草业学报 ›› 2022, Vol. 31 ›› Issue (3): 92-100.DOI: 10.11686/cyxb2020565
收稿日期:
2020-12-09
修回日期:
2021-01-06
出版日期:
2022-03-20
发布日期:
2022-01-15
通讯作者:
钟荣珍
作者简介:
Corresponding author. E-mail: zhongrongzhen@iga.ac.cn基金资助:
Cheng-zhen ZHAO1,2(), Qiang LI1, Rong-zhen ZHONG1()
Received:
2020-12-09
Revised:
2021-01-06
Online:
2022-03-20
Published:
2022-01-15
Contact:
Rong-zhen ZHONG
摘要:
刈割是羊草草地一种常见的利用方式,为探究不同物候期刈割对羊草再生和产量的影响程度,分别设置了对照组(CON)和刈割组。刈割组包括拔节期刈割(ES)、抽穗期刈割(HS)和开花期刈割 (FS)。对照组不刈割,8月15日收获;刈割组起始刈割后,8月15日收获。结果表明,与对照相比,HS和FS刈割处理增加了(P<0.05)羊草干物质(DM)总产量而ES刈割处理则降低了(P<0.05) DM总产量。此外,所有处理均提高了(P<0.05)羊草的粗蛋白总产量。不同物候期刈割羊草的再生过程是不同的,ES处理羊草细根长、根表面积和体积最低。FS处理羊草再生后期净光合速率高于其余处理(P<0.05),导致其后期再生效率较高,但根中水溶性碳水化合物(WSC)含量最低(P<0.05)。HS和CON处理在羊草根形态和WSC含量上则无显著差异。尽管不同物候期刈割后羊草的再生过程不同,但其再生产量是接近的,特别是ES和HS处理,这是因为较长的再生周期被较低的再生效率所抵消,因此,总DM累积量主要由刈割前的DM来决定。综上所述,应在抽穗期进行刈割,能提高羊草产量并保持其持久性。
赵成振, 李强, 钟荣珍. 不同物候期刈割对羊草再生和根形态及产量的影响[J]. 草业学报, 2022, 31(3): 92-100.
Cheng-zhen ZHAO, Qiang LI, Rong-zhen ZHONG. Effect of mowing in different phenological growth stages on shoot regrowth, root morphology and forage yield of Leymus chinensis[J]. Acta Prataculturae Sinica, 2022, 31(3): 92-100.
图2 不同物候期刈割羊草再生干物质产量和粗蛋白产量的变化
Fig.2 Changes of regrowth DM yield and CP yield of L. chinensis under different phenological growth stages mowing (mean±SE, n=3)
图3 不同物候期刈割羊草累积干物质产量和粗蛋白产量的变化不同小写字母表示差异显著(P<0.05),下同。Different small letters indicate significant differences at the P<0.05 level, the same below.
Fig.3 Changes of accumulated DM yield and CP yield of L. chinensis under different phenological growth stages mowing (mean±SE, n=3)
性状 Trait | 根直径 RDC (mm) | 处理 Treatment | SEM | P值 P value | |||
---|---|---|---|---|---|---|---|
CON | ES | HS | FS | ||||
根长 Root length (cm) | 0.0~0.2 | 275.6a | 183.4b | 296.4a | 281.0a | 10.63 | <0.05 |
0.2~0.5 | 93.8a | 70.2b | 103.7a | 103.4a | 3.21 | <0.05 | |
0.5~1.0 | 41.5b | 42.0b | 58.8a | 58.0a | 1.98 | <0.05 | |
1.0~2.0 | 16.7a | 11.6b | 18.0a | 15.8ab | 0.90 | 0.07 | |
>2.0 | 4.5ab | 3.2b | 4.7a | 3.7ab | 0.25 | 0.13 | |
根表面积 Root surface area (cm2) | 0.0~0.2 | 10.8a | 6.9b | 11.2a | 10.9a | 0.41 | <0.05 |
0.2~0.5 | 8.7b | 7.2b | 10.7a | 10.7a | 0.37 | <0.05 | |
0.5~1.0 | 8.7b | 8.8b | 12.2a | 11.9a | 0.43 | <0.05 | |
1.0~2.0 | 7.1ab | 5.0b | 7.6a | 6.6ab | 0.38 | 0.09 | |
>2.0 | 4.6ab | 3.9b | 5.5a | 4.2ab | 0.38 | 0.15 | |
根体积 Root volume (cm3) | 0.0~0.2 | 0.04a | 0.02b | 0.04a | 0.04a | 0.002 | <0.05 |
0.2~0.5 | 0.08a | 0.06b | 0.09a | 0.09a | 0.003 | <0.05 | |
0.5~1.0 | 0.16bc | 0.15c | 0.21a | 0.20a | 0.008 | <0.05 | |
1.0~2.0 | 0.25ab | 0.18b | 0.26a | 0.23ab | 0.013 | 0.11 | |
>2.0 | 0.45b | 0.47ab | 0.64a | 0.46ab | 0.034 | 0.15 |
表1 不同物候期刈割羊草根长、根表面积和根体积的变化
Table 1 Changes of root length, surface area and volume of L. chinensis under different phenological growth stages mowing (n=3)
性状 Trait | 根直径 RDC (mm) | 处理 Treatment | SEM | P值 P value | |||
---|---|---|---|---|---|---|---|
CON | ES | HS | FS | ||||
根长 Root length (cm) | 0.0~0.2 | 275.6a | 183.4b | 296.4a | 281.0a | 10.63 | <0.05 |
0.2~0.5 | 93.8a | 70.2b | 103.7a | 103.4a | 3.21 | <0.05 | |
0.5~1.0 | 41.5b | 42.0b | 58.8a | 58.0a | 1.98 | <0.05 | |
1.0~2.0 | 16.7a | 11.6b | 18.0a | 15.8ab | 0.90 | 0.07 | |
>2.0 | 4.5ab | 3.2b | 4.7a | 3.7ab | 0.25 | 0.13 | |
根表面积 Root surface area (cm2) | 0.0~0.2 | 10.8a | 6.9b | 11.2a | 10.9a | 0.41 | <0.05 |
0.2~0.5 | 8.7b | 7.2b | 10.7a | 10.7a | 0.37 | <0.05 | |
0.5~1.0 | 8.7b | 8.8b | 12.2a | 11.9a | 0.43 | <0.05 | |
1.0~2.0 | 7.1ab | 5.0b | 7.6a | 6.6ab | 0.38 | 0.09 | |
>2.0 | 4.6ab | 3.9b | 5.5a | 4.2ab | 0.38 | 0.15 | |
根体积 Root volume (cm3) | 0.0~0.2 | 0.04a | 0.02b | 0.04a | 0.04a | 0.002 | <0.05 |
0.2~0.5 | 0.08a | 0.06b | 0.09a | 0.09a | 0.003 | <0.05 | |
0.5~1.0 | 0.16bc | 0.15c | 0.21a | 0.20a | 0.008 | <0.05 | |
1.0~2.0 | 0.25ab | 0.18b | 0.26a | 0.23ab | 0.013 | 0.11 | |
>2.0 | 0.45b | 0.47ab | 0.64a | 0.46ab | 0.034 | 0.15 |
图4 不同物候期刈割羊草个体茎、叶和鞘生物量及其比例的变化叶比例为叶片在羊草个体生物量中的分配比例,茎比例为茎在羊草个体生物量中的分配比例,鞘比例为鞘在羊草个体生物量中的分配比例。Leaf proportion is leaf allocation proportion in biomass of individual L. chinensis, stem proportion is stem allocation proportion in biomass of individual L. chinensis, sheath proportion is sheath allocation proportion in biomass of individual L. chinensis.
Fig.4 Changes of stem, leaf and sheath biomass of individual L. chinensis and their proportions under different phenological growth stages mowing (mean±SE, n=3)
图5 不同物候期刈割羊草净光合速率、气孔导度、胞间CO2浓度和蒸腾速率的变化
Fig.5 Changes of net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate of L. chinensis under different phenological growth stages mowing (mean±SE, n=3)
图6 不同物候期刈割羊草茎、叶、鞘和根WSC含量的变化
Fig.6 Changes of stem, leaf, sheath and root WSC contents of individual L. chinensis under different phenological growth stages mowing (mean±SE, n=3)
1 | Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet. Nature, 2011, 478: 337-342. |
2 | Dillon P, Hennessy T, Shalloo L, et al. Future outlook for the Irish dairy industry: A study of international competitiveness influence of international trade reform and requirement for change. International Journal of Dairy Technology, 2008, 61(1): 16-29. |
3 | Song Y, Wu Y N, Zhou D W. Effect of autumn cutting date on regrowth, turning green, yield and quality of Leymus chinensis grassland in Songnen Plain, Northeast China. American Journal of Plant Sciences, 2018, 9(2): 185-195. |
4 | Čop J, Vidrih M, Hacin J. Influence of cutting regime and fertilizer application on the botanical composition, yield and nutritive value of herbage of wet grasslands in Central Europe. Grass and Forage Science, 2009, 64(4): 454-465. |
5 | Harris R B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. |
6 | Hennessy D, O’donovan M, French P, et al. Effects of date of autumn closing and timing of winter grazing on herbage production in winter and spring. Grass and Forage Science, 2006, 61(4): 363-374. |
7 | Sakaigaichi T, Tarumoto Y, Hattori I, et al. The growth and yield of forage sugarcane variety, "Shimanoushie", under the two harvests per year system with different harvest times in the Amami Region of Kagoshima Prefecture. Japanese Journal of Crop Science, 2017, 86(1): 56-61. |
8 | McIntosh D W, Bates G E, Keyser P D, et al. The impact of harvest timing on biomass yield from native warm-season grass mixtures. Agronomy Journal, 2015, 107(6): 2321-2326. |
9 | Baoyin T, Li F Y, Bao Q, et al. Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. Rangeland Journal, 2014, 36(6): 593-600. |
10 | Bork E W, Broadbent T S, Willms W D. Intermittent growing season defoliation variably impacts herbage productivity in mixed grass prairie. Rangeland Ecology and Management, 2017, 70(3): 307-315. |
11 | Guo Y J, Han L, Li G D, et al. The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. Journal of Arid Environments, 2012, 78: 128-134. |
12 | Ren W, Hou X, Wu Z, et al. De novo transcriptomic profiling of the clonal Leymus chinensis response to long-term overgrazing induced memory. Scientific Reports, 2018, 8(1): 17912. |
13 | Gonzalez A P R, Chrtek J, Dobrev P I, et al. Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens). American Journal of Botany, 2016, 103(9): 1567-1574. |
14 | Zhao W, Chen S P, Han X G, et al. Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 2009, 24(1): 99-108. |
15 | Lee J M, Sathish P, Donaghy D J, et al. Impact of defoliation severity on photosynthesis, carbon metabolism and transport gene expression in perennial ryegrass. Functional Plant Biology, 2011, 38(10): 808-817. |
16 | Thornton B, Millard P, Duff E I, et al. The relative contribution of remobilization and root uptake in supplying nitrogen after defoliation for regrowth of laminae in four grass species. New Phytologist, 1993, 124(4): 689-694. |
17 | Jones G B, Alpuerto J B, Tracy B F, et al. Physiological effect of cutting height and high temperature on regrowth vigor in orchard grass. Frontiers in Plant Science, 2017, 8: 805. |
18 | Kabeya D, Sakai S. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: A quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Annals of Botany, 2003, 92(4): 537-545. |
19 | Snyder K A, Williams D G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Functional Ecology, 2003, 17(3): 363-374. |
20 | Yuan W, Zhou G, Wang Y, et al. Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecological Research, 2007, 22(5): 784-791. |
21 | Li X, Liu Z, Wang Z, et al. Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: A study at the plant functional trait scale. PLoS One, 2015, 10(5): e0124443. |
22 | IUSS Working Group. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 2015, 106: 166-168. |
23 | Masuko T, Minami A, Iwasaki N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 2005, 339(1): 69-72. |
24 | Muthoni F K, Groen T A, Skidmore A K, et al. Ungulate herbivory overrides rainfall impacts on herbaceous regrowth and residual biomass in a key resource area. Journal of Arid Environments, 2014, 100: 9-17. |
25 | Zhao W, Chen S P, Lin G H. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology, 2008, 196(1): 85-99. |
26 | Erbilgin N, Galvez D A, Zhang B, et al. Resource availability and repeated defoliation mediate compensatory growth in trembling aspen (Populus tremuloides) seedlings. PeerJ, 2014, 2(1): 1-23. |
27 | Liu H, Yu F, He W, et al. Are clonal plants more tolerant to grazing than co-occurring non-clonal plants in inland dunes? Ecological Research, 2007, 22(3): 502-506. |
28 | Donaghy D J, Turner L R, Adamczewski K A. Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue. Agronomy Journal, 2008, 100(1): 122-127. |
29 | Wang S, Yang Y, Zhi H. Water-soluble carbohydrates of root components and activity rhythms at vegetative growth stage of Artemisia scoparia in northeastern grassland of China. PLoS One, 2017, 12(5): e0176667. |
30 | Baker B W, Ducharme H C, Mitchell D C S, et al. Interactions of beaver and elk herbivory reduces standing crop of willow. Ecological Applications, 2005, 15(1): 110-118. |
31 | King E G, Eckhart V M, Mohl E C. Magnitudes and mechanisms of shoot-damage compensation in annual species of Linum (Linaceae) in Iowa. American Midwest Naturalist, 2008, 159(1): 200-213. |
32 | Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). Plant and Soil, 2017, 412(1/2): 7-19. |
33 | Anderson T M, Starmer W T, Thorne M. Bimodal root diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: Implications for nitrogen uptake. Functional Ecology, 2007, 21(1): 50-60. |
34 | Agnusdei M G, Di M O N, Nenning F R, et al. Leaf blade nutritional quality of rhodes grass (Chloris gayana) as affected by leaf age and length. Crop and Pasture Science, 2011, 62: 1098-1105. |
35 | Gunn T C, Walton D W H. Storage carbohydrate production and overwintering strategy in a winter-green tussock grass on South Georgia (sub Antarctic). Polar Biology, 1985, 4(4): 237-242. |
36 | Janeček Š, Klimešová J. Carbohydrate storage in meadow plants and its depletion after disturbance: Do roots and stem-derived organs differ in their roles? Oecologia, 2014, 175(1): 51-61. |
37 | Han X, Sistla S A, Zhang Y H, et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 2014, 382(1/2): 175-187. |
38 | Fulkerson W J, Slack K. Leaf number as a criterion for determining defoliation time for Lolium perenne: 2. Effect of defoliation frequency and height. Grass and Forage Science, 1995, 50: 16-20. |
39 | Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology, 2000, 27: 595-607. |
40 | Thorne M A, Frank D A. The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecology, 2009, 200(2): 205-215. |
41 | Niklas K J. Plant allometry: Is there a grand unifying theory? Biological Reviews, 2004, 79(4): 871-889. |
[1] | 徐睿智, 吴晓娟, 杨惠敏. 刈割后追肥对建植当年紫花苜蓿生长和生产性能的影响[J]. 草业学报, 2022, 31(1): 195-204. |
[2] | 荆佳强, 萨仁其力莫格null, 秦洁, 张海芳, 李明, 杨殿林. 不同利用方式对贝加尔针茅草原土壤活性有机碳的影响[J]. 草业学报, 2022, 31(1): 47-56. |
[3] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[4] | 赵京东, 宋彦涛, 徐鑫磊, 乌云娜. 施氮和刈割对辽西北退化草地牧草产量和品质的影响[J]. 草业学报, 2021, 30(8): 36-48. |
[5] | 徐鑫磊, 宋彦涛, 赵京东, 乌云娜. 施肥和刈割对呼伦贝尔草甸草原牧草品质的影响及其与植物多样性的关系[J]. 草业学报, 2021, 30(7): 1-10. |
[6] | 张丽星, 海春兴, 常耀文, 高晓媚, 高文邦, 解云虎. 羊草及芨芨草草原和西北针茅草原土壤质量评价[J]. 草业学报, 2021, 30(4): 68-79. |
[7] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[8] | 王红林, 左艳春, 严旭, 周晓康, 寇晶, 杨希智, 郭俊英, 蒲军, 张浩仁, 杜周和. 刈割高度与施氮量对饲料桑全株产量及营养品质的影响[J]. 草业学报, 2021, 30(11): 203-211. |
[9] | 李倩, 李晓霞, 程丽琴, 陈双燕, 齐冬梅, 杨伟光, 高利军, 新巴音, 刘公社. 羊草LcCBF6基因的表达特性和功能研究[J]. 草业学报, 2021, 30(10): 105-115. |
[10] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[11] | 李茹霞, 耿元波. 应用13C同位素标记法区分羊草草原生态系统呼吸[J]. 草业学报, 2020, 29(6): 56-70. |
[12] | 伏兵哲, 周燕飞, 李雪, 倪彪, 高雪芹. 宁夏引黄灌区羊草水肥耦合效应研究[J]. 草业学报, 2020, 29(5): 98-108. |
[13] | 孔凡林, 刁其玉, 渠建江, 屠焰. 构树在肉牛瘤胃中降解特性的研究[J]. 草业学报, 2020, 29(3): 179-189. |
[14] | 任昱鑫, 代寒凌, 田新会, 杜文华. 添加剂对甘肃省高寒牧区不同刈割期小黑麦青贮饲料营养品质和青贮品质的影响[J]. 草业学报, 2020, 29(3): 197-206. |
[15] | 白乌云, 侯向阳, 武自念, 田春育, 丁勇. 羊草不同地理种群表型变异及其对根茎克隆繁殖的影响[J]. 草业学报, 2020, 29(12): 86-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||