草业学报 ›› 2022, Vol. 31 ›› Issue (10): 135-144.DOI: 10.11686/cyxb2021390
• 研究论文 • 上一篇
收稿日期:
2021-10-28
修回日期:
2021-12-01
出版日期:
2022-10-20
发布日期:
2022-09-14
通讯作者:
师尚礼
作者简介:
E-mail: shishl@gsau.edu.cn基金资助:
Zi-li LI(), Shang-li SHI(), Yun A, Hui-hui ZHANG, Xiao-long LI
Received:
2021-10-28
Revised:
2021-12-01
Online:
2022-10-20
Published:
2022-09-14
Contact:
Shang-li SHI
摘要:
对清水紫花苜蓿育性变异材料进行育性鉴定分析和生理变化研究,为培育不育系材料奠定基础。选取6株育性变异材料的无性繁殖株系GN-A1、GN-A2、GN-A3、GN-A4、GN-A5和GN-A6及育性正常植株(CK)在盛花期采集花粉粒进行I2-KI育性染色鉴定及对不同发育时期花蕾的营养物质代谢指标[可溶性糖(SS)、可溶性蛋白(SP)、淀粉(Sta)、游离脯氨酸(Pro)]、膜脂过氧化指标[过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和丙二醛(MDA)]进行测定分析。结果表明:可育株(CK)染色率高达98.37%,花粉粒饱满且呈规则圆球状;GN-A1、GN-A2、GN-A3、GN-A6 花粉染色率均低于5%,花粉粒干瘪且呈椭圆状或不规则状,初步鉴定属于不育株;GN-A4、GN-A5 花粉染色率分别为54.80%、63.60%,干瘪花粉粒相对较少,多呈椭圆状,分别属于典型半不育株和半不育株。不育株(GN-A1、GN-A2、GN-A3、GN-A6)花蕾随着发育时间的变化其SS、SP、Sta、Pro含量供应均在不同程度上出现了不足;不育株 POD、SOD活性在整个发育时期均高于可育株,CAT活性在第Ⅰ、Ⅱ时期高于可育株而后逐渐降低,可育株的MDA含量在第Ⅰ、Ⅱ、Ⅳ时期均显著高于不育株(P<0.05)。由变异系数分析可知,CAT、POD、SOD活性、SS、SP含量在不育株花蕾中变异幅度较大,而在可育株发育过程中较稳定,说明生理指标变化与育性的改变密切相关。
李自立, 师尚礼, 阿芸, 张辉辉, 李小龙. 清水紫花苜蓿育性变异材料鉴定分析与生理研究[J]. 草业学报, 2022, 31(10): 135-144.
Zi-li LI, Shang-li SHI, Yun A, Hui-hui ZHANG, Xiao-long LI. Identification and physiological study of variation in reproductive fertility in clonal lines of Medicago sativa cultivar ‘Qingshui’[J]. Acta Prataculturae Sinica, 2022, 31(10): 135-144.
育性分类 Fertility classification | 花粉败育率 Staining rate of pollen grains (%) |
---|---|
不育Sterility | >95.1 |
半不育Semi-sterility | 10.1~95.1 |
典型半不育Typical semi-sterility | 40.1~60.0 |
可育 Fertility | 0~10.0 |
表1 育性划分标准
Table 1 Criteria for fertility division
育性分类 Fertility classification | 花粉败育率 Staining rate of pollen grains (%) |
---|---|
不育Sterility | >95.1 |
半不育Semi-sterility | 10.1~95.1 |
典型半不育Typical semi-sterility | 40.1~60.0 |
可育 Fertility | 0~10.0 |
图1 育性变异株系和正常花粉粒染色黑色或蓝黑色:花粉活力强;黄褐色:花粉活力较低;黄色:花粉无活力;CK代表可育植株;GN-A1、GN-A2、GN-A3、GN-A4、GN-A5、GN-A6代表6株育性变异植株,植株编号后的序号 1、2、3代表显微观察视野重复。Black or bluish-black: Pollen viability is strong;Yellowish-brown: Pollen viability is low;Yellow: Pollen vitality is inactive;CK represent fertile strain; GN-A1、GN-A2、GN-A3、GN-A4、GN-A5、GN-A6 represent 6 fertility variation strains, and the serial numbers 1, 2 and 3 after the plant numbers represent the repetition of microscopic observation field.
Fig. 1 Staining of sterile and fertile pollen grains
编号 | 黑色花粉粒数 Number of black pollen grains | 黄色或黄褐色花粉粒数 Number of yellow or yellowish-brown pollen grains | 花粉粒总数 Number of pollen grains | 染色率 Staining rate (%) | 败育率 Sterility rate (%) |
---|---|---|---|---|---|
CK | 1328 | 22 | 1350 | 98.37 | 1.63 |
GN-A1 | 2 | 196 | 198 | 1.01 | 98.99 |
GN-A2 | 3 | 142 | 145 | 2.07 | 97.93 |
GN-A3 | 2 | 166 | 168 | 1.19 | 98.81 |
GN-A4 | 257 | 212 | 469 | 54.80 | 45.20 |
GN-A5 | 276 | 158 | 434 | 63.60 | 36.40 |
GN-A6 | 3 | 145 | 148 | 2.03 | 97.97 |
表2 供试材料花粉粒染色率和败育率
Table 2 Pollen grain staining rate and sterility rate of fertile and sterile plants
编号 | 黑色花粉粒数 Number of black pollen grains | 黄色或黄褐色花粉粒数 Number of yellow or yellowish-brown pollen grains | 花粉粒总数 Number of pollen grains | 染色率 Staining rate (%) | 败育率 Sterility rate (%) |
---|---|---|---|---|---|
CK | 1328 | 22 | 1350 | 98.37 | 1.63 |
GN-A1 | 2 | 196 | 198 | 1.01 | 98.99 |
GN-A2 | 3 | 142 | 145 | 2.07 | 97.93 |
GN-A3 | 2 | 166 | 168 | 1.19 | 98.81 |
GN-A4 | 257 | 212 | 469 | 54.80 | 45.20 |
GN-A5 | 276 | 158 | 434 | 63.60 | 36.40 |
GN-A6 | 3 | 145 | 148 | 2.03 | 97.97 |
图2 不同发育时期清水苜蓿花蕾SS和SP物质含量的变化*表示在0.05水平差异显著,**表示在0.01水平差异极显著;不育株为GN-A1、GN-A2、GN-A3、GN-A6;可育株为CK。下同。* indicates significant differences at 0.05 level,** indicates extremely significant differences at 0.01 level; Sterile plants GN-A1, GN-A2, GN-A3 and GN-A6. The fertile strains were CK. The same below.
Fig. 2 Changes of SS and SP contents in flower buds of alfalfa at different development stages
指标 Index | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |||||
---|---|---|---|---|---|---|---|---|---|---|
可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | |
可溶性糖SS | 7.30 | 7.42 | 12.08 | 6.17 | 5.48 | 8.26 | 3.21 | 13.32 | 8.76 | 11.92 |
游离脯氨酸Pro | 8.03 | 5.11 | 2.66 | 7.88 | 4.56 | 6.79 | 6.00 | 5.16 | 5.17 | 4.90 |
可溶性蛋白SP | 5.78 | 1.21 | 11.83 | 5.38 | 13.69 | 11.37 | 6.37 | 3.33 | 8.05 | 6.72 |
淀粉Sta | 2.61 | 3.34 | 7.51 | 1.27 | 0.83 | 3.92 | 1.53 | 2.97 | 4.24 | 2.92 |
超氧化物歧化酶SOD | 1.56 | 2.04 | 0.60 | 4.33 | 2.58 | 2.88 | 3.49 | 3.43 | 1.96 | 6.16 |
过氧化氢酶CAT | 0.86 | 6.02 | 2.00 | 1.30 | 2.67 | 6.84 | 2.18 | 8.70 | 1.40 | 4.68 |
过氧化物酶POD | 3.35 | 2.04 | 1.22 | 2.02 | 1.86 | 6.04 | 0.93 | 3.60 | 1.73 | 3.43 |
丙二醛MDA | 7.66 | 4.53 | 2.30 | 3.03 | 5.46 | 3.61 | 3.62 | 1.42 | 2.20 | 4.48 |
表3 不育株与可育株变异系数分析
Table 3 Analysis of variation coefficient of sterile and fertile plants (%)
指标 Index | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | |||||
---|---|---|---|---|---|---|---|---|---|---|
可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | 可育株 Fertile plant | 不育株 Sterile plant | |
可溶性糖SS | 7.30 | 7.42 | 12.08 | 6.17 | 5.48 | 8.26 | 3.21 | 13.32 | 8.76 | 11.92 |
游离脯氨酸Pro | 8.03 | 5.11 | 2.66 | 7.88 | 4.56 | 6.79 | 6.00 | 5.16 | 5.17 | 4.90 |
可溶性蛋白SP | 5.78 | 1.21 | 11.83 | 5.38 | 13.69 | 11.37 | 6.37 | 3.33 | 8.05 | 6.72 |
淀粉Sta | 2.61 | 3.34 | 7.51 | 1.27 | 0.83 | 3.92 | 1.53 | 2.97 | 4.24 | 2.92 |
超氧化物歧化酶SOD | 1.56 | 2.04 | 0.60 | 4.33 | 2.58 | 2.88 | 3.49 | 3.43 | 1.96 | 6.16 |
过氧化氢酶CAT | 0.86 | 6.02 | 2.00 | 1.30 | 2.67 | 6.84 | 2.18 | 8.70 | 1.40 | 4.68 |
过氧化物酶POD | 3.35 | 2.04 | 1.22 | 2.02 | 1.86 | 6.04 | 0.93 | 3.60 | 1.73 | 3.43 |
丙二醛MDA | 7.66 | 4.53 | 2.30 | 3.03 | 5.46 | 3.61 | 3.62 | 1.42 | 2.20 | 4.48 |
1 | Wang Y, Wang Y Z, Xu A K, et al. A comparative analysis of physiological and biochemical characteristics between alfalfa cytoplasmic male sterile line and maintainers line. Chinese Journal of Grassland, 2018, 40(1): 24-34. |
王莹, 王英哲, 徐安凯, 等. 紫花苜蓿细胞质雄性不育系及其保持系花蕾的生理生化特性. 中国草地学报, 2018, 40(1): 24-34. | |
2 | Wu Y F, Temuerbuhe, Xu Z Y, et al. Use of male sterile line in alfalfa hybrid seed production. Grassland of China, 1998(5): 9-12. |
吴永敷, 特木尔布和, 许占有, 等. 苜蓿雄性不育系杂交制种利用的研究. 中国草地, 1998(5): 9-12. | |
3 | Sun H, Zhao L M, Wang S M, et al. Criterion on classification of pollen fertility in soybean. Soybean Science, 2006, 25(4): 339-343. |
孙寰, 赵丽梅, 王曙明, 等. 大豆花粉育性分类标准的研究. 大豆科学, 2006, 25(4): 339-343. | |
4 | Liu J W, Wang S F, Wang H, et al. Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Molecular Breeding, 2021, 41(3): 1-12. |
5 | Zhang Q, Jin S H, Fang F, et al. Physiological and biochemical metabolism studies on the photo-thermo-sensitive male sterile line maize CB1208-82. Journal of Maize Sciences, 2019, 27(3): 48-53. |
张勤, 金圣浩, 方芳, 等. 玉米光温敏雄性不育系CB1208-82的生理生化代谢研究. 玉米科学, 2019, 27(3): 48-53. | |
6 | Yang Y H, Bai Z Y, Zhang H P, et al. Analysis of fertility character of soybean reverse photoperiod-sensitive genic male sterile mutant 88-428BY. Molecular Plant Breeding, 2021, 19(3): 1-18. |
杨玉花, 白志元, 张海平, 等. 大豆反向光敏感细胞核雄性不育突变体88-428BY育性特征分析. 分子植物育种, 2021, 19(3): 1-18. | |
7 | He S, Ma Y S, He Y J, et al. Difference analysis of physiological and biochemical characteristics of male sterile ramie. Crop Research, 2021, 35(1): 39-42. |
何思, 马玉申, 何也君, 等. 雄性不育苎麻生理生化特性差异分析. 作物研究, 2021, 35(1): 39-42. | |
8 | Liang S, Jia L, Wang Y, et al. Comparison and physiological traits of agronomic characters of nuclear sterile lines in pepper. China Vegetables, 2020(10): 55-61. |
梁赛, 贾利, 王艳, 等. 辣椒细胞核雄性不育系主要农艺性状的对比及生理特性分析. 中国蔬菜, 2020(10): 55-61. | |
9 | Luo Q, Zhou Y X, Ma R, et al. Effects of alloplasmic cytoplasms on main agronomic traits, pollen grains nuclear division and anther tapetum degradation of male sterile lines in wheat (Triticum aestivum L.). Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1631-1644. |
罗茜, 周雨馨, 马瑞, 等. 异源细胞质对小麦雄性不育系主要农艺性状、花粉粒核分裂及花药绒毡层降解的影响. 核农学报, 2020, 34(8): 1631-1644. | |
10 | Li Y Q, Wang Q L, Wei C Y, et al. Morphological observation and physiological and biochemical characteristics of cotton cytoplasmic male sterile cells. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 58-63. |
李玉青, 王清连, 韦春艳, 等. 棉花胞质雄性不育细胞形态学观察及生理生化特性的研究. 西南农业学报, 2020, 33(1): 58-63. | |
11 | Zheng R, Yue S J, Liu L, et al. Correlation between male sterility and free proline content in lycium barbarum. Journal of Anhui Agricultural Sciences, 2009, 37(16): 7506-7507. |
郑蕊, 岳思君, 柳玲, 等. 枸杞雄性不育性与游离脯氨酸含量的关系. 安徽农业科学, 2009, 37(16): 7506-7507. | |
12 | Miao J S, Yang W C, Liu C X, et al. Dynamic changes of physiological and biochemical substances and energy metablism enzyme activities in bud of welsh onion CMS line. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(6): 1142-1148. |
苗锦山, 杨文才, 刘彩霞, 等. 葱胞质雄性不育花蕾生化物质含量和能量代谢酶活性的动态变化特征. 西北植物学报, 2010, 30(6): 1142-1148. | |
13 | Sang S F. Identification of Nsa CMS gene and analysis of abortion mechanism in Brassica napus. Wuhan: Huazhong Agricultural University, 2020. |
桑世飞. 油菜Nsa CMS不育基因的鉴定及败育机理解析. 武汉: 华中农业大学, 2020. | |
14 | Nan L L, Shi S L, Guo Q E, et al. Analysis of dynamic variations crow characteristics of different root-type alfalfa plants. Chinese Journal of Eco-Agriculture, 2012, 20(7): 914-920. |
南丽丽, 师尚礼, 郭全恩, 等. 不同根型苜蓿根颈变化特征分析. 中国生态农业学报, 2012, 20(7): 914-920. | |
15 | Shi S L, Nan L L, Li C, et al. Medicago sativa ‘Qingshui’ varieties. Lanzhou: Gansu Agricultural University, 2010. |
师尚礼, 南丽丽, 李聪, 等. 清水紫花苜蓿品种. 兰州: 甘肃农业大学, 2010. | |
16 | Zhang X T, Shi S L, Zhang X F. Karyotype analysis of wild alfalfa in Longdong. Journal of Plant Genetic Resources, 2011, 12(1): 150-157. |
张雪婷, 师尚礼, 张小甫. 陇东野生紫花苜蓿的核型分析. 植物遗传资源学报, 2011, 12(1): 150-157. | |
17 | Nan L L, Shi S L, Zhu X Q, et al. Preliminary analysis on root morphological characteristics of our alfalfa materials. Grassland and Turf, 2011, 31(3): 27-31. |
南丽丽, 师尚礼, 朱新强, 等. 4份苜蓿材料根系形态特征的初步分析. 草原与草坪, 2011, 31(3): 27-31. | |
18 | Nan L L, Shi S L, Zhu X Q, et al. Physiological and biochemical characteristics of different root types of alfalfa during field overwintering. Journal of Nuclear Agricultural Sciences, 2011, 25(2): 369-374. |
南丽丽, 师尚礼, 朱新强, 等. 田间越冬期不同根型苜蓿根系的生理生化特性. 核农学报, 2011, 25(2): 369-374. | |
19 | Nan L L, Zhou X R, Liu H, et al. Molecular mechanism of rhizome traits in rhizome medicago sativa ‘Qingshui’. Lanzhou: Gansu Agricultural University, 2019. |
南丽丽, 周向睿, 刘欢, 等. 根茎型清水紫花苜蓿根茎性状发生的分子机制研究. 兰州: 甘肃农业大学, 2019. | |
20 | Wang X K. Principles and techniques of plant physiological and biochemical experiments (The 2nd Edition). Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. | |
21 | Sun Y, Wang J L. Soil conditioner on maize growth and physiological and biochemical index in saline soil of influence research. Botanical Research, 2019, 8(1): 65-71. |
22 | Chen X P, He M M, Wang W, et al. Effects of high temperature stress on physiological biochemical indexes of two species of paphiopedilum. Chinese Agricultural Science Bulletin, 2020, 36(28): 72-77. |
陈秀萍, 贺漫媚, 王伟, 等. 高温胁迫对2种兜兰叶片生理生化指标的影响. 中国农学通报, 2020, 36(28): 72-77. | |
23 | Fu Q, Chen W, Li J, et al. Selection of measurements on pollen viability in Pinus kesiya var. langbianensis. Journal of West China Forestry Science, 2020, 49(3): 7-13. |
付强, 陈伟, 李江, 等. 思茅松花粉活力测定方法研究. 西部林业科学, 2020, 49(3): 7-13. | |
24 | Liu H Y, Zhen J Q, Ru Z G, et al. Effect of different sampling methods on microspore development and pollen fertility detection of wheat. Journal of Triticeae Crops, 2021(1): 1-7. |
刘海英, 甄俊琦, 茹振钢, 等. 不同取样方法对小麦小孢子和花粉育性检测的影响. 麦类作物学报, 2021(1): 1-7. | |
25 | Wu Y F, Wei L. Study on flower bud differentiation, microspore development and sterility of alfalfa. Grassland of China, 1986(6): 21-25, 81. |
吴永敷, 薇玲. 苜蓿花芽分化、小孢子发育及不育原因的研究. 中国草地, 1986(6): 21-25, 81. | |
26 | Lu X Y, Yi J H, Rao L Q, et al. Effects of temperature and day length on fertility of “Annong S-1” and its mechanism of pollen abortion. Journal of Hunan Agricultural College, 1991(3): 427-433. |
卢向阳, 易建华, 饶力群, 等. 温度和日长对“安农S-1”育性的影响及其花粉败育的机理. 湖南农学院学报, 1991(3): 427-433. | |
27 | Liu S J, Zhu Q, Xing X J, et al. Research progress of male sterility in plant. Chinese Agricultural Science Bulletin, 2014, 30(34): 46-50. |
刘淑娟, 朱祺, 幸学俊, 等. 植物雄性不育影响因素研究进展. 中国农学通报, 2014, 30(34): 46-50. | |
28 | Song X L, Sun X Z, Wang H G, et al. Biochemical changes in anther abortion in cotton cave type a nuclear male sterile lines. Acta Botanica Boreali-Occidentalia Sinica, 2004(2): 243-247. |
宋宪亮, 孙学振, 王洪刚, 等. 棉花洞A型核雄性不育系花药败育过程中的生化变化. 西北植物学报, 2004(2): 243-247. | |
29 | Song J, Zhang Z H, Pan G T. Physiological and biochemical characteristics of ramie male sterile materials. Journal of Tropical and Subtropical Botany, 2007(5): 428-432. |
宋军, 张中华, 潘光堂. 苎麻雄性不育材料的生理生化特性初探. 热带亚热带植物学报, 2007(5): 428-432. | |
30 | Zhao L L, Wu J H, Chen Y, et al. Effects of drought on physiological characteristics and drought resistance of tall fescue. Chinese Journal of Grassland, 2015, 37(4): 15-20. |
赵丽丽, 吴佳海, 陈莹, 等. 干旱对高羊茅生理特性的影响及抗旱性评价. 中国草地学报, 2015, 37(4): 15-20. | |
31 | Liang Y R, Hu X H, Chen Y M, et al. Studies on the physiological and biochemical characters in carrot male-sterile lines. Acta Agriculturae Boreali-Sinica, 2006(3): 19-22. |
梁艳荣, 胡小红, 陈源闽, 等. 胡萝卜雄性不育系生理生化特性研究. 华北农学报, 2006(3): 19-22. | |
32 | Sun R F, Fang Z Y, Zhang S J, et al. Biochemical analysis of cold-tolerant ogura CMS Chinese cabbage lines. Acta Horticulturae Sinica, 2000(3): 187-192. |
孙日飞, 方智远, 张淑江, 等. 萝卜胞质大白菜雄性不育系的生化分析. 园艺学报, 2000(3): 187-192. | |
33 | Jiang H B, Xu Y, Song W X, et al. Physiological and biochemical changes during bud development in male sterile plant of Camellia crassicolumna. Plant Physiology Journal, 2020, 56(9): 1807-1817. |
蒋会兵, 许燕, 宋维希, 等. 厚轴茶雄性不育株花蕾发育过程中的生理生化变化. 植物生理学报, 2020, 56(9): 1807-1817. | |
34 | Huang H Y, Wang Y, Yuan Q H, et al. Changes of enzyme activities in the leaves of different resistance alfalfa strains infected with Pseudopeziza medicaginis. Chinese Journal of Grassland, 2015, 37(3): 55-59. |
黄海燕, 王瑜, 袁庆华, 等. 不同抗性苜蓿株叶片感染假盘菌后酶活性的变化.中国草地学报, 2015, 37(3): 55-59. | |
35 | Wang Y Q. Physiological, biochemical and molecular mechanism of male sterility in watermelon hybrid line Se18. Xianyang: Northwest A&F University, 2020. |
王永琦. 西瓜核雄性不育两用系Se18不育特性的生理生化与分子机制研究. 咸阳: 西北农林科技大学, 2020. | |
36 | Qiao X L, Gao Q R, Zhang A M, et al. Analysis of photosynthetic characteristics of K, V, T and CHA-Cytoplasmic male sterile lines of wheat. Acta Agronomica Sinica, 2006(9): 1323-1328. |
乔晓琳, 高庆荣, 张爱民, 等. 小麦K、V、T、CHA细胞质雄性不育类型的光合特性分析. 作物学报, 2006(9): 1323-1328. | |
37 | Wang H, Shi S L, Liu Z J. Analysis of morphological characteristics and variation of alfalfa hybrid offspring. Grassland and Turf, 2014, 34(5): 21-31. |
王虹, 师尚礼, 刘正璟. 紫花苜蓿多元杂交后代形态学特征及变异分析. 草原与草坪, 2014, 34(5): 21-31. |
[1] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[2] | 纪童, 蒋齐, 王占军, 季波. 7种禾本科牧草抗旱性研究与评价[J]. 草业学报, 2022, 31(7): 144-156. |
[3] | 谢文辉, 黄莉娟, 赵丽丽, 王雷挺, 赵文武. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
[4] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[5] | 张铎, 李岚涛, 林迪, 郑龙辉, 耿赛男, 石纹碹, 盛开, 苗玉红, 王宜伦. 施磷水平对菊芋块茎产量、品质、植株生理特性与磷利用率的影响[J]. 草业学报, 2022, 31(6): 139-149. |
[6] | 赵娟娟, 车大璐, 郭玮婷, 张伟涛, 刘连超, 赵俐辰, 高玉红, 孙新胜, 李雪梅, 王媛. 复方中药对热应激条件下杂交小尾寒羊生产性能、生理参数和血液理化指标的影响[J]. 草业学报, 2022, 31(5): 178-189. |
[7] | 吴瑞, 刘文辉, 张永超, 刘敏洁. 老芒麦离区形态特征及生理特性差异研究[J]. 草业学报, 2022, 31(4): 81-92. |
[8] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[9] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[10] | 谭真真, 张夏香, 杨志民. 冷季型草坪草耐热性研究进展[J]. 草业学报, 2021, 30(9): 193-202. |
[11] | 李欣航, 肖泽华, 匡雪韶, 王悟敏, 罗亮宇, 刘文胜. 锰胁迫下鸡眼草的富集特征及生理响应[J]. 草业学报, 2021, 30(7): 139-147. |
[12] | 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93. |
[13] | 王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报, 2021, 30(4): 150-159. |
[14] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[15] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||