草业学报 ›› 2022, Vol. 31 ›› Issue (6): 221-234.DOI: 10.11686/cyxb2021156
• 综合评述 • 上一篇
收稿日期:
2021-04-26
修回日期:
2021-07-15
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
刘洋
作者简介:
E-mail: liuyang430209@163.com基金资助:
Jiao-yun LU(), He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU()
Received:
2021-04-26
Revised:
2021-07-15
Online:
2022-06-20
Published:
2022-05-11
Contact:
Yang LIU
摘要:
人类活动及化石燃料应用的加剧增加了大气中的氮沉降,对陆地生态系统氮素循环过程造成了显著影响,从而影响生态系统生产力及稳定性。草地作为陆地生态系统的重要组成部分,常因为人们的过度利用及保护意识不强,造成资源损失、养分失衡,严重限制了畜牧业的发展。探究氮沉降对草地生态系统氮循环的影响对提高草地生产力,合理开发与利用草地资源具有重要意义。通过追踪国内外已有的研究成果发现,大部分氮添加抑制了生物固氮过程,促进了土壤的硝化作用、反硝化作用和矿化作用,并抑制了固氮微生物活性,增加了硝化功能微生物氨氧化细菌(AOB)、反硝化微生物功能基因nirK、nirS、narG、nosZ的丰度。但是因为草地本底氮营养差异及施氮措施的不同导致少数研究中土壤氮循环对氮沉降的响应出现不同结果。通过总结已有研究发现:1)土壤本底营养及氮吸收阈值的不同造成氮沉降对氮循环的影响存在差异;2)微生物作为土壤氮素循环的重要参与者,对不同施氮时间、频率、数量等的响应存在差异;3)土壤中氮循环的各环节紧密耦联,相互影响,但现有的研究大多只针对某一环节开展,研究结果不具有全面性。因此,在未来的研究中,应针对不同营养水平的草地,加强氮控制条件下土壤氮循环微生物变化的研究,关注多环节的耦联关系,对于提高草地生态系统功能,并减轻氮素损失对环境造成的威胁意义重大。
陆姣云, 张鹤山, 田宏, 熊军波, 刘洋. 氮沉降影响草地生态系统土壤氮循环过程的研究进展[J]. 草业学报, 2022, 31(6): 221-234.
Jiao-yun LU, He-shan ZHANG, Hong TIAN, Jun-bo XIONG, Yang LIU. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems[J]. Acta Prataculturae Sinica, 2022, 31(6): 221-234.
氮循环过程 N cycling process | 指标 Index | 参考文献References | ||
---|---|---|---|---|
促进 Accelerate | 抑制 Reduce | 无变化 No change | ||
生物固氮 Biology N fixation | 根瘤共生固氮Symbiotic N fixation in nodule | [ | [ | - |
土壤微生物固氮Soil N-fixing microorganisms | [ | [ | [ | |
硝化作用 Nitrification | 硝化速率Nitrification rate | [ | [ | - |
氨氧化细菌Ammonia oxidizing bacteria | [ | [ | [ | |
氨氧化古菌Ammonia oxidizing archaea | [ | [ | [ [ | |
反硝化作用 Denitrification | N2O排放 N2O emission | [ | - | [ |
反硝化功能基因Denitrification function gene | [ | [ | [ | |
矿化作用 Mineralization | 矿化速率 Mineralization rate | [ | [ | [ |
氨化速率Ammonification rate | [ | [ | [ |
表1 氮添加对土壤氮循环过程的影响
Table 1 Effects of nitrogen addition on soil nitrogen cycling
氮循环过程 N cycling process | 指标 Index | 参考文献References | ||
---|---|---|---|---|
促进 Accelerate | 抑制 Reduce | 无变化 No change | ||
生物固氮 Biology N fixation | 根瘤共生固氮Symbiotic N fixation in nodule | [ | [ | - |
土壤微生物固氮Soil N-fixing microorganisms | [ | [ | [ | |
硝化作用 Nitrification | 硝化速率Nitrification rate | [ | [ | - |
氨氧化细菌Ammonia oxidizing bacteria | [ | [ | [ | |
氨氧化古菌Ammonia oxidizing archaea | [ | [ | [ [ | |
反硝化作用 Denitrification | N2O排放 N2O emission | [ | - | [ |
反硝化功能基因Denitrification function gene | [ | [ | [ | |
矿化作用 Mineralization | 矿化速率 Mineralization rate | [ | [ | [ |
氨化速率Ammonification rate | [ | [ | [ |
1 | Zhu G B. Novel nitrogen cycles in terrestrial and freshwater ecosystems. Acta Microbiologica Sinica, 2020, 60(9): 1972-1984. |
祝贵兵. 陆地和淡水生态系统新型微生物氮循环研究进展. 微生物学报, 2020, 60(9): 1972-1984. | |
2 | Chen J, Cao J J, Liu Y, et al. Research progress and prospect of nitrogen fertilization on soil respiration. Grassland and Turf, 2013, 33(6): 87-93. |
陈骥, 曹军骥, 刘玉, 等. 氮素添加对土壤呼吸影响的研究进展. 草原与草坪, 2013, 33(6): 87-93. | |
3 | Wang X. Response of nitrogen fixation of several legumes to different environmental factors. Jinan: Shandong University, 2018. |
王骁. 几种豆科植物固氮作用对不同环境因子的响应研究. 济南: 山东大学, 2018. | |
4 | Chen Z L, Huang T, Huang X H, et al. Characteristics, sources and environmental implications of atmospheric wet nitrogen and sulfur deposition in Yangtze River Delta. Atmospheic Environment, 2019, 219(18): 116904. |
5 | Liu J T, Liao Y C, Xie Y, et al. A review of the effects of nitrogen deposition on soil nutrients. Soil and Water Conservation in China, 2019(9): 63-65. |
刘佳婷, 廖迎春, 谢越, 等. 氮沉降对土壤养分影响研究综述. 中国水土保持, 2019(9): 63-65. | |
6 | Dentener F, Drevet J, Lamarque J F, et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 2006, 20(4): GB4003. |
7 | Guo R Q, Xiong D C, Song T T, et al. Effects of simulated nitrogen deposition on stoichiometry of fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 2018, 38(17): 6101-6110. |
郭润泉, 熊德成, 宋涛涛, 等. 模拟氮沉降对杉木幼苗细根化学计量学特征的影响. 生态学报, 2018, 38(17): 6101-6110. | |
8 | Jefferies R L, Maron J L. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. Trends in Ecology & Evolution, 1997, 12(2): 74-78. |
9 | Freedman Z, Eisenlord S D, Zak D R, et al. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil Biology & Biochemistry, 2013, 66: 130-138. |
10 | Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494(7438): 459-462. |
11 | Song X Z, Zhou G M, Gu H H, et al. Management practices amplify the effects of N deposition on leaf litter decomposition of the Moso bamboo forest. Plant and Soil, 2015, 395(1/2): 391-400. |
12 | Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522. |
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 2019, 27(5): 500-522. | |
13 | Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293-296. |
14 | Xiao Z, Rasmann S, Yue L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 2019, 696: 133984. |
15 | Ma M. Research on soil nitrogen turnover and its response to warming in alpine grassland. Chengdu: Sichuan Normal University, 2020. |
马茂. 高寒草地土壤氮周转及对增温的响应研究. 成都: 四川师范大学, 2020. | |
16 | Han X, Sistla S A, Zhang Y H, et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 2014, 38(1/2): 175-187. |
17 | Lin G G, Zhao Q, Zhao L, et al. Effects of understory removal and nitrogen addition on the soil chemical and biological properties of Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land. Chinese Journal of Applied Ecology, 2012, 23(5): 1188-1194. |
林贵刚, 赵琼, 赵蕾, 等. 林下植被去除与氮添加对樟子松人工林土壤化学和生物学性质的影响. 应用生态学报, 2012, 23(5): 1188-1194. | |
18 | Wang B, Chen Y M, Zhou Z Y. Study of soil nitrogen mineralization at different altitudes on western slopes of Helan Mountains, China. Journal of Desert Research, 2007, 27(3): 483-490. |
王斌, 陈亚明, 周志宇. 贺兰山西坡不同海拔梯度上土壤氮素矿化作用的研究. 中国沙漠, 2007, 27(3): 483-490. | |
19 | Li D J, Mo J M, Fang Y T, et al. Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 2003, 23(9): 1891-1900. |
李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响. 生态学报, 2003, 23(9): 1891-1900. | |
20 | Aber J D, Mcdowell W H, Nadelhoffer K J, et al. Nitrogen saturation in temperate forest ecosystems. BioScience, 1998, 48(11): 921-934. |
21 | Luo W, Xing Y J, Wang Q G. Effect of nitrogen deposition on soil nitrogen budget in boreal forests: Research progress. Chinese Agricultural Science Bulletin, 2018, 24(12): 98-107. |
罗维, 邢亚娟, 王庆贵. 氮沉降对北方森林土壤氮收支的影响研究进展. 中国农学通报, 2018, 24(12): 98-107. | |
22 | Chen L X, Duan W B. Effects of simulated nitrogen deposition on soil available nitrogen forms and their contents in typical temperate forest stands. Chinese Journal of Applied Ecology, 2011, 22(8): 2005-2012. |
陈立新, 段文标. 模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响. 应用生态学报, 2011, 22(8): 2005-2012. | |
23 | Tian Q Y, Liu N N, Bai W M, et al. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 2016, 97(1): 65-74. |
24 | Gilliam F S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 2006, 94(6): 1176-1191. |
25 | Zhou Z H, Wang C K, Zhen M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology & Biochemistry, 2017, 115: 433-441. |
26 | Chen D M, Xing W, Lan Z C, et al. Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. Functional Ecology, 2019, 33(1): 175-187. |
27 | Chen H, Tang Y, Tong Y W, et al. Responses of soil carbon and nitrogen mineralization to nitrogen deposition in tundra zone of the Changbai Mountain, China. Chinese Journal of Applied Ecology, 2019, 30(5): 1536-1542. |
陈红, 唐杨, 童跃伟, 等. 长白山苔原带土壤碳、氮矿化对氮沉降的响应. 应用生态学报, 2019, 30(5): 1536-1542. | |
28 | Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. |
付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展与展望. 植物生态学报, 2020, 44(5): 475-493. | |
29 | Mitchell R, Allen V, Waller J, et al. A mobile classroom approach to graduate education in forage and range sciences. Journal of Natural Resources and Life Sciences Educations, 2004, 33(1): 117-120. |
30 | Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 2011, 159(10): 2251-2264. |
31 | Zhong L, Wang Y Z, Li M. Research progress of nitrifying and denitrifying microbial communities in grasslands. Chinese Agricultural Science Bulletin, 2018, 34(3): 128-133. |
钟磊, 王一喆, 李鸣. 草地硝化和反硝化微生物功能群研究进展. 中国农学通报, 2018, 34(3): 128-133. | |
32 | Lin Y, Hong M, Han G, et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agriculture, Ecosystems & Environment, 2010, 138(3): 282-292. |
33 | Jiang W, Guan X Q, Yu J Z. Biological nitrogen fixation and intensive grassland livestock husbandry. Acta Prataculturae Sinica, 2003, 12(6): 42-46. |
姜薇, 关秀清, 于井朝. 生物固氮在集约化草地畜牧业中的作用. 草业学报, 2003, 12(6): 42-46. | |
34 | Lu J L. Plant nutrition. Beijing: China Agricultural University Press, 2003: 23-34. |
陆景凌. 植物营养学. 北京: 中国农业大学出版社, 2003: 23-34. | |
35 | Chen Y, Xu Z, Hu H, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia. Applied Soil Ecology, 2013, 68(3): 36-45. |
36 | Wang Y, Diao H J, Dong K H, et al. Effect of precipitation change and nitrogen addition on soil net N mineralization in a saline-alkaline grassland of Northern Shanxi Province. Chinese Journal of Applied Ecology, 2021, 32(7): 2389-2396. |
王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响. 应用生态学报, 2021, 32(7): 2389-2396. | |
37 | Gao S Q, Song Y Y, Song C C, et al. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil. Acta Ecologica Sinica, 2020, 40(13): 4617-4627. |
高思齐, 宋艳宇, 宋长春, 等. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响. 生态学报, 2020, 40(13): 4617-4627. | |
38 | Ollivier J, Töwe S, Bannert A, et al. Nitrogen turnover in soil and global change. FEMS Microbiology Ecology, 2011, 78(1): 3-16. |
39 | Zehr J P, Jenkins B D, Short S M, et al. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environmental Microbiology, 2003, 5(7): 539-554. |
40 | Gao T G, Yuan H L, Hou H Y, et al. The role of humic acids in nitrogen cycle: A review. Humic Acid, 2020(3): 11-18. |
高同国, 袁红莉, 侯慧云, 等. 腐植酸类物质在氮循环中作用的研究进展. 腐植酸, 2020(3): 11-18. | |
41 | Zuo Y M, Liu Y X, Zhang F S. Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghaemoglobin content of peanut. Journal of Physiology and Molecular Biology, 2003, 29(1): 33-38. |
左元梅, 刘永秀, 张福锁. 与玉米混作改善花生铁营养对其根瘤形态结构及豆血红蛋白含量的影响. 植物生理与分子生物学报, 2003, 29(1): 33-38. | |
42 | Escuredo P R. Involvement of activated oxygen in nitrate induced senescence of pea root nodules. Plant Physiology, 1996, 110(4): 1187-1195. |
43 | Liu L, Zhou J C, Chen H K. The effect of the compound nitrogen concentration on the nodulation and nitrogen fixation in soybean. Scientia Agricultural Sinica, 1998, 31(4): 87-89. |
44 | Yang Q B. Effect of pH and combined nitrogen factors on alfalfa bunching and nitrogen fixation. Harbin: Northeast Agricultural University, 2007. |
杨琼博. pH值和化合态氮对紫花苜蓿结瘤和固氮效果的影响. 哈尔滨: 东北农业大学, 2007. | |
45 | Yan J. Effect of the soil environmental inorganic nitrogen content on nitrogen fixation and growth of soybean (Glycine max L.). Harbin: Northeast Agricultural University, 2011. |
严君. 大豆结瘤固氮及生长发育对土壤环境无机氮含量的影响. 哈尔滨: 东北农业大学, 2011. | |
46 | Yang Z W, Shen Y Y, Xie T L, et al. Biological nitrogen fixation efficiency in soybean under different levels of nitrogen supply. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 574-579. |
杨子文, 沈禹颖, 谢田玲, 等. 外源供氮水平对大豆生物固氮效率的影响. 西北植物学报, 2009, 29(3): 574-579. | |
47 | Chen W X. Soil and environmental microbiology. Beijing: Beijing Agricultural University Press, 1996: 172-174. |
陈文新. 土壤和环境微生物学. 北京: 北京农业大学出版社, 1996: 172-174. | |
48 | Wang D Y, Wang Z Q. Effect of planting date, plant density and nitrogen application rate on yield and quality of vegetable soybean. Journal of Zhejiang University, 2001, 27(1): 69-72. |
王丹英, 汪自强. 播期、密度、氮肥用量对菜用大豆产量和品质的效应. 浙江大学学报, 2001, 27(1): 69-72. | |
49 | Zeng Q F, Jia Z K, Han Q F, et al. Review on the effect of fertilization on the production and quality of alfalfa. Pratacultural Science, 2005, 22(7): 8-15. |
曾庆飞, 贾志宽, 韩清芳, 等. 施肥对苜蓿生产性能及品质影响的研究综述. 草业科学, 2005, 22(7): 8-15. | |
50 | Lu J Y. Effect of N and P fertilizations on leaf nutrient resorption of alfalfa at different growth stages in the Loess Plateau. Lanzhou: Lanzhou University, 2019. |
陆姣云. 施氮磷肥对黄土高原不同生长阶段紫花苜蓿叶片养分重吸收的影响. 兰州: 兰州大学, 2019. | |
51 | Reed S C, Cleveland C C, Townsend A R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annual Review of Ecology Evolution & Systematics, 2011, 42(1): 489-512. |
52 | Pogoreutz C, Rädecker N, Cárdenas A, et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Frontiers in Microbiology, 2017, 8: 1187. |
53 | Zhang X M, Liu W, Schloter M, et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One, 2013, 8(10): e76500. |
54 | Limmer C, Drake H L. Effects of carbon, nitrogen, and electron acceptor availability on anaerobic N2-fixation in a beech forest soil. Soil Biology and Biochemistry, 1998, 30(2): 153-158. |
55 | Berthrong S T, Yeager C M, Gallegos-Graves L, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Applied and Environmental Microbiology, 2014, 80(10): 3103-3112. |
56 | Qin J. Mechanisms of influence of long-term nitrogen deposition on soil microbiomes in Stipa baicalensis steppe. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
秦洁. 长期氮沉降对贝加尔针茅草原土壤微生物群落的影响机制. 北京: 中国农业科学院, 2021. | |
57 | Hou H J, Qin H L, Chen C L, et al. Research progress of the molecular ecology on microbiological processes in soil nitrogen cycling. Research of Agricultural Modernization, 2014, 35(5): 588-594. |
侯海军, 秦红灵, 陈春兰, 等. 土壤氮循环微生物过程的分子生态学研究进展. 农业现代化研究, 2014, 35(5): 588-594. | |
58 | Orr C H, Leifert C, Cummings S P, et al. Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One, 2012, 7(12): 483-496. |
59 | Ogilvie L A, Hirsch P R, Johnston A W. Bacterial diversity of the broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microbial Ecology, 2008, 56(3): 525-537. |
60 | Liu H M. Effect of nitrogen deposition on soil carbon and nitrogen transformation and microbial characteristics in Stipa baicalensis steppe. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
刘红梅. 氮沉降对贝加尔针茅草原土壤碳氮转化及微生物学特性的影响. 北京: 中国农业科学院, 2019. | |
61 | Chen J, Shen W J, Xu H, et al. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Frontiers in Microbiology, 2019, 10: 508. |
62 | Xu Y D, Wang T, Li H, et al. Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the Loess Plateau of China. Catena, 2019, 174: 316-323. |
63 | Liu P F. Effects of agricultural fertilizer and fertilizer application on the diversity of soybean rhizobium bacteria and soil nitrogen-fixing bacteria. Harbin: Northeast Agricultural University, 2012. |
刘朴方. 农肥和化肥使用对大豆根瘤菌和土壤固氮菌多样性的影响. 哈尔滨: 东北农业大学, 2012. | |
64 | Lindsay E A, Colloff M J, Gibb N L, et al. The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied and Environmental Microbiology, 2010, 76(16): 5547-5555. |
65 | Liu H M, Zhang H F, Qin J, et al. Effects of simulated nitrogen deposition on soil nitrogen-transforming microorganisms in Stipa baicalensis steppe. Journal of Agro-Environment Science, 2019, 38(10): 2386-2394. |
刘红梅, 张海芳, 秦洁, 等. 模拟氮沉降对贝加尔针茅草原土壤氮转化微生物的影响. 农业环境科学学报, 2019, 38(10): 2386-2394. | |
66 | Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest. Plant and Soil, 2001, 230(1): 145-160. |
67 | Wakelin S A, Colloff M J, Harvey P R, et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. Microbiology Ecology, 2010(3): 661-670. |
68 | Wang J, Zhang D, Zhang L, et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agriculture, Ecosystems and Environment, 2016, 216: 116-124. |
69 | Xu P X, Han L L, He J Z, et al. Research advance on molecular ecology of asymbiotic nitrogen fixation microbes. Chinese Journal of Applied Ecology, 2017, 28(10): 3440-3450. |
徐鹏霞, 韩丽丽, 贺纪正, 等. 非共生生物固氮微生物生物分子生态学研究进展. 应用生态学报, 2017, 28(10): 3440-3450. | |
70 | Li Z L, Zeng Z Q, Tian D S, et al. Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 2020, 26(7): 4147-4157. |
71 | Li M. Effect of nitrogen addition on carbon, nitrogen, phosphorus and microbial characteristics of soil aggregates in Stipa baicalensis grassland. Hohhot: Inner Mongolia Normal University, 2020. |
李明. 氮素添加对贝加尔针茅草原土壤团聚体碳氮磷和微生物特性的影响. 呼和浩特: 内蒙古师范大学, 2020. | |
72 | Lu M, Yang Y H, Luo Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189(4): 1040-1050. |
73 | Luo Q P, Gong J R, Xu S, et al. Effects of N and P additions on net nitrogen mineralization in temperate typical grassland in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(5): 480-492. |
罗亲普, 龚吉蕊, 徐沙, 等. 氮磷添加对内蒙古温带典型草原净氮矿化的影响. 植物生态学报, 2016, 40(5): 480-492. | |
74 | Lv Y, Zhou L, Long G Q, et al. Effect of different nitrogen rates on the nitrification potential and abundance of ammonia-oxidizer in intercropping maize soils. Environmental Science, 2016, 37(8): 3229-3236. |
吕玉, 周龙, 龙光强, 等. 不同氮水平下间作对玉米土壤硝化势和氨氧化微生物数量的影响. 环境科学, 2016, 37(8): 3229-3236. | |
75 | Ke X B, Angel R, Lu Y H, et al. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environmental Microbiology, 2013, 15(8): 2275-2292. |
76 | Di H J, Cameron K C, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience, 2009, 2(9): 621-624. |
77 | Verhamme D T, Prosser J I, Nicol G W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME Journal, 2011, 5(6): 1067-1071. |
78 | Ning Q S, Gu Q, Shen J P, et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of Northern China. Journal of Soil and Sediments, 2015, 15(3): 694-704. |
79 | Gutknecht J L M, Field C B, Balser T C. Microbial communities and their responses to simulated global change fluctuate greatly over multiple years. Global Change Biology, 2012, 18(7): 2256-2269. |
80 | Shen X Y, Zhang L M, Shen J P, et al. Nitrogen loading levels affect abundance and composition of soil ammonia oxidizing prokaryotes in semiarid temperate grassland. Journal of Soils and Sediments, 2011, 11(7): 1243-1252. |
81 | Shi Y J. Response of soil nitrogen cycling related microbial groups to global environmental change and fire disturbance. Harbin: Northeast Normal University, 2019. |
石玉杰. 土壤氮循环主要微生物对全球环境变化及火灾干扰的响应. 哈尔滨: 东北师范大学, 2019. | |
82 | Di H J, Cameron K C, Shen J P, et al. Ammonia oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394. |
83 | Alves R J E, Minh B Q, Urich T, et al. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9(1): 1517. |
84 | Wang J C. Effects of long-term different fertilization regimes on soil bacterial and nitrogen-cycling related communities in a rice-wheat rotation system. Nanjing: Nanjing Agricultural University, 2018. |
王继琛. 长期施肥对稻麦轮作系统土壤细菌及氮转化微生物群落影响的研究. 南京: 南京农业大学, 2018. | |
85 | Könneke M, Schubert D M, Brown P C, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proceeding of the National Academy of Sciences, 2014, 111(22): 8239-8244. |
86 | Liu Z H, Li D H. Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: A review. Microbiology China, 2015, 42(4): 774-782. |
刘正辉, 李德豪. 氨氧化古菌及其对氮循环贡献的研究进展. 微生物学通报, 2015, 42(4): 774-782. | |
87 | Lage M D, Reed H E, Weihe C, et al. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. The ISME Journal, 2010, 4(7): 933-944. |
88 | Wang C H, Zhu F, Zhao X, et al. The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China. Geoderma, 2014, 213(1): 419-425. |
89 | Zhou J, Guan D, Zhou B K, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China. Soil Biology and Biochemistry, 2015, 90: 42-51. |
90 | Yin C, Fan F L, Song A L, et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS- and nirK-denitrifying bacterial community. European Journal of Soil Biology, 2014, 65: 47-56. |
91 | Houghton J T, Ding Y, Griggs D J, et al. Climate change 2001: The scientific basis. Cambridge, England: The Press Syndicate of the University of Cambridge, 2001. |
92 | Pachauri P K, Allen M R, Barros V R, et al. Climate change 2014: Synthesis report. Contrivution of working group Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change. Geneva: Intergovernmental Panel on Climate Change (IPCC), 2014. |
93 | Crutzen P J, Mosier A R, Smith K A, et al. N2O release from agro-biofuel production nagates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 2008, 8(2): 389-395. |
94 | Rochette P, Angers D A, CôTé D, et al. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: Ⅱ. Nitrous oxide fluxes and mineral nitrogen. Soil Science Society of America Journal, 2000, 64(4): 1389. |
95 | Enwall K, Philippot L, Hallin S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied Environmental Microbiology, 2005, 71(12): 8335-8343. |
96 | Cardenasa L M, Thormanc R, Ashleee N, et al. Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertilizer nitrogen inputs. Agriculture, Ecosystems & Environment, 2010, 136(3/4): 218-226. |
97 | Mosiera A R, Delgadoa J A, Keller M. Methane and nitrous oxide fluxes in grasslands in western Puerto Rieo. Chemosphere, 1997, 35(9): 2050-2082. |
98 | Zhang X D, Wang J Z, Yan L, et al. Effects of water table and nitrogen addition on the rate of non-symbiotic nitrogen fixation in an alpine wetland of Zoige. Acta Ecologica Sinica, 2020, 40(21): 7630-7637. |
张骁栋, 王金枝, 颜亮, 等. 水位和施氮对若尔盖高寒湿地土壤非共生固氮的影响. 生态学报, 2020, 40(21): 7630-7637. | |
99 | Stephan G, Karl S. Methane and nitrous oxide exchange in differently fertilized grassland in Southern Germany. Plant and Soil, 2001, 231(1): 21-35. |
100 | Yan Z Q, Qi Y C, Dong Y S, et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. | |
101 | Yan Z Q, Qi Y C, Dong Y S, et al. Effects of changing precipitation regime and increasing nitrogen deposition on key process of nitrogen cycle in grassland ecosystem. China Environmental Science, 2016, 36(4): 1189-1197. |
闫钟清, 齐玉春, 董云社, 等. 降水与氮沉降变化对草地关键氮过程的影响研究进展. 中国环境科学, 2016, 36(4): 1189-1197. | |
102 | Yang C, Hamel C, Gan Y T. Incongruous variation of denitrifying bacterial communities as soil N level rises in Canadian canola fields. Applied Soil Ecology, 2015, 89: 93-101. |
103 | Xie Z, Roux X L, Wang C P, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing associated soil environmental drivers in Tibetan alpine meadows. Soil Biology and Biochemistry, 2014, 77(7): 89-99. |
104 | Hallin S, Jones C M, Schloter M, et al. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. The ISME Journal, 2009, 3(5): 597-605. |
105 | Tian X F, Hu H W, Ding Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biology and Fertility of Soils, 2014, 50(4): 703-713. |
106 | Chen X B, Hu Y J, Qin H L, et al. Characteristics of soil nitrogen cycle and mechanisms underlying the increase in rice yield with partial substitution of mineral fertilizers with organic manure in a paddy ecosystem: A review. Chinese Journal of Applied Ecology, 2020, 31(3): 1033-1042. |
陈香碧, 胡亚军, 秦红灵, 等. 稻作系统有机肥替代部分化肥的土壤氮循环特征及增产机制. 应用生态学报, 2020, 31(3): 1033-1042. | |
107 | Brenner R E, Boone R D, Ruess R W. Nitrogen additions to pristine, high-latitude, forest ecosystems: Consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry, 2005, 72(2): 257-282. |
108 | Kowaljow E, Mazzarino M J. Soil restoration in semiarid Patagonia: Chemical and biological response to different compost quality. Soil Biology & Biochemistry, 2007, 39(7): 1580-1588. |
109 | Chen L X, Huang L Y, Qiao L, et al. Influence of simulated nitrogen deposition on soil nitrogen mineralization rate under different forest stands. Journal of Soil and Water Conservation, 2012, 26(6): 141-148. |
陈立新, 黄兰英, 乔璐, 等. 模拟氮沉降对温带不同森林类型土壤氮矿化速率的影响. 水土保持学报, 2012, 26(6): 141-148. | |
110 | Liu X C. Impacts of simulated nitrogen deposition on soil nitrogen mineralization rate in Betula platyphylla secondary forest in Southern of Daxing’an Mountains. Hohhot: Inner Mongolia Agricultural University, 2014. |
刘星岑. 模拟氮沉降对大兴安岭南段白桦次生林土壤氮矿化速率的初期影响. 呼和浩特: 内蒙古农业大学, 2014. | |
111 | Liu B R. Effects of nitrogen addition on soil gross nitrogen mineralization in typical grassland of Inner Mongolia. Jinzhong: Shanxi Agricultural University, 2014. |
刘碧荣. 氮素添加对内蒙古典型草地土壤氮矿化的影响. 晋中: 山西农业大学, 2014. | |
112 | Yu Z Y, Zeng D H, Ai G Y, et al. Effect of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 2007, 26(11): 1894-1897. |
于占源, 曾德慧, 艾桂艳, 等. 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 2007, 26(11): 1894-1897. | |
113 | Jiang X J. Three kinds of herb community response to exogenous nitrogen of soil nitrogen mineralization and microbial structure in Al forest-steppe area. Shenyang: Shenyang Agricultural University, 2016. |
姜雪姣. 辽西北草地群落土壤氮素矿化对氮添加的响应及微生物结构. 沈阳: 沈阳农业大学, 2016. | |
114 | Zhang L, Huang J H, Bai Y F, et al. Effect of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2009, 33(3): 563-569. |
张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响. 植物生态学报, 2009, 33(3): 563-569. | |
115 | Liu H M, Zhang H F, Qin J, et al. Characteristics and coupling relationship of soil carbon and nitrogen transformation during in-situ mineralization cultivation in Stipa baicalensis steppe. Agricultural Research in the Arid Areas, 2020, 38(2): 232-242. |
刘红梅, 张海芳, 秦洁, 等. 贝加尔针茅草原土壤原位矿化过程中碳氮转化耦合特征. 干旱地区农业研究, 2020, 38(2): 232-242. | |
116 | Cheng M M. Effects of different nitrogen addition on soil net nitrogen mineralization in grassland ecosystem of northern agro-pastoral transitional zone. Jinzhong: Shanxi Agricultural University, 2019. |
程苗苗. 不同梯度氮添加对北方农牧交错带草地生态系统土壤净氮矿化的影响. 晋中: 山西农业大学, 2019. | |
117 | Ren Y J, Liu X L, Wang H L, et al. Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral ecotone of Northern China. Acta Agrestia Sinica, 2020, 28(2): 328-337. |
任雨佳, 刘夏琳, 王慧玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 2020, 28(2): 328-337. | |
118 | Aber J D. Nitrogen saturation in temperate forest ecosystems: Current theory, remaining questions and recent advances. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium, 2002, 98: 179-188. |
[1] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[2] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[3] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[4] | 周承福, 汪水平, 张佰忠, 张秀敏, 王荣, 马志远, 王敏. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响[J]. 草业学报, 2022, 31(2): 171-181. |
[5] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[6] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
[7] | 郑娟善, 丁考仁青, 李新圃, 梁泽毅, 张剑搏, 杜梅, 丁学智. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192. |
[8] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[9] | 马英, 许志豪, 曾巧红, 孟建龙, 胡亚虎, 苏洁琼. 氮素添加对荒漠化草原草本植物养分化学计量特征的影响[J]. 草业学报, 2021, 30(6): 64-72. |
[10] | 余肖飞, 郭晓农, 张妍, 刘子威, 张喜闻, 徐可新, 吴治勇. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
[11] | 李宏, 宋淑珍, 高良霜, 郎侠, 刘立山, 宫旭胤, 魏玉兵, 吴建平. 饲养水平对阿勒泰羊胃肠道发育、瘤胃发酵参数及瘤胃微生物区系的影响[J]. 草业学报, 2021, 30(4): 180-190. |
[12] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[13] | 李蒋伟, 王志有, 侯生珍, 雷云, 贾建磊, 周力, 桂林生. 日粮精粗比对育肥藏羊瘤胃组织形态及微生物菌群的影响[J]. 草业学报, 2021, 30(3): 100-109. |
[14] | 张剑搏, 丁考仁青, 梁泽毅, Anum-aliAhmad, 杜梅, 郑娟善, 丁学智. 早期营养干预对幼龄反刍动物瘤胃微生物区系发育的影响[J]. 草业学报, 2021, 30(2): 199-211. |
[15] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||