草业学报 ›› 2022, Vol. 31 ›› Issue (11): 48-60.DOI: 10.11686/cyxb2022137
潘静1,2,3(), 张俊超1,2,3, 陈有军1,2,3, 周青平1,2,3()
收稿日期:
2022-03-26
修回日期:
2022-05-18
出版日期:
2022-11-20
发布日期:
2022-10-01
通讯作者:
周青平
作者简介:
E-mail: qpingzh@yahoo.com.cn基金资助:
Jing PAN1,2,3(), Jun-chao ZHANG1,2,3, You-jun CHEN1,2,3, Qing-ping ZHOU1,2,3()
Received:
2022-03-26
Revised:
2022-05-18
Online:
2022-11-20
Published:
2022-10-01
Contact:
Qing-ping ZHOU
摘要:
本研究利用SCoT分子标记对青藏高原披碱草属3个物种的种质资源开展遗传多样性分析和DNA指纹图谱构建,为不同物种的材料鉴定提供理论依据。在80个SCoT引物中筛选出22条引物进行PCR扩增,共扩增出290个条带,其中多态性条带254个,多态性条带比率占87.59%。Shannon多样性信息指数(I)、Nei’s 基因多样性指数(H)、观察等位基因数(Na)和有效等位基因数(Ne)的平均值分别为:0.5411、0.3643、1.9856和1.6270。聚类分析结果表明,遗传相似系数变化范围为0.50~0.80,在遗传相似系数为0.53处,可将46份材料分为2个组群,主坐标分析结果与聚类分析结果保持一致,同时利用4个SCoT引物构建了46份材料的DNA指纹图谱。SCoT分子标记适用于披碱草属种质资源遗传多样性分析及DNA指纹图谱构建,该研究为野生披碱草属种质鉴定、优质性状挖掘、育种实践提供了理论基础。
潘静, 张俊超, 陈有军, 周青平. 基于SCoT标记的披碱草属种质遗传多样性分析及指纹图谱构建[J]. 草业学报, 2022, 31(11): 48-60.
Jing PAN, Jun-chao ZHANG, You-jun CHEN, Qing-ping ZHOU. Genetic diversity analysis and fingerprint construction of Elymus germplasm based on SCoT markers[J]. Acta Prataculturae Sinica, 2022, 31(11): 48-60.
编号 Code | 材料编号 Accession | 种质 Germplasm | 种质原始采集地信息 Information of the original collection site of germplasm | 海拔Elevation (m) |
---|---|---|---|---|
1 | I-1-3-3 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
2 | I-1-7-4 | 披碱草E. dahuricus | 青海省共和县江西沟Jiangxi Valley, Gonghe County, Qinghai (100°31' E, 36°34' N) | 3600 |
3 | I-8-3-9 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
4 | I-1-7-25 | 披碱草E. dahuricus | 青海省同德县河北乡Hebei Township, Tongde County, Qinghai (100°48' E,34°42' N) | 3600 |
5 | I-1-5-33 | 披碱草E. dahuricus | 青海省玛沁县雪山乡Xueshan Township, Maqin County, Qinghai (99°44' E, 34°47' N) | 4200 |
6 | 09-280 | 披碱草E. dahuricus | 青海省海晏县金滩乡Jintan Township, Haiyan County, Qinghai (101°2' E, 36°49' N) | 2940 |
7 | I-1-1-7-2 | 披碱草E. dahuricus | 青海省共和县江西沟Jiangxi Valley, Gonghe County, Qinghai (100°31' E, 36°34' N) | 3600 |
8 | I-1-7-27 | 披碱草E. dahuricus | 青海省海晏县金滩乡Jintan Township, Haiyan County, Qinghai (101°2' E, 36°49' N) | 2940 |
9 | 09-055 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
10 | 09-370 | 披碱草E. dahuricus | 青海省都兰县香日德镇Xiangride Township, Dulan County, Qinghai (97°55' E, 36°0' N) | 2950 |
11 | 09-083 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
12 | 09-015 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
13 | I-1-17-3 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
14 | I-1-13-7 | 披碱草E. dahuricus | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
15 | I-1-7-12 | 披碱草E. dahuricus | 青海省天峻县生格乡Shengge Township, Tianjun County, Qinghai (98°22' E, 37°19' N) | 3485 |
16 | 10-217 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
17 | 10-216 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
18 | 10-63 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
19 | 10-62 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
20 | I-1-1-4 | 垂穗披碱草E. nutans | 青海省共和县铁卜加村Tiebujia Village, Gonghe County, Qinghai (99°36' E, 37°2' N) | 3400 |
21 | I-1-1-30 | 垂穗披碱草E. nutans | 青海省玛多县花石峡镇Huashixia Township, Maduo County, Qinghai (98°53' E, 35°6' N) | 4500 |
22 | I-1-1-5 | 垂穗披碱草E. nutans | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
23 | I-1-1-16 | 垂穗披碱草E. nutans | 青海省久治县索呼日麻乡Suohurima Township, Jiuzhi County, Qinghai (100°57' E, 33°32' N) | 3900 |
24 | I-1-1-13 | 垂穗披碱草E. nutans | 青海省乌兰县赛什克乡Saishike Township, Wulan County, Qinghai (98°24' E, 36°57' N) | 4000 |
25 | I-1-1-1 | 垂穗披碱草E. nutans | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
26 | I-1-1-38 | 垂穗披碱草E. nutans | 青海省共和县石乃亥乡Shinaihai Township, Gonghe County, Qinghai (99°37' E, 37°0' N) | 3280 |
27 | 09-292 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
28 | I-1-1-34 | 垂穗披碱草E. nutans | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
29 | 09-174 | 垂穗披碱草E. nutans | 青海省共和县三塔拉Santala, Gonghe County, Qinghai (100°14' E, 36°0' N) | 3260 |
30 | 10-128 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
31 | 10-78 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
32 | 10-40 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
33 | I-1-5-13 | 老芒麦E. sibiricus | 青海省天峻县龙门乡Longmen Township, Tianjun County, Qinghai (98°48' E, 37°53' N) | 4000 |
34 | 09-214 | 老芒麦E. sibiricus | 青海省天峻县新源镇Xinyuan Township, Tianjun County, Qinghai (99°3' E, 37°18' N) | 3400 |
35 | 09-149 | 老芒麦E. sibiricus | 青海省湟源县日月藏族乡Riyue Tibetan Township, Huangyuan County, Qinghai (101°9' E, 36°31' N) | 3100 |
36 | 09-183 | 老芒麦E. sibiricus | 青海省海晏县西海镇Xihai Township, Haiyan County, Qinghai (100°54' E, 36°56' N) | 3180 |
37 | I-1-13-3 | 老芒麦E. sibiricus | 青海省共和县铁盖乡Tiegai Township, Gonghe County, Qinghai (100°14' E, 36°0' N) | 3200 |
38 | I-1-15-3 | 老芒麦E. sibiricus | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
39 | I-1-5-22 | 老芒麦E. sibiricus | 青海省班玛县吉卡乡Jika Township, Banma County, Qinghai (100°18' E, 32°49' N) | 3800 |
40 | I-1-5-60 | 老芒麦E. sibiricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
41 | I-1-5-40 | 老芒麦E. sibiricus | 青海省同德县巴沟乡Bagou Township, Tongde County, Qinghai (100°28' E, 35°17' N) | 3000 |
42 | I-4-15-11 | 老芒麦E. sibiricus | 青海省刚察县三角城种羊场Sheep Farm, Sanjiaocheng, Qinghai (100°18' E, 37°16' N) | 3300 |
43 | 09-110 | 老芒麦E. sibiricus | 青海省平安县三合镇Sanhe Town, Ping’an County, Qinghai (102°0' E, 36°27' N) | 2900 |
44 | 09-124 | 老芒麦E. sibiricus | 青海省平安县三合镇Sanhe Town, Ping’an County, Qinghai (102°0' E, 36°27' N) | 2900 |
45 | 09-152 | 老芒麦E. sibiricus | 青海省湟源县日月藏族乡Riyue Tibetan Township, Huangyuan County, Qinghai (101°9' E, 36°31' N) | 3100 |
46 | I-4-6-2 | 老芒麦E. sibiricus | 青海省海晏县西海镇Xihai Township, Haiyan County, Qinghai (100°54' E, 36°56' N) | 3180 |
表1 试验材料及来源
Table 1 Materials used in the study and source
编号 Code | 材料编号 Accession | 种质 Germplasm | 种质原始采集地信息 Information of the original collection site of germplasm | 海拔Elevation (m) |
---|---|---|---|---|
1 | I-1-3-3 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
2 | I-1-7-4 | 披碱草E. dahuricus | 青海省共和县江西沟Jiangxi Valley, Gonghe County, Qinghai (100°31' E, 36°34' N) | 3600 |
3 | I-8-3-9 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
4 | I-1-7-25 | 披碱草E. dahuricus | 青海省同德县河北乡Hebei Township, Tongde County, Qinghai (100°48' E,34°42' N) | 3600 |
5 | I-1-5-33 | 披碱草E. dahuricus | 青海省玛沁县雪山乡Xueshan Township, Maqin County, Qinghai (99°44' E, 34°47' N) | 4200 |
6 | 09-280 | 披碱草E. dahuricus | 青海省海晏县金滩乡Jintan Township, Haiyan County, Qinghai (101°2' E, 36°49' N) | 2940 |
7 | I-1-1-7-2 | 披碱草E. dahuricus | 青海省共和县江西沟Jiangxi Valley, Gonghe County, Qinghai (100°31' E, 36°34' N) | 3600 |
8 | I-1-7-27 | 披碱草E. dahuricus | 青海省海晏县金滩乡Jintan Township, Haiyan County, Qinghai (101°2' E, 36°49' N) | 2940 |
9 | 09-055 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
10 | 09-370 | 披碱草E. dahuricus | 青海省都兰县香日德镇Xiangride Township, Dulan County, Qinghai (97°55' E, 36°0' N) | 2950 |
11 | 09-083 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
12 | 09-015 | 披碱草E. dahuricus | 青海省平安县巴藏沟Bazanggou, Ping’an County, Qinghai (102°10' E, 36°26' N) | 3000 |
13 | I-1-17-3 | 披碱草E. dahuricus | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
14 | I-1-13-7 | 披碱草E. dahuricus | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
15 | I-1-7-12 | 披碱草E. dahuricus | 青海省天峻县生格乡Shengge Township, Tianjun County, Qinghai (98°22' E, 37°19' N) | 3485 |
16 | 10-217 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
17 | 10-216 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
18 | 10-63 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
19 | 10-62 | 披碱草E. dahuricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
20 | I-1-1-4 | 垂穗披碱草E. nutans | 青海省共和县铁卜加村Tiebujia Village, Gonghe County, Qinghai (99°36' E, 37°2' N) | 3400 |
21 | I-1-1-30 | 垂穗披碱草E. nutans | 青海省玛多县花石峡镇Huashixia Township, Maduo County, Qinghai (98°53' E, 35°6' N) | 4500 |
22 | I-1-1-5 | 垂穗披碱草E. nutans | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
23 | I-1-1-16 | 垂穗披碱草E. nutans | 青海省久治县索呼日麻乡Suohurima Township, Jiuzhi County, Qinghai (100°57' E, 33°32' N) | 3900 |
24 | I-1-1-13 | 垂穗披碱草E. nutans | 青海省乌兰县赛什克乡Saishike Township, Wulan County, Qinghai (98°24' E, 36°57' N) | 4000 |
25 | I-1-1-1 | 垂穗披碱草E. nutans | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
26 | I-1-1-38 | 垂穗披碱草E. nutans | 青海省共和县石乃亥乡Shinaihai Township, Gonghe County, Qinghai (99°37' E, 37°0' N) | 3280 |
27 | 09-292 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
28 | I-1-1-34 | 垂穗披碱草E. nutans | 青海省刚察县泉吉乡Quanji Township, Gangcha County, Qinghai (99°54' E, 37°16' N) | 3300 |
29 | 09-174 | 垂穗披碱草E. nutans | 青海省共和县三塔拉Santala, Gonghe County, Qinghai (100°14' E, 36°0' N) | 3260 |
30 | 10-128 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
31 | 10-78 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
32 | 10-40 | 垂穗披碱草E. nutans | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
33 | I-1-5-13 | 老芒麦E. sibiricus | 青海省天峻县龙门乡Longmen Township, Tianjun County, Qinghai (98°48' E, 37°53' N) | 4000 |
34 | 09-214 | 老芒麦E. sibiricus | 青海省天峻县新源镇Xinyuan Township, Tianjun County, Qinghai (99°3' E, 37°18' N) | 3400 |
35 | 09-149 | 老芒麦E. sibiricus | 青海省湟源县日月藏族乡Riyue Tibetan Township, Huangyuan County, Qinghai (101°9' E, 36°31' N) | 3100 |
36 | 09-183 | 老芒麦E. sibiricus | 青海省海晏县西海镇Xihai Township, Haiyan County, Qinghai (100°54' E, 36°56' N) | 3180 |
37 | I-1-13-3 | 老芒麦E. sibiricus | 青海省共和县铁盖乡Tiegai Township, Gonghe County, Qinghai (100°14' E, 36°0' N) | 3200 |
38 | I-1-15-3 | 老芒麦E. sibiricus | 青海省达日县吉迈镇Jimai Township, Dari County, Qinghai (99°41' E, 33°45' N) | 4200 |
39 | I-1-5-22 | 老芒麦E. sibiricus | 青海省班玛县吉卡乡Jika Township, Banma County, Qinghai (100°18' E, 32°49' N) | 3800 |
40 | I-1-5-60 | 老芒麦E. sibiricus | 青海省平安县沙沟乡Shagou Township, Ping’an County, Qinghai (102°4' E, 36°23' N) | 3400 |
41 | I-1-5-40 | 老芒麦E. sibiricus | 青海省同德县巴沟乡Bagou Township, Tongde County, Qinghai (100°28' E, 35°17' N) | 3000 |
42 | I-4-15-11 | 老芒麦E. sibiricus | 青海省刚察县三角城种羊场Sheep Farm, Sanjiaocheng, Qinghai (100°18' E, 37°16' N) | 3300 |
43 | 09-110 | 老芒麦E. sibiricus | 青海省平安县三合镇Sanhe Town, Ping’an County, Qinghai (102°0' E, 36°27' N) | 2900 |
44 | 09-124 | 老芒麦E. sibiricus | 青海省平安县三合镇Sanhe Town, Ping’an County, Qinghai (102°0' E, 36°27' N) | 2900 |
45 | 09-152 | 老芒麦E. sibiricus | 青海省湟源县日月藏族乡Riyue Tibetan Township, Huangyuan County, Qinghai (101°9' E, 36°31' N) | 3100 |
46 | I-4-6-2 | 老芒麦E. sibiricus | 青海省海晏县西海镇Xihai Township, Haiyan County, Qinghai (100°54' E, 36°56' N) | 3180 |
引物编号 Primer No. | 序列 Sequence (5'-3') | 退火温度 Annealing temperature (℃) |
---|---|---|
SCoT 05 | CAACAATGGCTACCACGA | 54.6 |
SCoT 17 | ACCATGGCTACCACCGAG | 59.6 |
SCoT 21 | ACGACATGGCGACCCACA | 54.6 |
SCoT 22 | AACCATGGCTACCACCAC | 59.6 |
SCoT 23 | CACCATGGCTACCACCAG | 62.0 |
SCoT 24 | CACCATGGCTACCACCAT | 62.0 |
SCoT 26 | ACCATGGCTACCACCGTC | 62.0 |
SCoT 27 | ACCATGGCTACCACCGTG | 62.0 |
SCoT 32 | CCATGGCTACCACCGCAC | 59.6 |
SCoT 33 | CCATGGCTACCACCGCAG | 59.6 |
SCoT 36 | GCAACAATGGCTACCACC | 61.1 |
SCoT 40 | CAATGGCTACCACTACAG | 59.6 |
SCoT 41 | CAATGGCTACCACTGACA | 59.6 |
SCoT 42 | CAATGGCTACCATTAGCG | 57.3 |
SCoT 45 | ACAATGGCTACCACTGAC | 54.6 |
SCoT 49 | ACAATGGCTACCACTGCG | 54.6 |
SCoT 51 | ACAATGGCTACCACTGTC | 57.3 |
SCoT 54 | ACAATGGCTACCACCAGC | 62.0 |
SCoT 57 | ACAATGGCTACCACTACG | 54.6 |
SCoT 59 | ACAATGGCTACCACCATC | 54.6 |
SCoT 61 | CAACAATGGCTACCACCG | 59.6 |
SCoT 62 | ACCATGGCTACCACGGAG | 59.6 |
表2 筛选出的引物和退火温度
Table 2 Screened primers and annealing temperatures
引物编号 Primer No. | 序列 Sequence (5'-3') | 退火温度 Annealing temperature (℃) |
---|---|---|
SCoT 05 | CAACAATGGCTACCACGA | 54.6 |
SCoT 17 | ACCATGGCTACCACCGAG | 59.6 |
SCoT 21 | ACGACATGGCGACCCACA | 54.6 |
SCoT 22 | AACCATGGCTACCACCAC | 59.6 |
SCoT 23 | CACCATGGCTACCACCAG | 62.0 |
SCoT 24 | CACCATGGCTACCACCAT | 62.0 |
SCoT 26 | ACCATGGCTACCACCGTC | 62.0 |
SCoT 27 | ACCATGGCTACCACCGTG | 62.0 |
SCoT 32 | CCATGGCTACCACCGCAC | 59.6 |
SCoT 33 | CCATGGCTACCACCGCAG | 59.6 |
SCoT 36 | GCAACAATGGCTACCACC | 61.1 |
SCoT 40 | CAATGGCTACCACTACAG | 59.6 |
SCoT 41 | CAATGGCTACCACTGACA | 59.6 |
SCoT 42 | CAATGGCTACCATTAGCG | 57.3 |
SCoT 45 | ACAATGGCTACCACTGAC | 54.6 |
SCoT 49 | ACAATGGCTACCACTGCG | 54.6 |
SCoT 51 | ACAATGGCTACCACTGTC | 57.3 |
SCoT 54 | ACAATGGCTACCACCAGC | 62.0 |
SCoT 57 | ACAATGGCTACCACTACG | 54.6 |
SCoT 59 | ACAATGGCTACCACCATC | 54.6 |
SCoT 61 | CAACAATGGCTACCACCG | 59.6 |
SCoT 62 | ACCATGGCTACCACGGAG | 59.6 |
引物序号 Primer No. | 扩增条带数 Total number of amplified bands | 多态性条带数 Number of polymorphic bands | 多态性条带比率 Percentage of polymorphic bands (%) | 观察等位基因数 Observe the number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s指数 Nei’s gene diversity (H) | 香农指数 Shannon’s index (I) |
---|---|---|---|---|---|---|---|
SCoT 05 | 14 | 13 | 92.8571 | 1.9565 | 1.6666 | 0.3761 | 0.5503 |
SCoT 17 | 15 | 12 | 80.0000 | 1.9783 | 1.6443 | 0.3603 | 0.5292 |
SCoT 21 | 14 | 13 | 92.8571 | 2.0000 | 1.5049 | 0.3234 | 0.4989 |
SCoT 22 | 9 | 8 | 88.8889 | 2.0000 | 1.7328 | 0.4075 | 0.5915 |
SCoT 23 | 9 | 7 | 77.7778 | 1.9565 | 1.6030 | 0.3534 | 0.5261 |
SCoT 24 | 14 | 12 | 85.7143 | 1.9130 | 1.5349 | 0.3158 | 0.4751 |
SCoT 26 | 18 | 15 | 83.3333 | 2.0000 | 1.6175 | 0.3652 | 0.5451 |
SCoT 27 | 16 | 14 | 87.5000 | 2.0000 | 1.5594 | 0.3414 | 0.5178 |
SCoT 32 | 9 | 8 | 88.8889 | 2.0000 | 1.7512 | 0.4198 | 0.6082 |
SCoT 33 | 11 | 11 | 100.0000 | 2.0000 | 1.6758 | 0.3975 | 0.5854 |
SCoT 36 | 13 | 13 | 100.0000 | 2.0000 | 1.6428 | 0.3706 | 0.5492 |
SCoT 40 | 12 | 11 | 91.6667 | 1.9783 | 1.5548 | 0.3380 | 0.5115 |
SCoT 41 | 16 | 15 | 93.7500 | 1.9783 | 1.5146 | 0.3126 | 0.4778 |
SCoT 42 | 12 | 8 | 66.6667 | 2.0000 | 1.4762 | 0.3024 | 0.4702 |
SCoT 45 | 16 | 13 | 81.2500 | 1.9783 | 1.6516 | 0.3764 | 0.5560 |
SCoT 49 | 13 | 13 | 100.0000 | 2.0000 | 1.6637 | 0.3817 | 0.5637 |
SCoT 51 | 12 | 9 | 75.0000 | 1.9649 | 1.8307 | 0.4448 | 0.6334 |
SCoT 54 | 11 | 9 | 81.8182 | 1.9783 | 1.7809 | 0.4275 | 0.6132 |
SCoT 57 | 14 | 13 | 92.8571 | 2.0000 | 1.5250 | 0.3238 | 0.4963 |
SCoT 59 | 13 | 12 | 92.3077 | 2.0000 | 1.7621 | 0.4165 | 0.6014 |
SCoT 61 | 15 | 12 | 80.0000 | 2.0000 | 1.6787 | 0.3822 | 0.5616 |
SCoT 62 | 14 | 13 | 92.8571 | 2.0000 | 1.4220 | 0.2776 | 0.4416 |
平均 Mean | 13.18 | 11.55 | 87.5862 | 1.9856 | 1.6270 | 0.3643 | 0.5411 |
总计 Total | 290 | 254 |
表3 披碱草属种质SCoT分子标记的多态性分析
Table 3 Polymorphism analysis of SCoT molecular markers in Elymus germplasm
引物序号 Primer No. | 扩增条带数 Total number of amplified bands | 多态性条带数 Number of polymorphic bands | 多态性条带比率 Percentage of polymorphic bands (%) | 观察等位基因数 Observe the number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) | Nei’s指数 Nei’s gene diversity (H) | 香农指数 Shannon’s index (I) |
---|---|---|---|---|---|---|---|
SCoT 05 | 14 | 13 | 92.8571 | 1.9565 | 1.6666 | 0.3761 | 0.5503 |
SCoT 17 | 15 | 12 | 80.0000 | 1.9783 | 1.6443 | 0.3603 | 0.5292 |
SCoT 21 | 14 | 13 | 92.8571 | 2.0000 | 1.5049 | 0.3234 | 0.4989 |
SCoT 22 | 9 | 8 | 88.8889 | 2.0000 | 1.7328 | 0.4075 | 0.5915 |
SCoT 23 | 9 | 7 | 77.7778 | 1.9565 | 1.6030 | 0.3534 | 0.5261 |
SCoT 24 | 14 | 12 | 85.7143 | 1.9130 | 1.5349 | 0.3158 | 0.4751 |
SCoT 26 | 18 | 15 | 83.3333 | 2.0000 | 1.6175 | 0.3652 | 0.5451 |
SCoT 27 | 16 | 14 | 87.5000 | 2.0000 | 1.5594 | 0.3414 | 0.5178 |
SCoT 32 | 9 | 8 | 88.8889 | 2.0000 | 1.7512 | 0.4198 | 0.6082 |
SCoT 33 | 11 | 11 | 100.0000 | 2.0000 | 1.6758 | 0.3975 | 0.5854 |
SCoT 36 | 13 | 13 | 100.0000 | 2.0000 | 1.6428 | 0.3706 | 0.5492 |
SCoT 40 | 12 | 11 | 91.6667 | 1.9783 | 1.5548 | 0.3380 | 0.5115 |
SCoT 41 | 16 | 15 | 93.7500 | 1.9783 | 1.5146 | 0.3126 | 0.4778 |
SCoT 42 | 12 | 8 | 66.6667 | 2.0000 | 1.4762 | 0.3024 | 0.4702 |
SCoT 45 | 16 | 13 | 81.2500 | 1.9783 | 1.6516 | 0.3764 | 0.5560 |
SCoT 49 | 13 | 13 | 100.0000 | 2.0000 | 1.6637 | 0.3817 | 0.5637 |
SCoT 51 | 12 | 9 | 75.0000 | 1.9649 | 1.8307 | 0.4448 | 0.6334 |
SCoT 54 | 11 | 9 | 81.8182 | 1.9783 | 1.7809 | 0.4275 | 0.6132 |
SCoT 57 | 14 | 13 | 92.8571 | 2.0000 | 1.5250 | 0.3238 | 0.4963 |
SCoT 59 | 13 | 12 | 92.3077 | 2.0000 | 1.7621 | 0.4165 | 0.6014 |
SCoT 61 | 15 | 12 | 80.0000 | 2.0000 | 1.6787 | 0.3822 | 0.5616 |
SCoT 62 | 14 | 13 | 92.8571 | 2.0000 | 1.4220 | 0.2776 | 0.4416 |
平均 Mean | 13.18 | 11.55 | 87.5862 | 1.9856 | 1.6270 | 0.3643 | 0.5411 |
总计 Total | 290 | 254 |
类群 Group | 多态性条带数 The number of polymorphic bands (NPB) | 多态性条带比率 Percentage of polymorphic bands (PPB, %) | 香农指数 Shannon’s index (I) | Nei’s指数 Nei’s gene diversity (H) | 观察等位基因数 Observe the number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) |
---|---|---|---|---|---|---|
226 | 91.02 | 0.4833 | 0.3755 | 1.9499 | 1.6669 | |
208 | 92.33 | 0.5785 | 0.3963 | 1.9888 | 1.7030 | |
221 | 89.05 | 0.4488 | 0.4085 | 1.9602 | 1.7427 | |
平均Mean | 218 | 90.80 | 0.5035 | 0.3934 | 1.9663 | 1.7042 |
表4 通过SCoT标记检测到的披碱草属3个种群内的遗传变异
Table 4 Genetic variation in three populations of Elymus detected by SCoT markers
类群 Group | 多态性条带数 The number of polymorphic bands (NPB) | 多态性条带比率 Percentage of polymorphic bands (PPB, %) | 香农指数 Shannon’s index (I) | Nei’s指数 Nei’s gene diversity (H) | 观察等位基因数 Observe the number of alleles (Na) | 有效等位基因数 Effective number of alleles (Ne) |
---|---|---|---|---|---|---|
226 | 91.02 | 0.4833 | 0.3755 | 1.9499 | 1.6669 | |
208 | 92.33 | 0.5785 | 0.3963 | 1.9888 | 1.7030 | |
221 | 89.05 | 0.4488 | 0.4085 | 1.9602 | 1.7427 | |
平均Mean | 218 | 90.80 | 0.5035 | 0.3934 | 1.9663 | 1.7042 |
变异来源Source of variance | 自由度Degree of freedom (df) | 平方和Sum of squares | 变异组分Variance component | 总变异Total variation (%) |
---|---|---|---|---|
物种间Among species | 2 | 582.38 | 16.36 | 27.09 |
物种内Within species | 43 | 1892.83 | 44.02 | 72.91 |
表5 3个属的分子方差分析
Table 5 Analysis of molecular variance (AMOVA) of three genera regions
变异来源Source of variance | 自由度Degree of freedom (df) | 平方和Sum of squares | 变异组分Variance component | 总变异Total variation (%) |
---|---|---|---|---|
物种间Among species | 2 | 582.38 | 16.36 | 27.09 |
物种内Within species | 43 | 1892.83 | 44.02 | 72.91 |
图1 SCoT标记对46份披碱草属材料亲缘关系聚类分析1~46号材料编号同表1,下同。1-46 are the same as Table 1. The same below.
Fig.1 UPGMA dendrogram for 46 resources of Elymus based on SCoT markers
1 | Fang X J. DNA marker assisted breeding of crops. Beijing: Science Press, 2001: 2. |
方宣钧. 作物DNA标记辅助育种. 北京: 科学出版社, 2001: 2. | |
2 | He Q Y, Wang W B, Yang H Y, et al. Optimization of SCoT reaction system and genetic diversity of different fall dormancy alfalfa. Acta Prataculturae Sinica, 2012, 21(2): 133-140. |
何庆元, 王吴斌, 杨红燕, 等. 利用SCoT标记分析不同秋眠型苜蓿的遗传多样性. 草业学报, 2012, 21(2): 133-140. | |
3 | Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009, 27(1): 86-93. |
4 | Luo C, He X H, Chen H, et al. Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers. Biochemical Systematics and Ecology, 2010, 38(6): 1176-1184. |
5 | Sawant S V, Singh P K, Gupta S K, et al. Conserved nucleotide sequences in highly expressed genes in plants. Journal of Genetics, 1999, 78(2): 123-131. |
6 | Ou J L, Zhu Y F, Chen H J, et al. Genetic relationship analysis of 48 Averrhoa carambola L. germplasms based on SCoT marker. Journal of Southern Agriculture, 2019, 50(8): 1680-1687. |
欧景莉, 朱杨帆, 陈豪军, 等. 基于SCoT分子标记的48份杨桃种质遗传多样性分析. 南方农业学报, 2019, 50(8): 1680-1687. | |
7 | Guo D L, Zhang J Y, Liu C H. Genetic diversity in some grape varieties revealed by SCoT analyses. Molecular Biology Reports, 2012, 39(5): 5307-5313. |
8 | Cong L, He X H, Hu C, et al. Genetic relationship and diversity of Mangifera indica L.: Revealed through SCoT analysis. Genetic Resources & Crop Evolution, 2012, 59(7): 1505-1515. |
9 | Martin V, Žlmíra B, Zdenka G, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated castor (Ricinus communis L.) genotypes. Genetika, 2019, 51(1): 137-146. |
10 | Li J, Chen S Y, Zhao X, et al. Analysis of genetic structure and fingerprinting in oat varieties based on SCoT markers. Acta Prataculturae Sinica, 2021, 30(7): 72-81. |
李进, 陈仕勇, 赵旭, 等. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析. 草业学报, 2021, 30(7): 72-81. | |
11 | Sun C C, Wang Z G, Zhou W, et al. Establishment and optimization of a SCoT-PCR reaction system for sorghum. Molecular Plant Breeding, 2021, 19(17): 5735-5739. |
孙成成, 王振国, 周伟, 等. 高粱SCoT-PCR反应体系的建立与优化. 分子植物育种, 2021, 19(17): 5735-5739. | |
12 | Zhang J C. Identification and functional analysis of candidate genes for seed shattering in Elymus sibiricus based on transcriptome sequencing. Lanzhou: Lanzhou University, 2020. |
张俊超. 基于转录组测序挖掘老芒麦落粒候选基因及其功能分析. 兰州: 兰州大学, 2020. | |
13 | Jiang L F, Zhang X Q, Huang L K, et al. Construction of DNA fingerprinting of dominant orchardgrass (Dactylis glomerata) varieties of China. Journal of Plant Genetic Resources, 2014, 15(3): 604-614. |
蒋林峰, 张新全, 黄琳凯, 等. 中国鸭茅主栽品种DNA指纹图谱构建. 植物遗传资源学报, 2014, 15(3): 604-614. | |
14 | De Y, Zhao L X, Mu H B. Winter hardiness of 30 germplasm materials of Elymus sibiricus. Pratacultural Science, 2011, 28(1): 90-93. |
德英, 赵来喜, 穆怀彬. 30份老芒麦种质材料抗寒性研究. 草业科学, 2011, 28(1): 90-93. | |
15 | Chen G, He L F. Evaluation of ecological adaptability and productivity of two species of Elymus in alpine region. Pratacultural Science, 2004, 21(9): 39-42. |
陈功, 贺兰芳. 高寒地区两种老芒麦生态适应性和生产性能评价. 草业科学, 2004, 21(9): 39-42. | |
16 | Lei Y T, Dou Q W. Distinguishing Elymus nutans from Elymus sibiricus in Qinghai-Tibet Plateau using a SSR marker. Pratacultural Science, 2012, 29(6): 937-942. |
雷云霆, 窦全文. 青藏高原老芒麦和垂穗披碱草SSR分子标记鉴别. 草业科学, 2012, 29(6): 937-942. | |
17 | Chen L L, Wu Q, Zhang C B, et al. Morphological identification of Elymus natural hybrids. Journal of Grassland and Forage Science, 2019(5): 24-30. |
陈丽丽, 吴婍, 张昌兵, 等. 披碱草属天然杂种形态学鉴定. 草学, 2019(5): 24-30. | |
18 | Li S J. Agronomic traits and genetic diversity on wild germplasm resources of Elymus L. Xining: Qinghai University, 2007. |
李淑娟. 披碱草属野生种质资源的农艺性状及遗传多样性研究. 西宁: 青海大学, 2007. | |
19 | Liu X L, Ma L, Chen X K, et al. Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan, China. Acta Agronomica Sinica, 2010, 36(2): 202-210. |
刘新龙, 马丽, 陈学宽, 等. 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010, 36(2): 202-210. | |
20 | Yeh F, Yang R, Boyle T. POPGENE version 1.32 Microsoft Windows-based freeware for populations genetic analysis. Edmonton: University of Alberta, 1999. |
21 | Mengoni A, Bazzicalupo M. The statistical treatment of data and the analysis of molecular variance (AMOVA) in molecular microbial ecology. Annals of Microbiology, 2002, 52(2): 95-102. |
22 | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
23 | Pritchard J K, Stephens M J, Donnelly P J. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959. |
24 | Zhang F M, Ge S. Data analysis in population genetics. I. Analysis of RAPD data with AMOVA. Biodiversity Science, 2002(4): 438-444. |
张富民, 葛颂. 群体遗传学研究中的数据处理方法Ⅰ. RAPD数据的AMOVA分析. 生物多样性, 2002(4): 438-444. | |
25 | Yang X Y, Cai Y B, Huang Q W, et al. SCoT fingerprints and genetic variations of the papaya (Carica papaya L.) major cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9): 1756-1761. |
杨祥燕, 蔡元保, 黄秋伟, 等. 番木瓜主栽品种SCoT指纹图谱构建及遗传变异分析. 西北植物学报, 2013, 33(9): 1756-1761. | |
26 | Li Y, Wang J K, Qiu L J, et al. Crop molecular breeding in China: Current status and perspective. Acta Agronomica Sinica, 2010, 36(9): 1425-1430. |
黎裕, 王建康, 邱丽娟, 等. 中国作物分子育种现状与发展前景. 作物学报, 2010, 36(9): 1425-1430. | |
27 | Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant, 2003, 8(11): 554-560. |
28 | Long Z J, Fan L Z, Xu G, et al. Application advance of SCoT molecular markers in plants. Journal of Plant Genetic Resources, 2015, 16(2): 336-343. |
龙治坚, 范理璋, 徐刚, 等. SCoT分子标记在植物研究中的应用进展. 植物遗传资源学报, 2015, 16(2): 336-343. | |
29 | Peng Y L, Zhou Q P, Chen S Y, et al. Genetic diversity of Elymus nutans germplasm resources from the Qinghai-Tibet Plateau in detected by SSR marker. Pratacultural Science, 2018, 35(5): 1080-1089. |
彭语洛, 周青平, 陈仕勇, 等. 青藏高原垂穗披碱草种质资源遗传多样性的SSR分析. 草业科学, 2018, 35(5): 1080-1089. | |
30 | Zheng J H, Chen S Y, Chen Z H, et al. Assessment of genetic diversity of Elymus nutans in northwest plateau of Sichuan province using ISSR markers. Journal of Southwest Minzu University (Natural Science Edition), 2014, 40(3): 330-335. |
郑经红, 陈仕勇, 陈智华, 等. 川西北高原野生垂穗披碱草遗传多样性的ISSR分析. 西南民族大学学报(自然科学版), 2014, 40(3): 330-335. | |
31 | Miao J M, Zhang X Q, Chen Z H, et al. SRAP and RAPD analysis of Elymus nutans Griseb. germplasm from the Qinghai-Tibetan Plateau and Xinjiang. Acta Agrestia Sinica, 2011, 19(2): 306-316. |
苗佳敏, 张新全, 陈智华, 等. 青藏高原和新疆地区垂穗披碱草种质的SRAP及RAPD分析. 草地学报, 2011, 19(2): 306-316. | |
32 | Ma X, Chen S Y, Zhang X Q, et al. Genetic diversity of gliadin in worldwide germplasm collection of Elymus sibiricus. Acta Prataculturae Sinica, 2009, 18(3): 59-66. |
马啸, 陈仕勇, 张新全, 等. 老芒麦种质的醇溶蛋白遗传多样性研究. 草业学报, 2009, 18(3): 59-66. | |
33 | Ma X, Zhang X Q, Zhou Y H, et al. Assessing genetic diversity of Elymus sibiricus (Poaceae: Triticeae) populations from Qinghai-Tibet Plateau by ISSR markers. Biochemical Systematics and Ecology, 2008, 36(7): 514-522. |
34 | Gu X Y, Guo Z H, Zhang X Q, et al. Genetic diversity of Elymus sibiricus germplasm resources revealed by SRAP markers. Acta Prataculturae Sinica, 2014, 23(1): 205-216. |
顾晓燕, 郭志慧, 张新全, 等. 老芒麦种质资源遗传多样性的SRAP分析. 草业学报, 2014, 23(1): 205-216. | |
35 | Ma X, Chen S Y, Bai S Q, et al. RAPD analysis of genetic diversity and population structure of Elymus sibiricus (Poaceae) native to the southeastern Qinghai-Tibet Plateau, China. Genetics and Molecular Research, 2012, 11(3): 2708-2718. |
36 | Chen J, Liu K, Zha W, et al. Identification and verification of grain shape QTLs by SNP array in rice. PLoS One, 2021, 16(11): e0260133. |
37 | Hao Z F, Su Z J, Li L, et al. Application of association analysis with SNP markers on studies of drought tolerance in maize. Crops, 2009(6): 1-7. |
郝转芳, 苏治军, 李亮, 等. 基于SNP标记的关联分析在玉米耐旱研究中的应用. 作物杂志, 2009(6): 1-7. | |
38 | Sun C, Dong Z, Zhao L, et al. The wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020, 18(6): 1354-1360. |
39 | Zhang Z Y. Construction of genetic linkage map and QTL localization for seed shattering related genes in Elymus sibiricus L. Lanzhou: Lanzhou University, 2020. |
张宗瑜. 老芒麦高密度遗传图谱构建及落粒相关基因QTL定位. 兰州: 兰州大学, 2020. | |
40 | Yang D S. Construction of ultrahigh-density molecular genetic linkage map and QTL mapping for yield, and quality traits such as protein content of tetraploid crested wheatgrass. Hohhot: Inner Mongolia Agricultural University, 2020. |
杨东升. 四倍体冰草超高密度分子遗传连锁图谱构建及产量与蛋白质含量等品质性状的QTL定位. 呼和浩特: 内蒙古农业大学, 2020. | |
41 | Zhao X X. QTL analysis of flowering-times and candidate genes association analysis in orchardgrass. Ya’an: Sichuan Agricultural University, 2017. |
赵欣欣. 鸭茅开花相关性状QTL定位及其候选基因关联分析. 雅安: 四川农业大学, 2017. | |
42 | Bhattacharyya P, Kumaria S, Kumar S, et al. Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene, 2013, 529(1): 21-26. |
43 | Yan J J, Bai S Q, Ma X, et al. Genetic diversity of Elymus sibiricus and its breeding in China. Chinese Bulletin of Botany, 2007(2): 226-231. |
鄢家俊, 白史且, 马啸, 等. 老芒麦遗传多样性及育种研究进展. 植物学通报, 2007(2): 226-231. | |
44 | Ellstrand N C, Elam D R. Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 1993, 24(1): 217-242. |
45 | Wang H Z, Mao L P, Wang Y H, et al. DNA fingerprinting construction based on the optimal sampling strategy and genetic diversity analysis of Elymus sibiricus germplasm. Chinese Journal of Grassland, 2021, 43(1): 1-7. |
王惠知, 毛丽萍, 王雨涵, 等. 基于最适取样策略的老芒麦种质指纹图谱构建及遗传多样性分析. 中国草地学报, 2021, 43(1): 1-7. | |
46 | Mather K. Segregation and linkage in autotetraploids. Journal of Genetics, 1936, 32(2): 287-314. |
47 | Li S J, Zhou Q P, Yan H B. Research progress on genetic diversity of Elymus L. Prataculture & Animal Husbandry, 2006(11): 1-5. |
李淑娟, 周青平, 颜红波. 披碱草属植物遗传多样性研究进展. 草业与畜牧, 2006(11): 1-5. | |
48 | Sun J P, Yuan Q H. Research progress of the germplasm resource of Elymus L. Pratacultural Science, 2005, 22(12): 2-5. |
孙建萍, 袁庆华. 披碱草属种质资源研究进展. 草业科学, 2005, 22(12): 2-5. | |
49 | Zhang Z, Xie W, Zhang J, et al. Phenotype- and SSR-based estimates of genetic variation between and within two important Elymus species in western and northern China. Genes, 2018, 9(3): 147. |
50 | Gao G. Phylogenetic and evolution analysis of Elymus (Poaceae: Triticeae) in China. Ya’an: Sichuan Agricultural University, 2015. |
高刚. 国产披碱草属植物的系统与进化研究. 雅安: 四川农业大学, 2015. | |
51 | Li Y X. Genetic diversity study of Elymus species originated from China. Tai’an: Shandong Agricultural University, 2005. |
李永祥. 中国境内披碱草属植物的遗传多样性研究. 泰安: 山东农业大学, 2005. | |
52 | Chai X T. Using SCoT to analyze the genetic diversity of different pod shattering characteristics in common vetch. Lanzhou: Lanzhou University, 2018. |
柴旭田. 利用SCoT分子标记分析箭筈豌豆不同裂荚性状的遗传多样性. 兰州: 兰州大学, 2018. | |
53 | Che Y H, Li L H, He B R. Sampling strategy for genetic diversity in Agropyron Gaertn. based on gliadin. Journal of Plant Genetic Resources, 2004, 5(3): 216-221. |
车永和, 李立会, 何蓓如. 冰草属(Agropyron Gaertn.)植物遗传多样性取样策略基于醇溶蛋白的研究. 植物遗传资源学报, 2004, 5(3): 216-221. | |
54 | Zhang J Y, Yuan Q H, Zhang W S. The advances in study on forage germplasm resources and its genetic diversity in China. Grassland of China, 2003(3): 60-66. |
张吉宇, 袁庆华, 张文淑. 我国牧草种质资源及其遗传多样性的研究进展. 中国草地, 2003(3): 60-66. | |
55 | Liu X L. Studies on genetic diversity of two species of Elymus germplasm resources. Beijing: Chinese Academy of Agricultural Sciences, 2011. |
刘新亮. 两种披碱草属牧草种质资源遗传多样性研究. 北京: 中国农业科学院, 2011. | |
56 | Zhang R, Tang A J, Xie J H, et al. DNA fingerprinting and genetic diversity analysis of Elymus pastures. Journal of Northern Agriculture, 2019, 47(5): 1-8. |
张锐, 唐艾嘉, 解继红, 等. 披碱草属牧草DNA指纹图谱构建及遗传多样性分析. 北方农业学报, 2019, 47(5): 1-8. | |
57 | Wang Z H. DNA fingerprinting technology and its application in crop germplasm resources. Molecular Plant Breeding, 2006(3): 425-430. |
王忠华. DNA指纹图谱技术及其在作物品种资源中的应用. 分子植物育种, 2006(3): 425-430. |
[1] | 马士龙, 李小伟, 李响, 谢书琼, 刘益丽, 唐娇, 江明锋. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究[J]. 草业学报, 2022, 31(9): 183-194. |
[2] | 任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70. |
[3] | 常利芳, 李欣, 郭慧娟, 乔麟轶, 张树伟, 陈芳, 畅志坚, 张晓军. 小偃麦衍生系表型遗传多样性分析及综合评价[J]. 草业学报, 2022, 31(11): 61-74. |
[4] | 尹晓凡, 魏娜, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿反转录转座子IRAP分子标记开发及应用[J]. 草业学报, 2022, 31(1): 131-144. |
[5] | 李进, 陈仕勇, 赵旭, 田浩琦, 陈智华, 周青平. 基于SCoT标记的饲用燕麦品种遗传结构及指纹图谱分析[J]. 草业学报, 2021, 30(7): 72-81. |
[6] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[7] | 杨正禹, 陆忠杰, 张茂, 董瑞. 利用数字图像分析132份胡枝子种子表型性状遗传多样性[J]. 草业学报, 2021, 30(11): 87-97. |
[8] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[9] | 丁永福, 王纪良, 陈奋奇, 庄泽龙, 白明兴, 陆晏天, 金兵兵, 彭云玲. 玉米自交系SSR多样性与穗部性状的关联分析[J]. 草业学报, 2020, 29(7): 143-153. |
[10] | 王沛, 陈玖红, 王平, 马清, 田莉华, 陈有军, 周青平. 披碱草属植物抗逆性研究现状和存在的问题[J]. 草业学报, 2019, 28(5): 151-162. |
[11] | 闵学阳, 韦兴燚, 刘文献, 张正社, 金小煜, NDAYAMBAZABoniface, 吴洪林, 李昱, 王彦荣. 箭筈豌豆品种间遗传差异的SSR分析及指纹图谱构建[J]. 草业学报, 2019, 28(4): 116-128. |
[12] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[13] | 张彦军, 苟作旺, 王兴荣, 李玥, 祁旭升. 西北地区和尚头小麦遗传多样性及农艺性状的关联分析[J]. 草业学报, 2019, 28(2): 142-155. |
[14] | 宫文龙, 王赞, 赵桂琴, 马琳, 韦宝, 龚攀, 刘希强. 沙打旺EST-SSR分子标记开发及其遗传多样性分析[J]. 草业学报, 2019, 28(11): 147-158. |
[15] | 陈仕勇, 马啸, 张新全, 陈智华, 周青平. 基于SSR标记的小麦族St、H、Y基因组六倍体物种遗传变异及种间亲缘关系研究[J]. 草业学报, 2018, 27(9): 142-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||