.41a | 1043.27±81.61a | 0.219 |
| 白介素-10 Interleukin-10 (IL-10) | 313.59±33.99a | 263.04±11.29a | 332.65±22.38a | 0.156 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 237.39±23.15a | 196.57±4.92a | 246.83±18.39a | 0.134 |
| 干扰素-γ Interferon-γ (IFN-γ) | 51.91±4.60a | 37.17±1.88b | 41.58±0.98b | 0.011 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 1016.15±125.91a | 954.25±79.64a | 1095.24±100.36a | 0.619 |
Table 10 Effects of P. giganteum on ileum cytokines of finishing Congjiang Xiang pigs (pg·mg-1 prot)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 白介素-1β Interleukin-1β (IL-1β) | 728.76±85.09a | 586.90±46.46a | 723.17±58.09a | 0.223 |
| 白介素-6 Interleukin-6 (IL-6) | 1032.87±125.42a | 834.07±41.41a | 1043.27±81.61a | 0.219 |
| 白介素-10 Interleukin-10 (IL-10) | 313.59±33.99a | 263.04±11.29a | 332.65±22.38a | 0.156 |
| 肿瘤坏死因子-α Tumor necrosis factor-α (TNF-α) | 237.39±23.15a | 196.57±4.92a | 246.83±18.39a | 0.134 |
| 干扰素-γ Interferon-γ (IFN-γ) | 51.91±4.60a | 37.17±1.88b | 41.58±0.98b | 0.011 |
| 转化生长因子-β Transforming growth factor-β (TGF-β) | 1016.15±125.91a | 954.25±79.64a | 1095.24±100.36a | 0.619 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| Chao1指数Chao1 index | 1214±199.96a | 1447±99.19a | 1462±105.50a | 0.275 |
| ACE指数ACE index | 1236±211.22a | 1475±103.49a | 1490±107.29a | 0.275 |
| Shannon指数Shannon index | 5.14±0.19b | 5.86±0.10a | 5.86±0.21a | 0.026 |
Table 11 Effects of P. giganteum on Alpha diversity of cecal microorganism of finishing Congjiang Xiang pigs
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| Chao1指数Chao1 index | 1214±199.96a | 1447±99.19a | 1462±105.50a | 0.275 |
| ACE指数ACE index | 1236±211.22a | 1475±103.49a | 1490±107.29a | 0.275 |
| Shannon指数Shannon index | 5.14±0.19b | 5.86±0.10a | 5.86±0.21a | 0.026 |
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 门水平 Phylum level | ||||
| 厚壁菌门Firmicutes | 75.47±2.09a | 74.64±2.02a | 79.56±2.23a | 0.275 |
| 拟杆菌门Bacteroidota | 14.43±2.06a | 19.77±2.26a | 14.52±0.90a | 0.145 |
| 螺旋体门Spirochaetota | 7.18±0.92a | 3.49±1.36a | 3.63±1.40a | 0.085 |
| 放线菌门Actinobacteriota | 1.21±0.57a | 1.07±0.38a | 0.74±0.15a | 0.914 |
| 变形菌门Proteobacteria | 1.03±0.49a | 0.28±0.12a | 0.77±0.25a | 0.281 |
| 属水平Genus level | ||||
| 乳杆菌属Lactobacillus | 12.72±4.50a | 9.71±3.80a | 8.62±6.11a | 0.651 |
| 链球菌属Streptococcus | 9.01±3.70a | 1.97±0.56b | 1.10±0.23b | 0.021 |
| 毛螺菌科未分类菌属Unclassified_f__Lachnospiraceae | 7.56±1.67a | 11.30±1.30a | 13.63±1.36a | 0.065 |
| UCG-005 | 6.84±1.82a | 8.67±0.67a | 10.50±1.17a | 0.230 |
| 密螺旋体属Treponema | 6.96±0.93a | 3.36±1.36a | 3.47±1.36a | 0.085 |
| Norank_f__p-251-o5 | 4.44±1.73a | 4.84±1.04a | 3.10±0.47a | 0.533 |
| 狭义梭菌属1 Clostridium_sensu_stricto_1 | 5.63±1.09a | 2.97±0.71a | 3.30±1.32a | 0.108 |
| 克里斯滕森菌科R-7群Christensenellaceae_R-7_group | 3.20±0.61a | 2.21±0.22a | 3.51±0.41a | 0.164 |
| 普雷沃菌科_UCG-003菌属Prevotellaceae_UCG-003 | 3.19±2.37a | 1.44±0.21a | 1.12±0.26a | 0.717 |
| 土孢杆菌属Terrisporobacter | 3.03±0.36a | 2.83±0.33a | 3.86±0.61a | 0.497 |
Table 12 Relative abundance of cecal dominant phyla and genera in finishing Congjiang Xiang pigs (%)
项目 Items | 对照组 Control group | 试验Ⅰ组 Experimental group Ⅰ | 试验Ⅱ组 Experimental group Ⅱ | P值 P-value |
|---|---|---|---|---|
| 门水平 Phylum level | ||||
| 厚壁菌门Firmicutes | 75.47±2.09a | 74.64±2.02a | 79.56±2.23a | 0.275 |
| 拟杆菌门Bacteroidota | 14.43±2.06a | 19.77±2.26a | 14.52±0.90a | 0.145 |
| 螺旋体门Spirochaetota | 7.18±0.92a | 3.49±1.36a | 3.63±1.40a | 0.085 |
| 放线菌门Actinobacteriota | 1.21±0.57a | 1.07±0.38a | 0.74±0.15a | 0.914 |
| 变形菌门Proteobacteria | 1.03±0.49a | 0.28±0.12a | 0.77±0.25a | 0.281 |
| 属水平Genus level | ||||
| 乳杆菌属Lactobacillus | 12.72±4.50a | 9.71±3.80a | 8.62±6.11a | 0.651 |
| 链球菌属Streptococcus | 9.01±3.70a | 1.97±0.56b | 1.10±0.23b | 0.021 |
| 毛螺菌科未分类菌属Unclassified_f__Lachnospiraceae | 7.56±1.67a | 11.30±1.30a | 13.63±1.36a | 0.065 |
| UCG-005 | 6.84±1.82a | 8.67±0.67a | 10.50±1.17a | 0.230 |
| 密螺旋体属Treponema | 6.96±0.93a | 3.36±1.36a | 3.47±1.36a | 0.085 |
| Norank_f__p-251-o5 | 4.44±1.73a | 4.84±1.04a | 3.10±0.47a | 0.533 |
| 狭义梭菌属1 Clostridium_sensu_stricto_1 | 5.63±1.09a | 2.97±0.71a | 3.30±1.32a | 0.108 |
| 克里斯滕森菌科R-7群Christensenellaceae_R-7_group | 3.20±0.61a | 2.21±0.22a | 3.51±0.41a | 0.164 |
| 普雷沃菌科_UCG-003菌属Prevotellaceae_UCG-003 | 3.19±2.37a | 1.44±0.21a | 1.12±0.26a | 0.717 |
| 土孢杆菌属Terrisporobacter | 3.03±0.36a | 2.83±0.33a | 3.86±0.61a | 0.497 |
| 1 | Liao X D, Zhang L Y, Lv L, et al. Survey on distribution of mineral contents in feedstuffs for livestock and poultry in China. Scientia Agricultura Sinica, 2019, 52(11): 1970-1972. |
| 廖秀冬, 张丽阳, 吕林, 等. 我国畜禽饲料资源中矿物元素含量分布的调查. 中国农业科学, 2019, 52(11): 1970-1972. | |
| 2 | Anon. The Ministry of Agriculture and Rural Affairs has issued a work plan to promote the reduction and substitution of corn and soybean meal in feed. BeiFang MuYe, 2021(7): 5. |
| 佚名. 农业农村部发布工作方案推进饲料中玉米、豆粕减量替代. 北方牧业, 2021(7): 5. | |
| 3 | Li Y S, Zhou Y, Zhao X D, et al. Application of Pennisetum giganteum in livestock breeding. Feed Research, 2020, 43(7): 146-148. |
| 李玉帅, 周岩, 赵晓登, 等. 巨菌草在畜禽养殖中的应用. 饲料研究, 2020, 43(7): 146-148. | |
| 4 | Huang X F, Meng Q X, Yang J X, et al. Effects of replacing the corn silage with Puelia sinese Roxb silage on production performance, composition of milk and economic benefits in dairy cows. China Animal Husbandry & Veterinary Medicine, 2017, 44(7): 1997-2002. |
| 黄晓飞, 孟庆翔, 杨甲轩, 等. 巨菌草青贮替代全株玉米青贮对奶牛生产性能、乳成分和经济效益的影响. 中国畜牧兽医, 2017, 44(7): 1997-2002. | |
| 5 | Deng X W, Luo N, Sun Z H, et al. Application of Pennisetum giganteum in Phasianus colchicu fodder in northern Shaanxi. Chinese Wild Plant Resources, 2021, 40(3): 28-32. |
| 邓新为, 罗娜, 孙志宏, 等. 陕北地区巨菌草在七彩山鸡饲料中的应用研究. 中国野生植物资源, 2021, 40(3): 28-32. | |
| 6 | Deng X W, Xu Y, Liu X, et al. Effects of Pennisetum giganteum diet on growth performance, serum, antioxidant capacity and intestinal flora of Phasianus colchicus. Journal of Domestic Animal Ecology, 2022, 43(3): 20-24. |
| 邓新为, 徐源, 刘夏, 等. 巨菌草饲粮对七彩山鸡生长性能、血清抗氧化能力和肠道菌群的影响. 家畜生态学报, 2022, 43(3): 20-24. | |
| 7 | Qiu B W, Deng X W, Hao L L, et al. Effect of Pennisetum giganteum on growth performance, immune organs and intestinal villi of colorful pheasants. Feed Research, 2020, 43(3): 25-29. |
| 裘博文, 邓新为, 郝柳柳, 等. 巨菌草对七彩山鸡生长性能、免疫器官以及肠绒毛形态的影响. 饲料研究, 2020, 43(3): 25-29. | |
| 8 | Zhu X F, Xu H Q, Chen W, et al. Cloning, expression and bioinformatics analysis of IGF-1 and IGF-2 genes in Congjiangxiang pigs (Sus scrofa). Journal of Agricultural Biotechnology, 2019, 27(8): 1382-1391. |
| 朱晓锋, 许厚强, 陈伟, 等. 从江香猪IGF-1和IGF-2基因的克隆、表达及生物信息学分析. 农业生物技术学报, 2019, 27(8): 1382-1391. | |
| 9 | Tan X G. Report on Yongsheng breeding experiment of Cong Jiangxiang pigs. The Chinese Livestock and Poultry Breeding, 2018, 14(3): 67-68. |
| 谭锡国. 从江香猪永胜养殖试验报告. 中国畜禽种业, 2018, 14(3): 67-68. | |
| 10 | Raj S, Skiba G, Sobol M, et al. Body composition and fatty acid profile of musculus longissimus dorsi in growing pigs fed a diet supplemented with grass meal. Journal of Animal and Feed Sciences, 2015, 24(4): 315-322. |
| 11 | Wang J B. Effects of partial substitution of concentrate with forage on growth performance, carcass characteristic and digestive functions in growing-finishing pigs. Hangzhou: Zhejiang University, 2001. |
| 王进波. 青绿饲料替代部分精料对生长肥育猪生长性能、胴体特性及消化机能的影响. 杭州: 浙江大学, 2001. | |
| 12 | State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Nutrient requirements of swine: GB/T 39235-2020. Beijing: Standards Press of China, 2020. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 猪营养需要量: GB/T 39235-2020. 北京: 中国标准出版社, 2020. | |
| 13 | State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Operating procedures of livestock and poultry slaughtering-Pig: GB/T 17236-2019. Beijing: Standards Press of China, 2019. |
| 国家市场监督管理总局, 中国国家标准化管理委员会. 畜禽屠宰操作规程 生猪: GB/T 17236-2019. 北京: 中国标准出版社, 2019. | |
| 14 | Ministry of Agriculture of the People’s Republic of China. Technical regulation for testing of carcass traits in lean-type pig: NY/T 825-2004. Beijing: China Agriculture Press, 2004. |
| 中华人民共和国农业部. 瘦肉型猪胴体性状测定技术规范: NY/T 825-2004. 北京: 中国农业出版社, 2004. | |
| 15 | Wang H S. Effects of low-protein diets supplemented with different nitrogen nutrients on mentabolism and immunity and their underlying mechanism on barrier and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2020. |
| 王会松. 低蛋白日粮添加不同氮营养素对猪代谢和免疫的影响及其肠道黏膜屏障和微生物的机制. 南京: 南京农业大学, 2020. | |
| 16 | Xu J M. Effects of sodium buryrate on mucosal immune, intestine development and microbiota in pigs. Nanjing: Nanjing Agricultural University, 2017. |
| 徐菊美. 丁酸钠对猪肠黏膜免疫、肠道发育和菌群区系的影响. 南京: 南京农业大学, 2017. | |
| 17 | Xia Z. Effects of liquid feeding of fermented feed on growth performance and intestinal health in weaned piglets. Chengdu: Sichuan Agricultural University, 2021. |
| 夏邹. 发酵饲料液态饲喂对断奶仔猪生长性能和肠道健康的影响. 成都: 四川农业大学, 2021. | |
| 18 | Lin Z X, Yang G F, Zhang M, et al. Dietary supplementation of mixed organic acids improves growth performance, immunity, and antioxidant capacity and maintains the intestinal barrier of Ira rabbits. Animals, 2023, 13(19): 3140. |
| 19 | Xu J Y, Wang Z L, Zhang W B, et al. Effects of Pennisetum giganteum feed on growth performance, slaughter performance and meat quality of black pigs. Henan Journal of Animal Husbandry and Veterinary Medicine, 2023, 44(11): 3-6. |
| 徐佳玉, 王志力, 张伟彬, 等. 巨菌草饲料对黑猪生长性能、屠宰性能和肉质的影响. 河南畜牧兽医, 2023, 44(11): 3-6. | |
| 20 | Zhu L, Wang X. Effects of substitution of concentrate with ryegrass on the growth performance and substance metabolism of growing-finishing pigs. Veterinary Orientation, 2021(14): 231. |
| 朱雷, 王鑫. 黑麦草替代精料对生长肥育猪生长性能及物质代谢的影响. 兽医导刊, 2021(14): 231. | |
| 21 | Xiang Y R. Experimental study on the effect of partial substitution of concentrate with Pennisetum sinese Roxb in pig. Zhejiang Journal Animal Science and Veterinary Medicine, 2012, 37(3): 21-22. |
| 项延润. 皇竹草替代部分精料喂猪的效果试验. 浙江畜牧兽医, 2012, 37(3): 21-22. | |
| 22 | Wallenbecka A, Rundgrenb M, Prestob M. Inclusion of grass/clover silage in diets to growing/finishing pigs-Influence on performance and carcass quality. Acta Agriculturae Scandinavica, Section A-Animal Science, 2015, 3(64): 145-153. |
| 23 | Zhang S, Li C X, Wang P F, et al. Effects of alfalfa processing dust on growth performance, carcass traits, meat quality and economic efficiency of fattening pigs. Chinese Journal of Animal Nutrition, 2023, 35(5): 2859-2866. |
| 张森, 李成旭, 王鹏飞, 等. 苜蓿加工粉尘对育肥猪生长性能、胴体性状、肉品质及经济效益的影响. 动物营养学报, 2023, 35(5): 2859-2866. | |
| 24 | Chen D M, Chen Y, Zhang L. Effect of Pennisetum giganteum powder on growth performance and nutrients availability of Sichuan white goose. China Poultry, 2021, 43(9): 59-64. |
| 陈冬梅, 陈耀, 张龙. 巨菌草粉对四川白鹅生长性能和养分利用率的影响. 中国家禽, 2021, 43(9): 59-64. | |
| 25 | Zhao H Q. Effects of Pennisetum giganteum feed on growth index and fat related genes expression in pheasant. Yan’an: Yan’an University, 2018. |
| 赵鹤青. 巨菌草饲料对七彩山鸡生长指标及脂肪相关基因表达的研究. 延安: 延安大学, 2018. | |
| 26 | Kambashi B, Boudry C, Picron P, et al. Forage plants as an alternative feed resource for sustainable pig production in the tropics: a review. Animal, 2014, 8(8): 1298-1311. |
| 27 | Zhao J. Studies on feed grain replaced by alfafa meal in diet of finishing pigs and economic benifit analysis. Lanzhou: Lanzhou University, 2014. |
| 赵静. 苜蓿草粉替代育肥猪饲料粮生物学及经济学研究. 兰州: 兰州大学, 2014. | |
| 28 | Olukosi O A, van Kuijk S, Han Y. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science, 2018, 97(11): 3891-3898. |
| 29 | Zhang Y M, Liu Y, Li W T, et al. Carcass performance and meat quality analysis of Rizhao large white pigs (Sus scrofa) and the expression of MyHC genes in muscle tissues. Journal of Agricultural Biotechnology, 2018, 26(4): 616-625. |
| 张艳敏, 刘颖, 李文通, 等. 日照大白猪胴体性能和肉品质的测定及MyHC基因在肌肉组织中的表达分析. 农业生物技术学报, 2018, 26(4): 616-625. | |
| 30 | Galassi G, Malagutti L, Matteo C G. Growth and slaughter performance, nitrogen balance and ammonia emission from slurry in pigs fed high fibre diets. Italian Journal of Animal Science, 2007, 6(3): 227-239. |
| 31 | Xue L Z, Wang K R, Wang H, et al. Sources and regulation of intestinal oxidative stress in broilers. China Feed, 2021(18): 5-8. |
| 薛凌壮, 王开荣, 王红, 等. 肉鸡肠道氧化应激的来源与调控. 中国饲料, 2021(18): 5-8. | |
| 32 | Li W X. Effects of dietary crude fiber level on growth performance, digestion and metabolism and intestinal health of Mashen pigs and Duroc×Landrace×Large. Jinzhong: Shanxi Agricultural University, 2021. |
| 李文新. 日粮粗纤维水平对马身猪和杜长大猪生长性能、消化代谢和肠道发育的影响. 晋中: 山西农业大学, 2021. | |
| 33 | Ngoc T T B, Len N T, Lindberg J E. Impact of fibre intake and fibre source on digestibility, gut development, retention time and growth performance of indigenous and exotic pigs. Animal, 2013, 7(5): 736-745. |
| 34 | Raj S, Skiba G, Weremko D, et al. Growth of the gastrointestinal tract of pigs during realimentation following a high-fibre diet. Journal of Animal and Feed Sciences, 2005, 14(4): 675-684. |
| 35 | Chen J L, Yan J C. Application and research of dietary fiber in pig production. Feed and Animal Husbandry, 2008(6): 50-53. |
| 陈金龙, 闫景彩. 日粮纤维在猪生产中的应用与研究. 饲料与畜牧, 2008(6): 50-53. | |
| 36 | Wu W D, Xie J J, Zhu L Y, et al. Research progress of dietary fiber affects gut health of pigs. Chinese Journal of Animal Nutrition, 2017, 29(3): 739-748. |
| 吴维达, 解竞静, 朱丽媛, 等. 饲粮纤维影响猪肠道健康的研究进展. 动物营养学报, 2017, 29(3): 739-748. | |
| 37 | Lin G Z, Che D S, Liu B, et al. Research progress on the mechanism of dietary fiber regulating intestinal tract health in pigs. Feed Industry, 2020, 41(8): 26-32. |
| 林光智, 车东升, 刘博, 等. 日粮纤维调控猪肠道健康机制的研究进展. 饲料工业, 2020, 41(8): 26-32. | |
| 38 | Tiwari U P, Chen H Y, Kim S W, et al. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 2018, 245(10): 77-90. |
| 39 | Kwon O, Han T S, Son M Y. Intestinal morphogenesis in development, regeneration, and disease: The potential utility of intestinal organoids for studying compartmentalization of the crypt-villus structure. Frontiers in Cell and Developmental Biology, 2020, 8(2): 593969. |
| 40 | Dempsey P J. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochimica et Biophysica Acta-Molecular Cell Research, 2017, 1864(11): 2228-2239. |
| 41 | Wei X B, Zhang L L, Ma G, et al. Effects of yeasts on intestinal villus, crypt and flora in pigs. Feed Industry, 2016, 37(4): 61-64. |
| 卫旭彪, 张璐璐, 马广, 等. 酵母菌对猪肠道绒毛、隐窝及菌群的影响. 饲料工业, 2016, 37(4): 61-64. | |
| 42 | Yang P, Zhao J B. Variations on gut health and energy metabolism in pigs and humans by intake of different dietary fibers. Food Science & Nutrition, 2021, 9(8): 4639-4654. |
| 43 | Adams S, Kong X, Che D S, et al. Effects of dietary supplementation of alfafa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets. Applied Ecology and Environmental Research, 2019, 17(2): 2275-2295. |
| 44 | Zhao Y, Liu C, Niu J, et al. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. Journal of Animal Science, 2023, 101(1): 1-16. |
| 45 | Wu X Y, Chen D W, Yu B, et al. Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition, 2018, 51/52: 20-28. |
| 46 | Ren M M, Yang H, Xiang Y, et al. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecun of Jinhua pigs. Chinese Journal of Animal Nutrition, 2020, 32(6): 2575-2585. |
| 任敏敏, 杨华, 项云, 等. 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响. 动物营养学报, 2020, 32(6): 2575-2585. | |
| 47 | Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences, 2021, 22(12): 6434. |
| 48 | Janssen J A M J L. New insights from IGF-IR stimulating activity analyses: Pathological considerations. Cells, 2020, 9(4): 862. |
| 49 | Kieffer D A, Martin R J, Adams S H. Impact of dietary fibers on nutrient management and detoxification organs: Gut, liver, and kidneys. Advances in Nutrition, 2016, 7(6): 1111-1121. |
| 50 | Rowland K J, Brubaker P L. The “cryptic” mechanism of action of glucagon-like peptide-2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(1): G1-G8. |
| 51 | Diao H, Jiao A R, Yu B, et al. Beet pulp: An alternative to improve the gut health of growing pigs. Animals, 2020, 10(10): 1860. |
| 52 | Schedle K, Pfaffl M W, Plitzner C, et al. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model. Archives of Animal Nutrition, 2008, 62(6): 427-438. |
| 53 | He J, Xie H M, Chen D W, et al. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60(2): 715-727. |
| 54 | Tappenden K A, Albin D M, Bartholome A L, et al. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. The Journal of Nutrition, 2003, 133(11): 3717-3720. |
| 55 | Guo Y X, Wang B Y, Wang T T, et al. Biological characteristics of IL-6 and related intestinal diseases. International Journal of Biological Sciences, 2021, 17(1): 204-219. |
| 56 | Lücke J, Heinrich F, Malsy J, et al. Intestinal IL-1β plays a role in protecting against SARS-CoV-2 infection. The Journal of Immunology, 2023, 211(6): 1052-1061. |
| 57 | Liu T T, Chen Y K, Adil M, et al. In silico identification of natural product-based inhibitors targeting IL-1beta/IL-1R protein-protein interface. Molecules, 2023, 28(13): 4885. |
| 58 | Ding C H, Cicuttini F, Li J, et al. Targeting IL-6 in the treatment of inflammatory and autoimmune diseases. Expert Opinion on Investigational Drugs, 2009, 18(10): 1457-1466. |
| 59 | Ye D M, Ma I, Ma T Y. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006, 290(3): G496-G504. |
| 60 | Wang L F, Zhu J M, Shan S F, et al. Repression of interferon-γ expression in T cells by prospero related Homeobox protein. Cell Research, 2008, 18(9): 911-920. |
| 61 | Jorgovanovic D, Song M J, Wang L P, et al. Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research, 2020, 8(1): 49. |
| 62 | Minshawi F, Lanvermann S, McKenzie E, et al. The generation of an engineered interleukin-10 protein with improved stability and biological function. Frontiers in Immunology, 2020, 11(2): 1794. |
| 63 | Zhang Q, Yu N W, Lee C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. American Journal of Clinical and Experimental Urology, 2014, 2(2): 149-155. |
| 64 | Chen H, Chen D W, Qin W, et al. Wheat bran components modulate intestinal bacteria and gene expression of barrier function relevant proteins in a piglet model. International Journal of Food Sciences and Nutrition, 2017, 68(2): 65-72. |
| 65 | Ding S J, Cheng Y T, Azad M, et al. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs. Frontiers in Immunology, 2023, 14(2): 1104837. |
| 66 | Weber T E, Ziemer C J, Kerr B J. Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. Journal of Animal Science, 2008, 86(4): 871-881. |
| 67 | Liu L X, Li Q Q, Yang Y J, et al. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 2021, 8(2): 736739. |
| 68 | Tian Y, Yang L Y, Huang X G, et al. Reseach progress of fecal microbiota transplantation in improving intestinal barrier function in pigs. Chinese Journal of Animal Nutrition, 2023, 35(4): 2072-2080. |
| 田玉, 杨玲媛, 黄兴国, 等. 粪菌移植改善猪肠道屏障功能的研究进展. 动物营养学报, 2023, 35(4): 2072-2080. | |
| 69 | Wang J, Ji H F. Tight junction proteins in the weaned piglet intestine: Roles and regulation. Current Protein & Peptide Science, 2019, 20(7): 652-660. |
| 70 | Heinemann U, Schuetz A. Structural features of tight-junction proteins. International Journal of Molecular Sciences, 2019, 20(23): 6020. |
| 71 | Kuo W T, Odenwald M A, Turner J R, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Annals of the New York Academy of Sciences, 2022, 1514(1): 21-33. |
| 72 | Garcia H V, Quiros M, Nusrat A. Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Annals of the New York Academy of Sciences, 2017, 1397(1): 66-79. |
| 73 | Zhou B W, Moodie A, Blanchard A A, et al. Claudin 1 in breast cancer: New insights. Journal of Clinical Medicine, 2015, 4(12): 1960-1976. |
| 74 | Kaminsky L W, Al-Sadi R, Ma T Y. IL-1β and the intestinal epithelial tight junction barrier. Frontiers in Immunology, 2021, 12(2): 767456. |
| 75 | Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain infection by HIV-1. Fluids and Barriers of the CNS, 2023, 20(1): 73. |
| 76 | Liu J H, Luo Y H, Kong X F, et al. Influences of wheat bran fiber on growth performance, nutrient digestibility, and intestinal epithelium functions in Xiangcun pigs. Heliyon, 2023, 9(7): e17699. |
| 77 | Chen H, Mao X B, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 2013, 110(10): 1837-1848. |
| 78 | Liu J H, Luo Y H, Kong X F, et al. Effects of dietary fiber on growth performance, nutrient digestibility and intestinal health in different pig breeds. Animals, 2022, 12(23): 3298. |
| 79 | Hu R Q, Li S W, Diao H, et al. The interaction between dietary fiber and gut microbiota, and its effect on pig intestinal health. Frontiers in Immunology, 2023, 14(2): 1095740. |
| 80 | Keto L, Tsitko I, Perttilä S, et al. Effect of silage juice feeding on pig production performance, meat quality and gut microbiome. Livestock Science, 2021, 254(12): 104728. |
| 81 | Yu M, Gao T, Liu Z, et al. Effects of dietary supplementation with high fiber (stevia residue) on the fecal flora of pregnant sows. Animals, 2020, 10(12): 2247. |
| 82 | Gao C M, Wen Y, Yi X F, et al. The effect of different fiber source diets on the gut microbiota of fattening pigs. Feed Research, 2022, 45(8): 27-31. |
| 高崇敏, 文裕, 易显凤, 等. 不同纤维源饲粮对育肥猪肠道微生物菌群的影响. 饲料研究, 2022, 45(8): 27-31. | |
| 83 | Li Z Q, Zhao Y J, Wang H, et al. High-fibre diets regulate antioxidative capacity and promote intestinal health by regulating bacterial microbiota in growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 108(2): 357-365. |
| 84 | Zheng X R, Zhuo M X, Ji J L, et al. Characteristics of serum immune indices and intestinal microbiota of Wannan black pigs at different growth stages. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3770-3783. |
| 郑先瑞, 卓明雪, 纪金丽, 等. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析. 畜牧兽医学报, 2023, 54(9): 3770-3783. | |
| 85 | Xue X X, Wang L, Shen W J, et al. Effect of different dietary energy-protein ratios on growth performance,body size and fecal microflora of duality of ‘Berkshire pigs×Bamei pigs’. Feed Research, 2022, 45(4): 25-31. |
| 薛星星, 王磊, 沈文娟, 等. 日粮不同能蛋比对“巴×八”二元猪生长性能、体尺和粪便微生物区系的影响. 饲料研究, 2022, 45(4): 25-31. | |
| 86 | Li Z Q, Zhang F, Zhao Y R, et al. Effects of different starch diets on growth performance, intestinal health and faecal microbiota of growing pigs. Journal of Animal Physiology and Animal Nutrition, 2023, 107(4): 1043-1053. |
| 87 | Zhao J B, Liu P, Wu Y, et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. Journal of Agricultural and Food Chemistry, 2018, 66(30): 7995-8004. |
| 88 | Li S T, Zhang C, Gu Y Y, et al. Lean rats gained more body weight than obese ones from a high-fibre diet. British Journal of Nutrition, 2015, 114(8): 1188-1194. |
| 89 | Li H, Ma L T, Li Z Q, et al. Evolution of the gut microbiota and its fermentation characteristics of Ningxiang pigs at the young stage. Animals, 2021, 11(3): 638. |
| 90 | Su Y, Yao W, Perez-Gutierrez O N, et al. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology, 2008, 66(3): 546-555. |
| 91 | Gao Q T, Sun G M, Duan J J, et al. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Frontiers in Microbiology, 2022, 13(1): 969524. |
| 92 | El K A, Armougom F, Gordon J I, et al. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11(7): 497-504. |
| 93 | Pu G, Li P H, Du T R, et al. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig. Frontiers in Microbiology, 2020, 11(1): 533. |
| 94 | Petry A L, Patience J F, Huntley N F, et al. Xylanase supplementation modulates the microbiota of the large intestine of pigs fed corn-based fiber by means of a stimbiotic mechanism of action. Frontiers in Microbiology, 2021, 12(2): 619970. |
| [1] | Sheng-wei JIN, Yin-cang HAN, Yong-gang SUN, Wei-qin DING, Ya-qian LIU, Zeng-yuan QI, Jian-qiang ZHOU. Effects of different feeding methods on growth performance and blood physiological and biochemical indexes of yaks [J]. Acta Prataculturae Sinica, 2025, 34(1): 215-225. |
| [2] | Dong-yao SU, Yong-liang LI, Qing DONG, Xin-nian ZHAO, Xiao-yu LI, Xiao-dong JIN, Ya-nan WANG, Shu-jun TIAN, Yu-hong GAO, Xin-sheng SUN. Effects of a fermentation bed on the growth, digestion, and blood physiological and biochemical indices of suckling Hu lambs [J]. Acta Prataculturae Sinica, 2024, 33(8): 86-97. |
| [3] | Di SHEN, Zi-ming ZENG, Kai-yue PANG, Sha-tuo CHAI, Hong-xin NIE, Yu-min LI, Yang LIAO, Xun WANG, Wei-hua HUANG, Shu-jie LIU, Ying-kui YANG, Shu-xiang WANG. Effects of low-concentrate and high-concentrate diets on yak growth performance and rumen microbiota structure [J]. Acta Prataculturae Sinica, 2024, 33(5): 155-165. |
| [4] | Rui ZHANG, Xue-jiao AN, Jian-ye LI, Zeng-kui LU, Chun-e NIU, Zhen-fei XU, Jin-xia ZHANG, Zhi-guang GENG, Yao-jing YUE, Bo-hui YANG. Comparative analysis of growth performance, meat productivity, and meat quality in Hu sheep and its hybrids [J]. Acta Prataculturae Sinica, 2024, 33(3): 186-197. |
| [5] | Hao-qian DANG, Juan-qing QIN, Yu-kang GUO, Fu ZHANG, Ying-gang WANG, Qing-hua LIU. Effects of different additives on fermentation quality of bamboo shoot shell and growth performance and rumen fermentation function of Hu Sheep [J]. Acta Prataculturae Sinica, 2023, 32(7): 135-148. |
| [6] | Zi-fan WANG, Xiao-qing ZHANG, Zhi-ming ZHONG, Xin QUAN. Effects of oat hay and oat cubes on feeding behavior and production performance of Pengbo semi-fine wool sheep [J]. Acta Prataculturae Sinica, 2023, 32(5): 171-179. |
| [7] | Ai-yu LIU, Chao WANG, Zhan-jun WU, Shou-pei ZHAO, Li-chen ZHAO, Xiao-yu LI, Wei-tao ZHANG, Le-tian WANG, Yu-hong GAO. Impact of heat stress on growth rate, serum antioxidant properties, and rumen flora in weaned lambs [J]. Acta Prataculturae Sinica, 2023, 32(4): 173-182. |
| [8] | Qian-long YANG, Qian-qian WEI, De-hui ZHAO, Xiao-lan GUO, Tie-tao ZHANG, Xiao-xu WANG, Kun BAO, Kai-ying WANG. Effects of dietary rumen-protected cysteine on growth performance, nutrient apparent digestibility and serum biochemical indexes of sika deer during weight gain [J]. Acta Prataculturae Sinica, 2023, 32(2): 148-159. |
| [9] | Zhao WANG, Jing LIU, Hao YU, Peng LI, Wei-qiang NIU, Yong-jie WAN, Yan-li ZHANG, Da-gan MAO. Effects of dietary broad bean skin on growth rate, slaughter performance, organ development and meat quality of Hu sheep [J]. Acta Prataculturae Sinica, 2023, 32(10): 162-172. |
| [10] | Xun-gang WANG, Xiao-ling ZHANG, Tian-wei XU, Yuan-yue GENG, Lin-yong HU, Na ZHAO, Hong-jin LIU, Sheng-ping KANG, Shi-xiao XU. Effects of dietary protein levels on ruminal fungal community structure and function in Tibetan sheep [J]. Acta Prataculturae Sinica, 2022, 31(2): 182-191. |
| [11] | Yang FAN, Wei-biao QI, Chong-miao ZHU, Yu-yang YIN, Sheng-yong MAO. Effects of fermented soybean residues on growth performance, apparent nutrient digestibility, meat quality and serum biochemical indexes of Hu sheep [J]. Acta Prataculturae Sinica, 2022, 31(11): 86-93. |
| [12] | Jun-hong HUO, Kang ZHAN, Qiu-sheng HUANG, Xiao-jun ZHONG, Jin-shun ZHAN, Xue-bing YAN. Effects of different concentration∶roughage ratios on growth performance, serum biochemical indices and ruminal fermentation of Nubian goats [J]. Acta Prataculturae Sinica, 2021, 30(6): 151-161. |
| [13] | Jing-ting LAN, Rui REN, Rui ZHOU, Hong-wei DAI, Wen-xiu SHU, Kai ZHU, Lue-yu WANG, Hong-wei XU, Rong-xin ZANG. Effects of feeding fermented cauliflower residue on growth performance, serum biochemical indices, intestinal tissue morphology and economic returns of nursery pigs [J]. Acta Prataculturae Sinica, 2021, 30(6): 180-189. |
| [14] | Xiao-jun SUO, Nian ZHANG, Qian-ping YANG, Hu TAO, Qi XIONG, Xiao-feng LI, Feng ZHANG, Ming-xin CHEN. Effects of peanut vine and alfalfa meal on weight gain performance, internal organ development, and blood indexes of Boer×Macheng crossbred goats [J]. Acta Prataculturae Sinica, 2021, 30(5): 146-154. |
| [15] | Yu-lei JIA, Zhen LIAO, Li-fang WANG, Jian-chao BU, Biao-sheng LIN, Hui LIN, De-wei SU, Guo-dong LU, Zhan-xi LIN. Effects of chemical fertilizer reduction and co-application with a JUNCAO nitrogen-fixing biofertilizer on growth and nutritional quality of Pennisetum giganteum and soil nutrient status [J]. Acta Prataculturae Sinica, 2021, 30(3): 215-223. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||