草业学报 ›› 2021, Vol. 30 ›› Issue (12): 152-160.DOI: 10.11686/cyxb2020469
• 研究论文 • 上一篇
收稿日期:
2020-10-13
修回日期:
2020-12-14
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
孙娟
作者简介:
Corresponding author. E-mail: sunjuan@qau.edu.cn基金资助:
Hui-fang YAN1(), Juan SUN1,2()
Received:
2020-10-13
Revised:
2020-12-14
Online:
2021-11-11
Published:
2021-11-11
Contact:
Juan SUN
摘要:
以高丹草种子为材料,研究不同含水量(MC,10%、12%和16%)和劣变时间(0、4、8、12、16、20、24和28 d)处理后种子活力指标(发芽率GP、发芽指数GI、活力指数VI)和幼苗生长指标(苗长SL、苗重SW、根长RL、根重RW、幼苗活力指数SVI)变化,探究含水量和劣变时间对种子活力及幼苗生长状况的影响。结果表明,随含水量由10%升高至16%,劣变4~8 d时,种子GP、GI、VI及幼苗SW、SVI均显著降低;劣变16~28 d时,尽管种子活力指标及幼苗生长指标在12%和16%MC间差异不显著,但均显著低于10%MC的相应指标。随劣变时间延长,种子GP、GI和VI降低,幼苗SL、SW、RL、RW和SVI也降低。16%MC种子的活力及幼苗生长指标在劣变8 d后已几乎降为0,而10%MC种子的GP、GI和VI在劣变28 d时仍分别保持原有水平的10.0%、14.1%和1.5%,且10%、12%和16%MC种子抗劣变时间分别为28、16和8 d,这表明含水量越高,种子活力越容易丧失,抗劣变能力也越差。此外,种子含水量、劣变时间及两者交互作用对种子活力和幼苗生长均具有极显著影响。劣变8 d处理可以较好地评价不同含水量高丹草种子的活力水平。
闫慧芳, 孙娟. 含水量和劣变时间对高丹草种子活力及幼苗生长的影响[J]. 草业学报, 2021, 30(12): 152-160.
Hui-fang YAN, Juan SUN. Effect of seed moisture content and deterioration time on seed vigor and seedling growth of Sorghum bicolor×Sorghum sudanense[J]. Acta Prataculturae Sinica, 2021, 30(12): 152-160.
图1 含水量和劣变时间对高丹草种子活力的影响不同大写字母表示相同含水量条件下不同劣变时间之间差异显著,不同小写字母表示相同劣变时间条件下不同含水量之间差异显著(P<0.05)。Different capital letters indicate significance in different deterioration time under the same moisture content condition, while different lowercase letters indicate significance in different moisture content under the same deterioration time condition (P<0.05).
Fig.1 Effect of moisture content and deterioration time on seed vigor of S. bicolor×S. sudanense seeds
指标 Index | 含水量 Moisture content (%) | 劣变时间Deterioration time | |||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | 28 d | ||
苗长 Shoot length (cm) | 10 | 7.62±0.12Aa | 7.60±0.19Aa | 6.70±0.09ABa | 6.62±0.17ABa | 5.88±0.17ABa | 6.08±0.14ABa | 4.56±0.08Ba | 5.03±0.18Ba |
12 | 7.64±0.15Aa | 7.43±0.11Aa | 6.12±0.15Ba | 6.22±0.35Ba | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 7.69±0.18Aa | 5.89±0.20Bb | 0.84±0.84Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
苗鲜重 Shoot weight (g·plant-1) | 10 | 2.46±0.06Aa | 2.54±0.07Aa | 1.99±0.09Ba | 2.08±0.09Ba | 1.72±0.06Ca | 1.34±0.10Da | 0.52±0.05Ea | 0.21±0.06Fa |
12 | 2.28±0.12Aa | 2.13±0.07Ab | 1.29±0.09Bb | 0.28±0.08Cb | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | |
16 | 2.52±0.09Aa | 0.88±0.03Bc | 0.02±0.02Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
根长 Root length (cm) | 10 | 10.85±0.25Aa | 10.10±0.21Aa | 10.47±0.35Ab | 12.00±0.55Aa | 11.42±0.07Aa | 12.70±0.55Aa | 10.58±0.42Aa | 10.78±0.67Aa |
12 | 11.08±0.19ABa | 11.79±0.87ABa | 13.86±0.11Aa | 10.86±2.71Ba | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 11.34±0.31Aa | 10.74±0.40Aa | 1.76±1.76Bc | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | |
根鲜重 Root weight (g·plant-1) | 10 | 1.97±0.05Aa | 1.79±0.03Ba | 1.47±0.08Da | 1.63±0.06Ca | 1.46±0.04Da | 1.05±0.07Ea | 0.43±0.03Fa | 0.17±0.04Ga |
12 | 1.72±0.09Ab | 1.67±0.06Aa | 0.81±0.25Bb | 0.20±0.04Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 1.86±0.06Aab | 0.70±0.04Bb | 0.02±0.02Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
幼苗活力指数 Seedling vigor index | 10 | 15.62±0.24ABab | 16.63±0.20Aa | 14.27±0.88BCa | 14.99±0.40Ba | 13.24±0.41Ca | 10.06±0.67Da | 4.47±0.49Ea | 2.50±0.41Fa |
12 | 15.07±0.45Ab | 15.19±0.41Ab | 10.58±0.82Bb | 1.49±0.51Cb | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | |
16 | 16.84±0.40Aa | 5.74±0.33Bc | 0.11±0.11Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb |
表1 不同含水量高丹草种子劣变后幼苗生长状况的变化
Table 1 Changes of seedling growth of S. bicolor×S. sudanense seeds with different moisture contents after deterioration
指标 Index | 含水量 Moisture content (%) | 劣变时间Deterioration time | |||||||
---|---|---|---|---|---|---|---|---|---|
0 d | 4 d | 8 d | 12 d | 16 d | 20 d | 24 d | 28 d | ||
苗长 Shoot length (cm) | 10 | 7.62±0.12Aa | 7.60±0.19Aa | 6.70±0.09ABa | 6.62±0.17ABa | 5.88±0.17ABa | 6.08±0.14ABa | 4.56±0.08Ba | 5.03±0.18Ba |
12 | 7.64±0.15Aa | 7.43±0.11Aa | 6.12±0.15Ba | 6.22±0.35Ba | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 7.69±0.18Aa | 5.89±0.20Bb | 0.84±0.84Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
苗鲜重 Shoot weight (g·plant-1) | 10 | 2.46±0.06Aa | 2.54±0.07Aa | 1.99±0.09Ba | 2.08±0.09Ba | 1.72±0.06Ca | 1.34±0.10Da | 0.52±0.05Ea | 0.21±0.06Fa |
12 | 2.28±0.12Aa | 2.13±0.07Ab | 1.29±0.09Bb | 0.28±0.08Cb | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | |
16 | 2.52±0.09Aa | 0.88±0.03Bc | 0.02±0.02Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
根长 Root length (cm) | 10 | 10.85±0.25Aa | 10.10±0.21Aa | 10.47±0.35Ab | 12.00±0.55Aa | 11.42±0.07Aa | 12.70±0.55Aa | 10.58±0.42Aa | 10.78±0.67Aa |
12 | 11.08±0.19ABa | 11.79±0.87ABa | 13.86±0.11Aa | 10.86±2.71Ba | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 11.34±0.31Aa | 10.74±0.40Aa | 1.76±1.76Bc | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | 0.00±0.00Bb | |
根鲜重 Root weight (g·plant-1) | 10 | 1.97±0.05Aa | 1.79±0.03Ba | 1.47±0.08Da | 1.63±0.06Ca | 1.46±0.04Da | 1.05±0.07Ea | 0.43±0.03Fa | 0.17±0.04Ga |
12 | 1.72±0.09Ab | 1.67±0.06Aa | 0.81±0.25Bb | 0.20±0.04Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
16 | 1.86±0.06Aab | 0.70±0.04Bb | 0.02±0.02Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | |
幼苗活力指数 Seedling vigor index | 10 | 15.62±0.24ABab | 16.63±0.20Aa | 14.27±0.88BCa | 14.99±0.40Ba | 13.24±0.41Ca | 10.06±0.67Da | 4.47±0.49Ea | 2.50±0.41Fa |
12 | 15.07±0.45Ab | 15.19±0.41Ab | 10.58±0.82Bb | 1.49±0.51Cb | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | 0.00±0.00Db | |
16 | 16.84±0.40Aa | 5.74±0.33Bc | 0.11±0.11Cc | 0.00±0.00Cc | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb | 0.00±0.00Cb |
变异来源 Variation source | df | 发芽率 Germination percentage | 发芽指数 Germination index | 种子活力指数 Seed vigor index | 幼苗活力指数 Seedling vigor index | ||||
---|---|---|---|---|---|---|---|---|---|
F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | ||
含水量Moisture content (M) | 2 | 1185.258 | 0.000 | 1418.872 | 0.000 | 447.685 | 0.000 | 1019.457 | 0.000 |
劣变时间Deterioration time (D) | 7 | 581.811 | 0.000 | 629.319 | 0.000 | 346.177 | 0.000 | 578.495 | 0.000 |
含水量×劣变时间M×D | 14 | 93.231 | 0.000 | 111.360 | 0.000 | 54.816 | 0.000 | 98.080 | 0.000 |
变异来源 Variation source | df | 苗长Shoot length | 苗鲜重Shoot weight | 根长Root length | 根鲜重Root weight | ||||
F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | ||
含水量Moisture content (M) | 2 | 869.393 | 0.000 | 832.754 | 0.000 | 250.826 | 0.000 | 433.338 | 0.000 |
劣变时间Deterioration time (D) | 7 | 383.773 | 0.000 | 571.041 | 0.000 | 60.143 | 0.000 | 272.568 | 0.000 |
含水量×劣变时间M×D | 14 | 71.827 | 0.000 | 69.387 | 0.000 | 32.157 | 0.000 | 33.280 | 0.000 |
表2 含水量和劣变时间对高丹草种子活力及幼苗生长特性影响的双因素方差分析
Table 2 Two-way variance analysis of moisture content and deterioration time on seed vigor and seedling growth characteristics of S. bicolor×S. sudanense
变异来源 Variation source | df | 发芽率 Germination percentage | 发芽指数 Germination index | 种子活力指数 Seed vigor index | 幼苗活力指数 Seedling vigor index | ||||
---|---|---|---|---|---|---|---|---|---|
F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | ||
含水量Moisture content (M) | 2 | 1185.258 | 0.000 | 1418.872 | 0.000 | 447.685 | 0.000 | 1019.457 | 0.000 |
劣变时间Deterioration time (D) | 7 | 581.811 | 0.000 | 629.319 | 0.000 | 346.177 | 0.000 | 578.495 | 0.000 |
含水量×劣变时间M×D | 14 | 93.231 | 0.000 | 111.360 | 0.000 | 54.816 | 0.000 | 98.080 | 0.000 |
变异来源 Variation source | df | 苗长Shoot length | 苗鲜重Shoot weight | 根长Root length | 根鲜重Root weight | ||||
F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | F值F value | 显著性Sig. | ||
含水量Moisture content (M) | 2 | 869.393 | 0.000 | 832.754 | 0.000 | 250.826 | 0.000 | 433.338 | 0.000 |
劣变时间Deterioration time (D) | 7 | 383.773 | 0.000 | 571.041 | 0.000 | 60.143 | 0.000 | 272.568 | 0.000 |
含水量×劣变时间M×D | 14 | 71.827 | 0.000 | 69.387 | 0.000 | 32.157 | 0.000 | 33.280 | 0.000 |
1 | Yan H F, Xia F S, Mao P S. Research progress of seed aging and vigor repair. Chinese Agricultural Science Bulletin, 2014, 30(3): 20-26. |
闫慧芳, 夏方山, 毛培胜. 种子老化及活力修复研究进展. 中国农学通报, 2014, 30(3): 20-26. | |
2 | Walters C, Wheeler L M, Grotenhuis J M. Longevity of seeds stored in a genebank: Species characteristics. Seed Science Research, 2005, 15(1): 1-20. |
3 | Yu H B, Liu Z, Wu Y J, et al. Selection and application of accelerated aging method for maize seeds. Jiangsu Journal of Agricultural Sciences, 2011, 27(3): 672-674. |
余海兵, 刘正, 吴跃进, 等. 玉米种子人工加速老化方法的选择. 江苏农业学报, 2011, 27(3): 672-674. | |
4 | McDonald M B. Seed deterioration: Physiology, repair and assessment. Seed Science and Technology, 1999, 27(1): 177-237. |
5 | Yang H, Liu H F, Yang H L, et al. Effect of storage temperature and moisture content on the seed’s quality of Agropyron cristatum. Pratacultural Science, 2016, 33(10): 2033-2040. |
杨晗, 刘鸿飞, 杨合龙, 等. 贮藏温度和种子含水量对扁穗冰草种子质量的影响. 草业科学, 2016, 33(10): 2033-2040. | |
6 | Lehner A, Mamadou N, Poels P, et al. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. Journal of Cereal Science, 2008, 47(3): 555-565. |
7 | Oba G C, Goneli A L D, Masetto T E, et al. Artificial drying of safflower seeds at different air temperatures: Effect on the physiological potential of freshly harvested and stored seeds. Journal of Seed Science, 2019, 41(4): 397-406. |
8 | Han J G, Mao P S. Forage seed science (The Second Edition). Beijing: China Agricultural University Press, 2011. |
韩建国, 毛培胜. 牧草种子学(第2版). 北京: 中国农业大学出版社, 2011. | |
9 | Chen Q Z, Mao P S, Kong L Q, et al. Effect of deterioration time and deterioration temperature on vigor of oat (Avena sativa L.) seeds with different moisture content. Seed, 2016, 35(11): 31-35. |
陈泉竹, 毛培胜, 孔令琪, 等. 劣变时间和温度对不同含水量燕麦种子的活力影响. 种子, 2016, 35(11): 31-35. | |
10 | Yang C, Li W S, Huang D, et al. Effect of storage temperature on vigor of sweet clover seed under different moisture content conditions. Acta Agrestia Sinica, 2016, 24(2): 251-257. |
杨超, 李宛姝, 黄丹, 等. 贮藏温度对不同含水量草木樨种子活力影响的研究. 草地学报, 2016, 24(2): 251-257. | |
11 | Zhu P, Kong L Q, Li G, et al. Effect of moisture content on physiological characteristics of Elymus sibiricus seed under different storage temperature conditions. Acta Prataculturae Sinica, 2011, 20(6): 101-108. |
朱萍, 孔令琪, 李高, 等. 贮藏温度对不同含水量老芒麦种子生理特性的影响. 草业学报, 2011, 20(6): 101-108. | |
12 | Mira S, Estrelles E, Gonzálezbenito M E. Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years of storage. Plant Biology, 2015, 17(1): 153-162. |
13 | Chen L L, Cheng H, Zhang Y Y, et al. Study on viability and physiological characteristics of Aohan alfalfa seeds with different storage time. Seed, 2017, 36(3): 23-27. |
陈玲玲, 程航, 张阳阳, 等. 不同贮藏年限敖汉苜蓿种子活力及生理特性的研究. 种子, 2017, 36(3): 23-27. | |
14 | Wang Y, Xu C B, Han L. Studies on seed vigor and physiological indicators of different storage duration Elymus sibiricus L. Seed, 2012, 31(8): 14-17. |
王勇, 徐春波, 韩磊. 不同贮藏年限老芒麦种子活力研究. 种子, 2012, 31(8): 14-17. | |
15 | Yan H F, Mao P S. Optimizing the accelerated ageing condition of Siberian wildrye seeds. Seed, 2013, 32(7): 1-6. |
闫慧芳, 毛培胜. 老芒麦种子人工加速老化条件的筛选比较. 种子, 2013, 32(7): 1-6. | |
16 | Qin Y Y, Zhang H P, Luo F C, et al. Seasonal dynamics of seed vigor and nutrient contents of Setaria sphacelata cv. Narok during natural storage. Jiangsu Agricultural Sciences, 2018, 46(15): 139-141. |
秦源源, 张桓溥, 罗富成, 等. 自然储藏过程中纳罗克非洲狗尾草种子活力及其营养含量动态. 江苏农业科学, 2018, 46(15): 139-141. | |
17 | Zhang X Y, Zhao L, Anaer, et al. Effect of controlling deterioration on physiological characteristics of Leymus chinensis seed with different moisture contents. Acta Agrestia Sinica, 2012, 20(5): 899-906. |
张晓媛, 赵利, 阿那尔, 等. 控制劣变对不同含水量羊草种子生理特性的影响. 草地学报, 2012, 20(5): 899-906. | |
18 | Wang Y Q, Yuan L. Activation of insoluble phosphorus and its absorption by Sorghum dochna, Sorghum hybrid Sudan grass, and Dolichos lablab. Acta Prataculturae Sinica, 2019, 28(10): 33-43. |
王亚麒, 袁玲. 甜高粱、高丹草和拉巴豆对难溶性磷的活化与吸收. 草业学报, 2019, 28(10): 33-43. | |
19 | Liang H, You Y L, Li Y, et al. Research progress on ensiling and feeding technology of Sorghum-sudangrass hybrids. Acta Agrestia Sinica, 2015, 23(5): 936-943. |
梁欢, 游永亮, 李源, 等. 高丹草青贮加工及饲喂利用技术研究进展. 草地学报, 2015, 23(5): 936-943. | |
20 | Yu Z, Xie R, Yu X X, et al. SSR analysis of sorghum-sudangrass new strains with low hydrocyanic acid content. Acta Prataculturae Sinica, 2014, 23(1): 223-228. |
于卓, 谢锐, 于肖夏, 等. 低氢氰酸含量高丹草新品系及其亲本的SSR分析. 草业学报, 2014, 23(1): 223-228. | |
21 | Jin W W, Zhang H H, Teng Z Y, et al. Effects of salt and alkali interaction stress on chlorophyll fluorescence in leaves of Sorghum bicolor×S. sudanense. Pratacultural Science, 2017, 34(10): 2090-2098. |
金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响. 草业科学, 2017, 34(10): 2090-2098. | |
22 | Ding J N, Zhang H H, Chi D F. Response of photosynthesis in leaves of Sorghum bicolor×S. sudanense seedlings to phenanthrene polluted soils. Pratacultural Science, 2014, 31(9): 1732-1738. |
丁俊男, 张会慧, 迟德富. 土壤菲胁迫对高丹草幼苗叶片光合机构功能的影响. 草业科学, 2014, 31(9): 1732-1738. | |
23 | Du Z H, Yan X, Zuo Y C, et al. Creating forage maize new germplasm by introducing genome total DNA from Sorghum bicolor×Sorghum sudanense into maize inbred line through pollen-tube pathway. Jiangsu Agricultural Sciences, 2020, 48(12): 141-144. |
杜周和, 严旭, 左艳春, 等. 花粉管通道转高丹草总DNA创制饲草玉米新种质. 江苏农业科学, 2020, 48(12): 141-144. | |
24 | Niu Y Q Q, Yu X X, Yu Z, et al. SSR analysis of varieties and new strains of the Mengnong series Sorghum-sudangrass. Chinese Journal of Grassland, 2019, 41(5): 1-6. |
牛亚青青, 于肖夏, 于卓, 等. 高丹草品种及新品系的SSR分析. 中国草地学报, 2019, 41(5): 1-6. | |
25 | He Z F, He C G, Wang G D. Effect of different cultivation patterns on yield and nutritional contents of photoperiod-sensitive sorghum-sudangrass hybrids. Acta Prataculturae Sinica, 2019, 28(9): 110-122. |
何振富, 贺春贵, 王国栋. 栽培方式对光敏型高丹草营养成分含量与产量的影响. 草业学报, 2019, 28(9): 110-122. | |
26 | He Z F, He C G, Wang G D, et al. Effect of planting density on plant nutrients and their dynamics in PPS sorghum-sudangrass hybrids. Acta Prataculturae Sinica, 2018, 27(10): 93-104. |
何振富, 贺春贵, 王国栋, 等. 种植密度对光敏型高丹草营养成分及动态变化的影响. 草业学报, 2018, 27(10): 93-104. | |
27 | He C G, He Z F, Wang F. Efficient double cropping pattern of photoperiod-sensitive sorghum-sudangrass hybrids in summer after winter wheat. Acta Prataculturae Sinica, 2017, 26(5): 70-80. |
贺春贵, 何振富, 王斐. 光敏型高丹草复种穴播高效栽培模式研究. 草业学报, 2017, 26(5): 70-80. | |
28 | Dong W C, Zhang G J, Zhang H, et al. Research on production performance and feeding value of brown midrib (BMR) Sorghum×Sudan grass in Ningxia Yellow River irrigation area. Chinese Journal of Grassland, 2019, 41(1): 45-50. |
董文成, 张桂杰, 张欢, 等. 宁夏黄灌区不同高丹草品种的生产性能和饲用价值研究. 中国草地学报, 2019, 41(1): 45-50. | |
29 | Yang H, Tian J P, Liu G B, et al. Comparison of quality and nutritional value of Sorghum bicolor×S. sudanense in different positions of the bucket. Pratacultural Science, 2015, 32(10): 1682-1686. |
杨红, 田吉鹏, 刘贵波, 等. 青贮容器不同部位高丹草青贮饲料的营养价值. 草业科学, 2015, 32(10): 1682-1686. | |
30 | Wang Y Y, Mao P S. Effect of ageing duration and temperature on the germination percentage of Sorghum bicolor×S. sudanense seeds. China Dairy Cattle, 2014(11): 17-21. |
王媛媛, 毛培胜. 老化时间和温度对高丹草种子发芽率的影响. 中国奶牛, 2014(11): 17-21. | |
31 | International Seed Testing Association. International rules for seed testing. Zürich: International Seed Testing Association, 2019. |
国际种子检验协会. 国际种子检验规程. 苏黎世: 国际种子检验协会, 2019. | |
32 | Abdul-Baki A A, Anderson J D. Vigour determination in soybean seed multiple criteria. Crop Science, 1973, 13(6): 630-633. |
33 | Rajjou L, Duval M, Gallardo K, et al. Seed germination and vigor. Annual Review of Plant Biology, 2012, 63: 507-533. |
34 | Dang X J, Thi T G T, Dong G S, et al. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta, 2014, 239(6): 1309-1319. |
35 | Jin X W, Zhao G Q, Chai J K, et al. Effects of different storage years on seed vigor of oat. Grassland and Turf, 2019, 39(2): 54-59. |
金小雯, 赵桂琴, 柴继宽, 等. 不同贮藏年限对燕麦种子活力的影响. 草原与草坪, 2019, 39(2): 54-59. | |
36 | He X C, Hu W M, Duan X M, et al. Analysis of long term storability of diploid watermelon ultra-dry seeds. Acta Horticulturae Sinica, 2017, 44(2): 307-314. |
何序晨, 胡伟民, 段宪明, 等. 西瓜超干种子的长期耐藏性分析. 园艺学报, 2017, 44(2): 307-314. | |
37 | Tangney R, Merritt D J, Fontaine J B, et al. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. Journal of Ecology, 2019, 107(3): 1093-1105. |
38 | Zhang J P, Wang H Y, Liao S X, et al. Appropriate ultra-low seed moisture content stabilizes the seed longevity of Calocedrus macrolepis, associated with changes in endogenous hormones, antioxidant enzymes, soluble sugars and unsaturated fatty acids. New Forests, 2019, 50(3): 455-468. |
39 | Jittanit W, Srzednicki G, Driscoll R. Corn, rice, and wheat seed drying by two-stage concept. Dry Technology, 2010, 28(6): 807-815. |
40 | Lin C, Shen H Q, Guan Y J, et al. Changes of physiological, biochemistry and gene expression related to ABA and GA3 in hybrid rice seeds stored at different moisture contents and packing methods. Plant Physiology Communications, 2017, 53(6): 1077-1086. |
林程, 沈杭琪, 关亚静, 等. 不同含水量和包装方式杂交水稻种子贮藏后生理生化及ABA 和GA3相关基因表达的变化. 植物生理学报, 2017, 53(6): 1077-1086. | |
41 | Li C J, Wang Y R, Zhu T H, et al. Response of alfalfa seed to stress storage conditions. Chinese Journal of Applied Ecology, 2002, 13(8): 957-961. |
李春杰, 王彦荣, 朱廷恒, 等. 紫花苜蓿种子对逆境贮藏条件的反应. 应用生态学报, 2002, 13(8): 957-961. | |
42 | Zhang H B, Yang G J, Gao W D, et al. Study on the seed vigor of Toona sinensis under specific storage conditions. Forest Research, 2019, 32(2): 152-159. |
张海波, 杨桂娟, 高卫东, 等. 香椿种子特定贮藏条件下活力变化的研究. 林业科学研究, 2019, 32(2): 152-159. | |
43 | Li Y P, Cheng Q X, Xi P Z, et al. Effects of water content on storage physiology of the seed of Polygonatum sibiricum Red. Seed, 2016, 35(5): 18-23. |
李吟平, 程秋香, 席鹏洲, 等. 含水量对黄精种子贮藏生理的影响. 种子, 2016, 35(5): 18-23. | |
44 | Xia F, Chen L, Sun Y, et al. Relationships between ultrastructure of embryo cells and biochemical variations during ageing of oat (Avena sativa L.) seeds with different moisture content. Acta Physiologiae Plantarum, 2015, 37(4): 1-11. |
[1] | 郭香, 陈德奎, 陈娜, 李云, 陈晓阳, 张庆. 含水量和添加剂对黄梁木叶青贮发酵品质的影响[J]. 草业学报, 2021, 30(8): 199-205. |
[2] | 吴国芳, 于肖夏, 于卓, 杨东升, 卢倩倩. 基于BSA-SSR技术的高丹草低氢氰酸性状目的片段的筛选与鉴定[J]. 草业学报, 2021, 30(7): 82-92. |
[3] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[4] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[5] | 高玉莲, 常静, 王贻卉, 李锋, 李海平, 马崇勇. 瑞香狼毒根提取物对3种作物种子萌发和幼苗生长的化感作用[J]. 草业学报, 2021, 30(10): 83-91. |
[6] | 李凤兰, 武佳文, 姚树宽, 赵梓颐, 赵潇璨, 贺付蒙, 朱元芳, 石奇海, 周磊, 徐永清. 假苍耳不同部位水浸提液对5种土著植物化感作用的研究[J]. 草业学报, 2020, 29(9): 169-178. |
[7] | 崔雪莲, 夏超. 外源脱落酸对醉马草内生真菌共生体幼苗建植过程的影响[J]. 草业学报, 2020, 29(7): 70-80. |
[8] | 梁军, 全小龙, 张杰雪, 史惠兰, 段中华, 乔有明. 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用[J]. 草业学报, 2020, 29(7): 81-89. |
[9] | 黄勇, 郭猛, 张红瑞, 周艳, 李贺敏, 高致明, 王盼盼. 盐胁迫对石竹种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(12): 105-111. |
[10] | 王桔红, 史生晶, 陈文, 甘桂媚, 陈赛娜, 李张伟. 枯草芽孢杆菌和3种放线菌对盐胁迫下鬼针草和鳢肠种子萌发及幼苗生长的影响[J]. 草业学报, 2020, 29(12): 112-120. |
[11] | 马婷燕, 李彦忠. 32个紫花苜蓿品种的种带真菌种类及致病性研究[J]. 草业学报, 2020, 29(12): 131-139. |
[12] | 普雪可, 吴春花, 周永瑾, 勉有明, 苗芳芳, 侯贤清, 李荣. 宁南旱区地膜秸秆沟垄双覆盖对土壤水分时空变化及马铃薯产量的影响[J]. 草业学报, 2020, 29(10): 149-160. |
[13] | 何振富, 贺春贵, 王国栋. 栽培方式对光敏型高丹草营养成分含量与产量的影响[J]. 草业学报, 2019, 28(9): 110-122. |
[14] | 王飞, 尹飞, 龙浩强, 李雪, 武岩岩, 焦念元, 马超, 付国占. 玉米‖花生茬口对冬小麦旗叶光化学活性的影响[J]. 草业学报, 2019, 28(7): 123-131. |
[15] | 王成, 王益, 周玮, 骈瑞琪, 张庆, 陈晓阳. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响[J]. 草业学报, 2019, 28(6): 109-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||