[1] Fan L X, Liu G B, Xue S, et al. Synergistic effects of doubled CO2 concentration and drought stress on photosynthetic characteristics of Medicago sativa. Acta Agrestia Sinica, 2014, 22(1): 85-93. 樊良新, 刘国彬, 薛萐, 等. CO2浓度倍增及干旱胁迫对紫花苜蓿光合生理特性的协同影响. 草地学报, 2014, 22(1): 85-93. [2] Ghotbi-Ravandi A A, Shahbazi M, Shariati M, et al. Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible barley (Hordeum vulgare L.) Genotypes. Journal of Agronomy & Crop Science, 2015, 200(6): 403-415. [3] Jaleel C A, Riadh K, Gopi R, et al. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum, 2009, 31(3): 427-436. [4] Wendehenne D, Pugin A, Klessig D F.Nitric oxide comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6(4): 177-183. [5] Beligni M V, Lamattina L.Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 2000, 210(2): 215-221. [6] Procházková D, Haisel D, Wilhelmová N, et al. Effects of exogenous nitric oxide on photosynthesis. Photosynthetica, 2013, 51(4): 483-489. [7] Hao G P, Xing Y, Zhang J H.Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling. Journal of Integrative Plant Biology, 2008, 50(4): 435-442. [8] Lamotte O, Courtois C, Dobrowolska G, et al. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells. Free Radical Biology & Medicine, 2006, 40(8): 1369-1376. [9] Zhang Y Y, Liu Y L.Source and function of nitric oxide in plants. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(5):921-929. 张艳艳, 刘友良. 一氧化氮在植物体内的来源和功能. 西北植物学报, 2004, 24(5): 921-929. [10] Khan M N, Mohammad F, Mobin M, et al.Tolerance of plants to abiotic stress: a role of nitric oxide and calcium. Switzerland: Springer International Publishing, 2014: 225-242. [11] Liu J X, Wang J C, Wang R J, et al. Exogenous nitric oxide elevated alkali tolerance of Avena nuda seedlings. Acta Prataculturae Sinica, 2015, 24(8): 110-117. 刘建新, 王金成, 王瑞娟, 等. 外源一氧化氮提高裸燕麦幼苗的耐碱性. 草业学报, 2015, 24(8): 110-117. [12] Ozkan D, Kara P, Kerman K, et al. DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry, 2002, 58(1): 119-126. [13] Kawabata A, Umeda N, Takagi H.L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway. British Journal of Pharmacology, 1993, 109(1): 73-79. [14] Kaczmarek M, Fedorowicz-Strońska O, Głowacka K, et al. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum, 2017, 39(1): 41. [15] Zottini M, Costa A, De Michele R, et al. Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 2007, 58(6): 1397-1405. [16] Shi J, Fu X Z, Peng T, et al. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 2010, 30(7): 914-922. [17] Chen Y H, Kao C H.Calcium is involved in nitric oxide-and auxin-induced lateral root formation in rice. Plant Cell Reports, 2012, 249: 187-195. [18] Yi Q, Wei X H, Qiang X, et al. Investigation into the mechanism of NO-mediated Ca2+ signaling during seed germination and antioxidation in Medicago sativa under drought stress. Acta Prataculturae Sinica, 2016, 25(11): 57-65. 弋钦, 魏小红, 强旭, 等. NO介导的Ca2+信号在干旱胁迫下紫花苜蓿种子萌发及抗氧化酶中的传导作用研究. 草业学报, 2016, 25(11): 57-65. [19] Zou Q.Guide of plant physiological experiments. Beijing: China Agricultural Press, 2000: 72-74. 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 72-74. [20] Liu W Y, Yang H W, Wei X H, et al. Effects of exogenous nitric oxide on seed germination, physiological characteristics and active oxygen metabolism of Medicago truncatula under NaCl stress. Acta Prataculturae Sinica, 2015, 24(2): 85-95. 刘文瑜, 杨宏伟, 魏小红, 等. 外源NO调控盐胁迫下蒺藜苜蓿种子萌发生理特性及抗氧化酶的研究. 草业学报, 2015, 24(2): 85-95. [21] Ji X, Liu G, Liu Y, et al. The bZIP protein from Tamarix hispida, ThbZIP1, is ACGT elements binding factor that enhances abiotic stress signaling in transgenic Arabidopsis. BMC Plant Biology, 2013, 13(3): 1-13. [22] Deuner S, Alves J D, Zanandrea I, et al. Stomatal behavior and components of the antioxidative system in coffee plants under water stress. Scientia Agricola, 2011, 68(1): 77-85. [23] Aebi H.Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. [24] Zhang L, Zhao X, Wang Y J, et al. Crosstalk of NO with Ca2+ in stomatal movement in Vicia faba guard cells. Acta Agronomica Sinica, 2009, 35(8): 1491-1499. 张霖, 赵翔, 王亚静, 等. NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35(8): 1491-1499. [25] Gao H B, Chen G L, Han L H, et al. Calcium influence on chilling resistance of grafting eggplant seedling. Journal of Plant Nutrition, 2005, 27(8): 1327-1339. [26] Jeandroz S, Lamotte O, Astier J, et al. There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiology, 2013, 163(2): 459-470. [27] Delledonne M, Xia Y J, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588. [28] Astier J, Besson-Bard A, Wawer L, et al. Nitric oxide signaling in plant: cross-talk with Ca2+, protein kinases and reactive oxygen species. Annual Plant Reviews, 2011, 42: 147-170. [29] Silveira N M, Frungillo L, Marcos F C, et al. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta, 2016, 244(1): 181-190. [30] Shao R X, Li L L, Zhang H F, et al. Effects of exogenous nitric oxide on photosynthesis if maize seedlings under drought stress. Scientia Agriculture Sinica, 2016, 49(2): 251-259. 邵瑞新, 李蕾蕾, 郑会芳, 等. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响. 中国农业科学, 2016, 49(2): 251-259. [31] Liu J X, Wang J C, Wang R J, et al. Effects of exogenous nitric oxide on photosynthetic and bioluminescent characteristics in ryegrass seedling under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 210-216. 刘建新, 王金成, 王瑞娟, 等. 外源一氧化氮对渗透胁迫下黑麦草幼苗光合和生物发光特性的影响. 草业学报, 2013, 22(1): 210-216. [32] Sang J, Zhang A, Lin F, et al. Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Research, 2008, 18(5): 577-588. [33] Fan Q J, Liu J H.Nitric oxide is involved in dehydration/drought tolerance in poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Reports, 2012, 31(1): 145-154. [34] Xu Z Z, Zhou G S.Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 2007, 59(12): 3317-3325. [35] Li X G, Meng Q W, Jiang G Q, et al. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica, 2003, 41(2): 259-265. [36] Yang Z X, Ding Y F, Zhang X Q, et al. Impacts of alternaria stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances. Acta Ecologica Sinica, 2015, 35(12): 4146-4154. 杨志晓, 丁燕芳, 张小泉, 等. 赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响. 生态学报, 2015, 35(12): 4146-4154. [37] Farquhar G D, Sharkey T D.Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(3): 317-345. [38] Mu L, He C G, Jiang H, et al. The effects of drought and heat stress on the photosynthetic characteristics of alfalfa. Acta Agrestia Sinica, 2014, 22(3): 550-555. 牟兰, 何承刚, 姜华, 等. 干热胁迫对紫花苜蓿光合特性的影响. 草地学报, 2014, 22(3): 550-555. [39] Lu C M, Qiu N W, Wang B S, et al. Salinity treatment shows no effects on photosystem Ⅱphotochemistry, but increase the resistance of photosystem Ⅱ to heat stress in halophyte Suaeda salsa. Journal of Experimental Botany, 2003, 54: 851-860. [40] Hosseini Boldaji S A, Khavari-Nejad R A, Hassan Sajedi R, et al. Water availability effects on antioxidant enzyme activities, lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa L.). Acta Physiologiae Plantarum, 2012, 34(3): 1177-1186. [41] Quan W L, Liu X, Wang H Q, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 2015, 6: 1256. [42] Li X, Wu Y J, Sun L X.Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-181. 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-181. [43] Jiang Y B, Yang Y R, Zheng Q H.Effects of exogenous nitric oxide on antioxidase and chlorophyll fluorescence of seedling of alfalfa under drought stress. Agricultural Research in Arid Areas, 2008, 26(2): 65-68. 姜义宝, 杨玉荣, 郑秋红. 外源一氧化氮对干旱胁迫下苜蓿幼苗抗氧化酶活性和叶绿素荧光特性的影响. 干旱地区农业研究, 2008, 26(2): 65-68. [44] Liu Z J, Zhang X L, Bai J G, et al. Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Scientia Horticulturea, 2009, 121(2): 138-143. |