草业学报 ›› 2024, Vol. 33 ›› Issue (1): 149-158.DOI: 10.11686/cyxb2023069
• 研究论文 • 上一篇
石正海(), 刘文辉(), 张永超, 秦燕, 米文博, 罗峰, 刘曼, 起惠芳
收稿日期:
2023-03-06
修回日期:
2023-05-24
出版日期:
2024-01-20
发布日期:
2023-11-23
通讯作者:
刘文辉
作者简介:
E-mail: qhliuwenhui@163.com基金资助:
Zheng-hai SHI(), Wen-hui LIU(), Yong-chao ZHANG, Yan QIN, Wen-bo MI, Feng LUO, Man LIU, Hui-fang QI
Received:
2023-03-06
Revised:
2023-05-24
Online:
2024-01-20
Published:
2023-11-23
Contact:
Wen-hui LIU
摘要:
为明确秋收后施肥对翌年环湖寒生羊茅生产性能的影响,本研究于2018-2019年以5龄环湖寒生羊茅为试验材料,对比秋季施肥和春季施肥下环湖寒生羊茅的饲草和种子生产性能及肥料利用效率。试验设置0(N0)和60(N60) kg·hm-2 2个施氮水平,0(P0)、60(P60)、75(P75)和90(P90) kg·hm-2 4个施磷水平,共计8个处理组合。测定株高、茎粗、生殖枝数、地上生物量和种子产量等农艺性状。结果表明:1)秋季和春季施氮肥均可提高环湖寒生羊茅地上生物量和种子产量,增幅分别在62.79%和12.58%以上。但秋季施肥具有刺激生殖枝数进而保持种子生产的优势,春季施肥有促进饲草生产的优势。秋季施氮较春季提升种子产量的增幅为37.38%~73.99%。春季施氮较秋季提升地上生物量的增幅为6.47%~51.19%。2)氮肥是促进5龄环湖寒生羊茅生产性能的主要肥料。施氮对株高、生殖枝数、地上生物量和种子产量的提升幅度分别为20.24%、19.10%、133.94%和89.66%。单施磷肥可降低株高和生殖枝数,降幅分别为3.12%和3.79%。由于氮肥和磷肥对种子生产的协同作用,种子产量较大值出现在N60P75水平,在秋季施肥时高达233.19 kg·hm-2。3)对地上生物量和种子产量的肥料利用效率分析发现,磷肥的偏生产力和农学效率不存在施肥季节差异(P>0.05)。氮肥的偏生产力和农学效率对种子产量的影响表现为秋季施肥分别是春季施肥的1.37和2.74倍以上。在施肥量方面发现无论春季还是秋季施肥,在仅施氮处理有最大的肥料偏生产力和农学效率。在同一施氮水平,随施磷量增加肥料利用效率呈下降趋势。4)生殖枝数与种子产量间相关性系数均保持在0.809(P<0.01)以上,通过线性方程能较好拟合生殖枝数与种子产量、种子产量与地上生物量和株高与地上生物量之间的关系。综合地上生物量和种子产量的生产性能及肥料利用效率的表现,应重视氮肥对于生长年限较长的环湖寒生羊茅的利用。
石正海, 刘文辉, 张永超, 秦燕, 米文博, 罗峰, 刘曼, 起惠芳. 季节性氮磷配施提升环湖寒生羊茅生产性能[J]. 草业学报, 2024, 33(1): 149-158.
Zheng-hai SHI, Wen-hui LIU, Yong-chao ZHANG, Yan QIN, Wen-bo MI, Feng LUO, Man LIU, Hui-fang QI. Seasonal nitrogen and phosphorus co-application enhances productivity of Festuca kryloviana cv. Huanhu[J]. Acta Prataculturae Sinica, 2024, 33(1): 149-158.
因子 Factors | 株高 Plant height | 茎粗 Stem diameter | 生殖枝数 Reproductive shoot | 种子产量 Seed yield | 地上生物量 Aboveground biomass |
---|---|---|---|---|---|
施肥季节S | 50.423** | 2.692ns | 187.555** | 181.939** | 19.063** |
氮肥N | 343.196** | 2.929ns | 443.136** | 688.804** | 310.564** |
磷肥P | 16.583** | 0.697ns | 35.682** | 9.166** | 2.846ns |
S×N | 0.726ns | 4.644ns | 214.888** | 177.010** | 0.087ns |
S×P | 1.929ns | 0.196ns | 16.736** | 2.620ns | 4.461** |
N×P | 39.483** | 2.153ns | 23.332** | 10.213** | 0.375ns |
S×N×P | 6.006** | 0.510ns | 14.327** | 2.482ns | 4.926** |
表1 不同季节施肥对农艺性状影响的方差分析
Table 1 Analysis of variance on the effects of fertilizer application in different seasons on agronomic traits
因子 Factors | 株高 Plant height | 茎粗 Stem diameter | 生殖枝数 Reproductive shoot | 种子产量 Seed yield | 地上生物量 Aboveground biomass |
---|---|---|---|---|---|
施肥季节S | 50.423** | 2.692ns | 187.555** | 181.939** | 19.063** |
氮肥N | 343.196** | 2.929ns | 443.136** | 688.804** | 310.564** |
磷肥P | 16.583** | 0.697ns | 35.682** | 9.166** | 2.846ns |
S×N | 0.726ns | 4.644ns | 214.888** | 177.010** | 0.087ns |
S×P | 1.929ns | 0.196ns | 16.736** | 2.620ns | 4.461** |
N×P | 39.483** | 2.153ns | 23.332** | 10.213** | 0.375ns |
S×N×P | 6.006** | 0.510ns | 14.327** | 2.482ns | 4.926** |
图2 不同季节施肥对寒生羊茅株高、茎粗和生殖枝数的影响A、C和E为春季施肥;B、D和F为秋季施肥。A, C and E were fertilized in spring; B, D and F were fertilized in autumn.
Fig.2 Effects of different seasonal fertilization on plant height, stem diameter and reproductive shoots in F. kryloviana cv.Huanhu
图3 不同季节施肥下的种子产量和地上生物量A和C为春季施肥;B和D为秋季施肥。不同小写字母表示各施肥处理组合间差异显著。下同。A and C were fertilized in spring; B and D were fertilized in autumn, respectively. Different lowercase letters indicate significant differences among fertilization combinations. The same below.
Fig.3 Seed yield and aboveground biomass under fertilization in different seasons
因子 Factors | 肥料偏生产力Partial productivity | 农学效率Agronomic efficiency | ||
---|---|---|---|---|
地上生物量Aboveground biomass | 种子产量Seed yield | 地上生物量Aboveground biomass | 种子产量Seed yield | |
施肥季节S | 6.522* | 245.588** | 6.522* | 245.588** |
氮肥N | 4.057ns | 31.680** | 58.703** | 685.955** |
磷肥P | 85.666** | 780.266** | 30.734** | 59.526** |
S×N | 0.287ns | 119.418** | 0.287ns | 119.418** |
S×P | 6.823* | 10.784** | 6.823* | 10.784** |
N×P | 3.639* | 14.995** | 0.884ns | 13.808** |
S×N×P | 2.967ns | 0.605ns | 2.967ns | 0.605ns |
表2 肥料利用效率的方差分析
Table 2 Analysis of variance for fertilizer use efficiency
因子 Factors | 肥料偏生产力Partial productivity | 农学效率Agronomic efficiency | ||
---|---|---|---|---|
地上生物量Aboveground biomass | 种子产量Seed yield | 地上生物量Aboveground biomass | 种子产量Seed yield | |
施肥季节S | 6.522* | 245.588** | 6.522* | 245.588** |
氮肥N | 4.057ns | 31.680** | 58.703** | 685.955** |
磷肥P | 85.666** | 780.266** | 30.734** | 59.526** |
S×N | 0.287ns | 119.418** | 0.287ns | 119.418** |
S×P | 6.823* | 10.784** | 6.823* | 10.784** |
N×P | 3.639* | 14.995** | 0.884ns | 13.808** |
S×N×P | 2.967ns | 0.605ns | 2.967ns | 0.605ns |
图4 不同季节施肥的肥料利用效率A和C为地上生物量; B和D为种子产量。A and C were aboveground biomass; B and D were seed yield.
Fig.4 Fertilizer use efficiency of fertilization in different seasons
施肥季节 Fertilization season | 性状 Traits | 种子产量 Seed yield | 地上生物量 Aboveground biomass | 株高 Plant height | 茎粗 Stem diameter |
---|---|---|---|---|---|
春季Spring | 地上生物量Aboveground biomass | 0.588** | |||
株高Plant height | 0.736** | 0.584** | |||
茎粗Stem diameter | -0.097 | -0.465** | 0.011 | ||
生殖枝数Reproductive shoot | 0.826** | 0.427** | 0.581** | 0.052 | |
秋季Autumn | 地上生物量Aboveground biomass | 0.868** | |||
株高Plant height | 0.852** | 0.782** | |||
茎粗Stem diameter | -0.052 | -0.038 | 0.165 | ||
生殖枝数Reproductive shoot | 0.809** | 0.701** | 0.689** | 0.027 |
表3 春、秋季施肥时各性状间的相关性
Table 3 Correlation among traits at spring and autumn fertilization
施肥季节 Fertilization season | 性状 Traits | 种子产量 Seed yield | 地上生物量 Aboveground biomass | 株高 Plant height | 茎粗 Stem diameter |
---|---|---|---|---|---|
春季Spring | 地上生物量Aboveground biomass | 0.588** | |||
株高Plant height | 0.736** | 0.584** | |||
茎粗Stem diameter | -0.097 | -0.465** | 0.011 | ||
生殖枝数Reproductive shoot | 0.826** | 0.427** | 0.581** | 0.052 | |
秋季Autumn | 地上生物量Aboveground biomass | 0.868** | |||
株高Plant height | 0.852** | 0.782** | |||
茎粗Stem diameter | -0.052 | -0.038 | 0.165 | ||
生殖枝数Reproductive shoot | 0.809** | 0.701** | 0.689** | 0.027 |
1 | Gutiérrez A D, Ojeda R O, Yong V L, et al. Adaptation to phosphate scarcity: tips from Arabidopsis roots. Trends in Plant Science, 2018, 23(8): 721-730. |
2 | Li H, Li M C, Luo J, et al. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species. Journal of Experimental Botany, 2012, 63(17): 6173-6185. |
3 | Wang Q Z. Coupling effects of water and fertilizer on seed yield and the yield performance of 6 grasses species. Beijing: China Agricultural University, 2005. |
王佺珍. 水肥耦合对6种禾本科牧草种子产量和生产性能的效应. 北京: 中国农业大学, 2005. | |
4 | Li W, Gan X, Jiang Y, et al. Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environmental Pollution, 2022, 309: 119720. |
5 | Dordas C. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. European Journal of Agronomy, 2009, 30(2): 129-139. |
6 | Xia H Y, Zhao J H, Sun J H, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150(8): 52-62. |
7 | Mohammed U, Davis J, Rossall S, et al. Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. Frontiers in Plant Science, 2022, 13: 4261. |
8 | Zhang J, Pang X P, Wang Q, et al. PRDI can maintain aboveground biomass and increase economic benefits in alfalfa through regulating N∶P ratios in roots and leaves. Field Crops Research, 2020, 253: 107821. |
9 | Li G L, Liu Y, Zhu Y, et al. A review on the abroad studies of techniques in regulating quality of container seedling. Scientia Silvae Sinicae, 2012, 48(8): 135-142. |
李国雷, 刘勇, 祝燕, 等. 国外容器苗质量调控技术研究进展. 林业科学, 2012, 48(8): 135-142. | |
10 | Li C, Wang X, Guo Z, et al. Optimizing nitrogen fertilizer inputs and plant populations for greener wheat production with high yields and high efficiency in dryland areas. Field Crops Research, 2022, 276: 108374. |
11 | Wei H X, Xu C Y, Ma L Y, et al. Current development and prospect on late-season fertilization to tree seedling. Scientia Silvae Sinicae, 2011, 47(7): 172-180. |
魏红旭, 徐程扬, 马履一, 等. 苗木晚季施肥研究现状与展望. 林业科学, 2011, 47(7): 172-180. | |
12 | Trubat R, Cortina J, Vilagrosa A. Nursery fertilization affects seedling traits but not field performance in Quercus suber L. Journal of Arid Environments, 2010, 74(4): 491-497. |
13 | Lubbe F C, Klimešová J, Henry H A L. Winter belowground: changing winters and the perennating organs of herbaceous plants. Functional Ecology, 2021, 35(8): 1627-1639. |
14 | Shi Z H, Liu W H, Zhang Y C, et al. Combined application of phosphorus fertilizer and super absorbent polymer with low nitrogen fertilizer rate enhanced seed yield of Festuca kryloviana Reverd. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1967-1976. |
石正海, 刘文辉, 张永超, 等. 增磷减氮配合保水剂可提高多年生西北羊茅种子产量. 植物营养与肥料学报, 2019, 25(11): 1967-1976. | |
15 | Ji Y J, Wang X C. Effects of balanced fertilization on yield and forage characters of perennial gramineous grasses. Heilongjiang Animal Science and Veterinary Medicine, 2011(12): 82-84. |
纪亚君, 汪新川. 平衡施肥对多年生禾本科牧草草产量及牧草性状的影响. 黑龙江畜牧兽医, 2011(12): 82-84. | |
16 | Zhang Y C, Liang G L, Qin Y, et al. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
张永超, 梁国玲, 秦燕, 等. 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应. 草业学报, 2022, 31(1): 229-237. | |
17 | Shi Z H, Liang G L, Liu W H, et al. Overview of research on the adaptability of Festuca ovina in alpine regions. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(2): 61-63. |
石正海, 梁国玲, 刘文辉, 等. 西北羊茅在高寒地区的适应性研究概况. 青海畜牧兽医杂志, 2019, 49(2): 61-63. | |
18 | Shi Z H. The seed formation and biomass distribution response of nitrogen and phosphorus fertilizers in alpine region for the Festuca ovina. Xining: Qinghai University, 2020. |
石正海. 高寒地区羊茅种子形成和生物量分配对氮磷肥的响应. 西宁: 青海大学, 2020. | |
19 | Ye K K, Li Q M, Zhu Y, et al. Afforestation performance of Pinus tabulaeformis container and bareroot seedlings to fall fertilization. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(1): 1-13. |
叶可可, 李庆梅, 祝燕, 等. 油松容器苗和裸根苗生长与造林效果对秋季施肥的响应. 南京林业大学学报(自然科学版), 2023, 47(1): 1-13. | |
20 | Sun Y J. Effects of different fertilization methods on growth of Quercus mongolica container seedlings. Shenyang: Shenyang Agricultural University, 2020. |
孙媛姣. 不同施肥方式对蒙古栎容器苗生长的影响. 沈阳: 沈阳农业大学, 2020. | |
21 | Yang Y. Effects of fertilization on growth, nutrient distribution and roots system of Tilia amurensis Rupr. seedlings. Harbin: Northeast Forestry University, 2020. |
杨阳. 施肥对紫椴苗木生长、养分分配及根系的影响. 哈尔滨: 东北林业大学, 2020. | |
22 | Andivia E, Fernández M, Vázquez-Piqué J. Assessing the effect of late-season fertilization on holm oak plant quality: insights from morpho-nutritional characterizations and water relations parameters. New Forests, 2014, 45(2): 149-163. |
23 | Li X T. Effects of fertilization and clipping on productivity and species diversity in Leymus chinensis grassland. Changchun: Northeast Normal University, 2016. |
李晓彤. 施肥和刈割对羊草草地生产力与物种多样性的影响. 长春: 东北师范大学, 2016. | |
24 | Cusack D F, Silver W, Mcdowell W H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems, 2009, 12: 1299-1315. |
25 | Dierking R M, Allen D J, Cunningham S M, et al. Nitrogen reserve pools in two Miscanthus×giganteus genotypes under contrasting N managements. Frontiers in Plant Science, 2017, 8: 1618. |
26 | Zou Y. The effect of urea application on cool season mixed turf and nitrogen fate. Beijing: Beijing Forestry University, 2008. |
邹妍. 尿素施用对冷季型混播草坪的影响和氮的去向. 北京: 北京林业大学, 2008. | |
27 | Nordestgaard A. The effects of quantity of nitrogen, date of application and the influence of autumn treatment of the seed yield of grasses. Seed Production, 1980, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALAG ROLINEINRA8110152302. |
28 | Young W C, Youngberg H W, Chilcote D O. Spring nitrogen rate and timing influence on seed yield components of perennial ryegrass. Agronomy Journal, 1996, 88(6): 947-951. |
29 | Hare M, Archie W J. Red fescue seed production: post-harvest management, nitrogen and closing date. Proceedings of the New Zealand Grassland Association, 1990, 52: 81-85. |
30 | Liu M L, Baoyin T G T, Yang C. Effect of applying phosphorus diamine fertilizer on plant community composition and grassland quality in mowing grassland of typical steppe. Journal of Agro-Environment Science, 2007(1): 350-355. |
刘美玲, 宝音陶格涛, 杨持. 施用磷酸二胺对典型草原区割草地植物群落组成及草场质量的影响. 农业环境科学学报, 2007(1): 350-355. | |
31 | Zhang Y C, Wei X X, Liang G L, et al. Phenotype changes during aging over six years of Elymus sibiricus stands and the effects of nutrient addition. Acta Prataculturae Sinica, 2022, 31(6): 101-111. |
张永超, 魏小星, 梁国玲, 等. 老芒麦衰老过程形态特征变化规律及对养分添加的响应. 草业学报, 2022, 31(6): 101-111. | |
32 | Ma X, Wang J X, Zhang Y Y, et al. Effects of water and fertilizer conditions on photosynthesis and biomass of two forage grasses in coal gangue soil. Research of Soil and Water Conservation, 2021(1): 179-187. |
马戌, 王进鑫, 张玉玉, 等. 水肥条件对煤矸石土壤上两种牧草光合及生物量的影响. 水土保持研究, 2021(1): 179-187. | |
33 | Wang P, Wang Z, Pan Q, et al. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis. Journal of Experimental Botany, 2019, 70(6): 1859-1873. |
34 | Si Y B, Wang S Q, Chen H M. Loss of nitrogen, phosphorus and algal bloom from farmland. Soil, 2000, 32(4): 188-193. |
司友斌, 王慎强, 陈怀满. 农田氮、磷的流失与水体富营养化. 土壤, 2000, 32(4): 188-193. | |
35 | Li C Y, Zhang X C, Li C, et al. Ionomic and metabolic responses of wheat seedlings to PEG-6000-simulated drought stress under two phosphorus levels. PLoS One, 2022, 17(9): e0274915. |
36 | Zhou Y X, Lan J, Shao S R, et al. Effects of fertilization on seed production of Poa pratensis (Bulletin). Acta Agrestia Sinica, 1999, 7(1): 81-83. |
周玉香, 兰剑, 邵生荣, 等. 施肥对草地早熟禾种子生产性能的影响(简报). 草地学报, 1999, 7(1): 81-83. |
[1] | 张睿, 韩重阳, 蔡家邦, 汪阳, 黄琳凯, 张新全, 聂刚. 6个苇状羊茅(型)品种在成都平原区的生产性能评价[J]. 草业学报, 2024, 33(1): 138-148. |
[2] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[3] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[4] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[5] | 撖冬荣, 姚拓, 李海云, 黄书超, 杨琰珊, 高亚敏, 李昌宁, 张银翠. 微生物肥料与化肥减量配施对多年生黑麦草生长的影响[J]. 草业学报, 2022, 31(3): 136-143. |
[6] | 韩重阳, 王栓, 左粟田, 闫三博, 汪阳, 蔡家邦, 马骢毓, 张新全, 聂刚. 10个白三叶品种在成都平原的生产性能评价[J]. 草业学报, 2022, 31(11): 105-117. |
[7] | 吴欣明, 方志红, 池惠武, 贾会丽, 刘建宁, 石永红, 王学敏. 30个青贮玉米在雁门关地区品种评比试验[J]. 草业学报, 2022, 31(1): 205-216. |
[8] | 王云霞, 张萍, 葛蓓蕾, 雅蓉, 杨英, 靳磊. 渥丹百合农艺性状及活性成分对钾元素的响应[J]. 草业学报, 2021, 30(6): 205-213. |
[9] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[10] | 姜慧新, 柏杉杉, 吴波, 宋静怡, 王国良. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价[J]. 草业学报, 2021, 30(1): 140-149. |
[11] | 再吐尼古丽·库尔班, 吐尔逊·吐尔洪, 涂振东, 王卉, 山其米克, 艾克拜尔·伊拉洪. 长期不同施肥处理对连作高粱生长规律及产量的影响研究[J]. 草业学报, 2020, 29(8): 81-92. |
[12] | 马千虎, 张学梅, 王自奎, 杨惠敏. 基于APSIM模型的高寒地区燕麦灌溉制度优化[J]. 草业学报, 2020, 29(7): 1-10. |
[13] | 杨晶, 刘文辉, 梁国玲, 贾志锋, 刘凯强, 张燕, 吴瑞, 杨钰洁. 高寒地区不同燕麦品系抗倒伏相关性状分析[J]. 草业学报, 2020, 29(12): 50-60. |
[14] | 张永亮, 于铁峰, 郝凤, 高凯. 施肥与混播比例对豆禾混播牧草产量及氮磷钾利用效率的影响[J]. 草业学报, 2020, 29(11): 91-101. |
[15] | 李佶恺, 王建丽, 尚晨, 张海玲, 刘杰淋, 陈积山, 潘多锋, 刘凯. 不同藜麦材料在哈尔滨地区的适应性研究[J]. 草业学报, 2019, 28(9): 202-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||