草业学报 ›› 2024, Vol. 33 ›› Issue (1): 182-197.DOI: 10.11686/cyxb2023090
• 综合评述 • 上一篇
收稿日期:
2023-03-22
修回日期:
2023-04-24
出版日期:
2024-01-20
发布日期:
2023-11-23
通讯作者:
伍国强
作者简介:
E-mail: wugq08@126.com基金资助:
Xin-miao ZHANG(), Guo-qiang WU(), Ming WEI
Received:
2023-03-22
Revised:
2023-04-24
Online:
2024-01-20
Published:
2023-11-23
Contact:
Guo-qiang WU
摘要:
丝裂原活化蛋白激酶(MAPK)是一类高度保守的丝氨酸/苏氨酸(Ser/Thr)蛋白激酶,广泛存在于真核生物中级联反应途径。植物MAPK具有相对保守的11个亚结构域,均为Ser/Thr蛋白激酶发挥其催化作用所必需的元件,其表达受活性氧、一氧化氮、激素等调控。MAPK可磷酸化多种底物,包括转录因子、蛋白激酶和细胞骨架相关蛋白等,在调控植物响应逆境(盐分、干旱、极端温度、重金属等)胁迫中起重要作用。本研究对植物MAPK家族的发现、分类与结构、调控机制及其响应各种非生物胁迫等方面的研究成果加以综述,并对未来研究方向进行展望,以期为农作物抗逆性遗传改良提供理论依据和基因资源。
张鑫苗, 伍国强, 魏明. MAPK在植物响应逆境胁迫中的作用[J]. 草业学报, 2024, 33(1): 182-197.
Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress[J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197.
物种 Species | 基因名称 Gene name | 基因ID Gene ID | 氨基酸 数量 Number of amino acids (aa) | 分子量 Molecular weight (kDa) | 等电点 Isoelectric point (KJ) | 胁迫类型 Stress types | 参考 文献 Reference |
---|---|---|---|---|---|---|---|
拟南芥 A. thaliana | AtMPK3 | At3g45640 | 370 | 42.72 | 5.87 | 低温、高盐、低渗透、铜、镉Low temperature, high-salt, low permeability, cuprum, cadmium | [ |
AtMPK6 | At2g43790 | 496 | 45.06 | 5.17 | 低渗透、干旱、低温、镉、铜Low permeability, drought, low temperature, cadmium, cuprum | [ | |
AtMPK4 | At4g01370 | 376 | 42.85 | 6.01 | 高盐High-salt | ||
莴苣L. sativa | LsMAPK3-2 | Lsat_1_v5_gn_9_20480 | 372 | 42.88 | 5.38 | 高温High temperature | [ |
LsMAPK4 | Lsat_1_v5_gn_3_137680 | 378 | 43.46 | 6.32 | 高温High temperature | ||
LsMAPK6 | Lsat_1_v5_gn_1_74260 | 382 | 58.42 | 6.57 | 高温High temperature | ||
水稻O. sativa | OsMAPK3 | LOC_Os03g17700 | 369 | 43.00 | 5.48 | 低温、干旱、高盐、镉、铜、砷Low temperature, drought, high-salt, cadmium, cuprum, arsenic | [ |
OsMAPK4 | LOC_Os10g38950 | 376 | 42.77 | 5.96 | 高盐、砷High-salt, arsenic | [ | |
OsMAPK14 | LOC_Os02g05480 | 370 | 42.47 | 6.70 | 干旱Drought | ||
OsMAPK6 | Os06g06090 | 399 | 44.96 | 5.45 | 镉、铜Cadmium, cuprum | [ | |
野草莓Fragaria vesca | FvMAPK5 | LOC101297368 | 391 | 44.71 | 5.65 | 低温、干旱Low temperature, drought | [ |
FvMAPK8 | LOC101306313 | 371 | 42.71 | 5.62 | 低温、干旱Low temperature, drought | ||
玉米Zea mays | ZmMAPK5 | LOC100272353 | 376 | 43.49 | 5.47 | 高盐、低温High-salt, low temperature | [ |
ZmMAPK17 | LOC103637414 | 456 | 46.26 | 5.05 | 高盐High-salt | [ | |
海岛棉Gossypium barbadense | GbMAPK3 | A03G043800.1 | 375 | 43.02 | 5.50 | 干旱Drought | [ |
陆地棉Gossypium hirsutum | GhMAPK7 | LOC107936554 | 368 | 42.51 | 8.06 | 干旱Drought | [ |
GhMAPK17 | LOC107921990 | 498 | 56.95 | 6.99 | 高盐High-salt | [ | |
山茶树Camellia sinensis | CsMPK3-1 | TEA026040 | 372 | 42.76 | 5.25 | 低温Low temperature | [ |
CsMPK3-2 | TEA020852 | 365 | 41.68 | 5.89 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK4-2 | TEA021759 | 330 | 38.21 | 5.41 | 高温、干旱High temperature, drought | ||
CsMPK4-3 | TEA006436 | 367 | 42.24 | 6.28 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK15 | TEA012905 | 587 | 66.87 | 6.99 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK19-1 | TEA018880 | 599 | 67.28 | 9.22 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK19-2 | TEA022253 | 792 | 90.12 | 9.25 | 高温、干旱High temperature, drought | ||
小麦Triticum aestivum | TaMAPK8 | LOC543037 | 470 | 54.61 | 9.09 | 干旱Drought | [ |
甘蓝型油菜Brassica napus | BnMAPK4 | LOC106438618 | 373 | 42.51 | 5.85 | 低温Low temperature | [ |
甜瓜Cucumis melo | CmMAPK1 | MELO3C010966 | 386 | 44.71 | 6.44 | 干旱Drought | [ |
CmMAPK3 | MELO3C020718 | 370 | 42.75 | 5.46 | 高盐、干旱High-salt, drought | ||
CmMAPK4-1 | MELO3C005705 | 383 | 43.98 | 6.09 | 干旱Drought | ||
CmMAPK4-2 | MELO3C021187 | 370 | 42.89 | 5.97 | 干旱Drought | ||
CmMAPK6-1 | MELO3C011444 | 405 | 46.34 | 5.44 | 干旱Drought | ||
CmMAPK7 | MELO3C016399 | 371 | 42.74 | 6.57 | 高盐、干旱High-salt, drought | ||
CmMAPK9-1 | MELO3C017350 | 645 | 73.12 | 7.34 | 干旱Drought | ||
CmMAPK9-2 | MELO3C018306 | 469 | 54.01 | 6.82 | 干旱Drought | ||
CmMAPK9-4 | MELO3C002124 | 479 | 54.82 | 8.56 | 干旱Drought | ||
CmMAPK13 | MELO3C026848 | 370 | 42.61 | 5.01 | 干旱Drought | ||
CmMAPK16 | MELO3C021394 | 565 | 64.47 | 8.81 | 干旱Drought | ||
CmMAPK20-1 | MELO3C014472 | 606 | 68.31 | 9.10 | 高盐High-salt | ||
CmMAPK20-2 | MELO3C019687 | 620 | 70.32 | 9.28 | 高盐High-salt | ||
烟草Nicotiana tabacum | NtMPK3 | AB052964 | 393 | 45.17 | 4.93 | 低渗透Low permeability | [ |
NtMPK6-1 | AF165186 | 357 | 39.58 | 5.41 | 高渗透、低渗透High permeability, low permeability |
表1 不同植物MAPK基因
Table 1 The MAPK genes in various plant species
物种 Species | 基因名称 Gene name | 基因ID Gene ID | 氨基酸 数量 Number of amino acids (aa) | 分子量 Molecular weight (kDa) | 等电点 Isoelectric point (KJ) | 胁迫类型 Stress types | 参考 文献 Reference |
---|---|---|---|---|---|---|---|
拟南芥 A. thaliana | AtMPK3 | At3g45640 | 370 | 42.72 | 5.87 | 低温、高盐、低渗透、铜、镉Low temperature, high-salt, low permeability, cuprum, cadmium | [ |
AtMPK6 | At2g43790 | 496 | 45.06 | 5.17 | 低渗透、干旱、低温、镉、铜Low permeability, drought, low temperature, cadmium, cuprum | [ | |
AtMPK4 | At4g01370 | 376 | 42.85 | 6.01 | 高盐High-salt | ||
莴苣L. sativa | LsMAPK3-2 | Lsat_1_v5_gn_9_20480 | 372 | 42.88 | 5.38 | 高温High temperature | [ |
LsMAPK4 | Lsat_1_v5_gn_3_137680 | 378 | 43.46 | 6.32 | 高温High temperature | ||
LsMAPK6 | Lsat_1_v5_gn_1_74260 | 382 | 58.42 | 6.57 | 高温High temperature | ||
水稻O. sativa | OsMAPK3 | LOC_Os03g17700 | 369 | 43.00 | 5.48 | 低温、干旱、高盐、镉、铜、砷Low temperature, drought, high-salt, cadmium, cuprum, arsenic | [ |
OsMAPK4 | LOC_Os10g38950 | 376 | 42.77 | 5.96 | 高盐、砷High-salt, arsenic | [ | |
OsMAPK14 | LOC_Os02g05480 | 370 | 42.47 | 6.70 | 干旱Drought | ||
OsMAPK6 | Os06g06090 | 399 | 44.96 | 5.45 | 镉、铜Cadmium, cuprum | [ | |
野草莓Fragaria vesca | FvMAPK5 | LOC101297368 | 391 | 44.71 | 5.65 | 低温、干旱Low temperature, drought | [ |
FvMAPK8 | LOC101306313 | 371 | 42.71 | 5.62 | 低温、干旱Low temperature, drought | ||
玉米Zea mays | ZmMAPK5 | LOC100272353 | 376 | 43.49 | 5.47 | 高盐、低温High-salt, low temperature | [ |
ZmMAPK17 | LOC103637414 | 456 | 46.26 | 5.05 | 高盐High-salt | [ | |
海岛棉Gossypium barbadense | GbMAPK3 | A03G043800.1 | 375 | 43.02 | 5.50 | 干旱Drought | [ |
陆地棉Gossypium hirsutum | GhMAPK7 | LOC107936554 | 368 | 42.51 | 8.06 | 干旱Drought | [ |
GhMAPK17 | LOC107921990 | 498 | 56.95 | 6.99 | 高盐High-salt | [ | |
山茶树Camellia sinensis | CsMPK3-1 | TEA026040 | 372 | 42.76 | 5.25 | 低温Low temperature | [ |
CsMPK3-2 | TEA020852 | 365 | 41.68 | 5.89 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK4-2 | TEA021759 | 330 | 38.21 | 5.41 | 高温、干旱High temperature, drought | ||
CsMPK4-3 | TEA006436 | 367 | 42.24 | 6.28 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK15 | TEA012905 | 587 | 66.87 | 6.99 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK19-1 | TEA018880 | 599 | 67.28 | 9.22 | 低温、高温、干旱Low temperature, high temperature, drought | ||
CsMPK19-2 | TEA022253 | 792 | 90.12 | 9.25 | 高温、干旱High temperature, drought | ||
小麦Triticum aestivum | TaMAPK8 | LOC543037 | 470 | 54.61 | 9.09 | 干旱Drought | [ |
甘蓝型油菜Brassica napus | BnMAPK4 | LOC106438618 | 373 | 42.51 | 5.85 | 低温Low temperature | [ |
甜瓜Cucumis melo | CmMAPK1 | MELO3C010966 | 386 | 44.71 | 6.44 | 干旱Drought | [ |
CmMAPK3 | MELO3C020718 | 370 | 42.75 | 5.46 | 高盐、干旱High-salt, drought | ||
CmMAPK4-1 | MELO3C005705 | 383 | 43.98 | 6.09 | 干旱Drought | ||
CmMAPK4-2 | MELO3C021187 | 370 | 42.89 | 5.97 | 干旱Drought | ||
CmMAPK6-1 | MELO3C011444 | 405 | 46.34 | 5.44 | 干旱Drought | ||
CmMAPK7 | MELO3C016399 | 371 | 42.74 | 6.57 | 高盐、干旱High-salt, drought | ||
CmMAPK9-1 | MELO3C017350 | 645 | 73.12 | 7.34 | 干旱Drought | ||
CmMAPK9-2 | MELO3C018306 | 469 | 54.01 | 6.82 | 干旱Drought | ||
CmMAPK9-4 | MELO3C002124 | 479 | 54.82 | 8.56 | 干旱Drought | ||
CmMAPK13 | MELO3C026848 | 370 | 42.61 | 5.01 | 干旱Drought | ||
CmMAPK16 | MELO3C021394 | 565 | 64.47 | 8.81 | 干旱Drought | ||
CmMAPK20-1 | MELO3C014472 | 606 | 68.31 | 9.10 | 高盐High-salt | ||
CmMAPK20-2 | MELO3C019687 | 620 | 70.32 | 9.28 | 高盐High-salt | ||
烟草Nicotiana tabacum | NtMPK3 | AB052964 | 393 | 45.17 | 4.93 | 低渗透Low permeability | [ |
NtMPK6-1 | AF165186 | 357 | 39.58 | 5.41 | 高渗透、低渗透High permeability, low permeability |
图1 高等植物MAPKs系统进化树采用MEGA 11软件进行序列多重比较和系统进化树的构建。红色三角形表示拟南芥,蓝色五角星表示山茶树,黑色圆圈表示莴苣,黑色三角形表示甜菜,绿色五角星表示烟草,红色正方形表示甜瓜。MEGA 11 software was used for sequence multiple comparisons and phylogenetic tree construction. Red triangle indicates A. thaliana, blue stars indicate C. sinensis, black circle indicate L. sativa, black triangles indicate B. vulgaris, green stars indicate N. tabacum and red rectangles indicate C. melo. MAPKs名称和来源如下。The source, name and accession number of MAPKs are as follows: 拟南芥A. thaliana: AtMAPK11 (At1g01560), AtMAPK12 (At2g46070), AtMAPK5 (At4g11330), AtMAPK13 (At1g07880), AtMAPK10 (At3g59790), AtMAPK7 (At2g18170), AtMAPK14 (At4g36450), AtMAPK9 (At3g18040), AtMAPK8 (At1g18150), AtMAPK15 (At1g73670), AtMAPK17 (At2g01450), AtMAPK18 (At1g53510), AtMAPK19 (At3g14720), AtMAPK20 (At2g42880), AtMAPK16 (At5g19010); 山茶树C. sinensis: CsMAPK4-3 (TEA006436), CsMAPK4-1 (TEA006273), CsMAPK6 (TEA024415), CsMAPK3-3 (TEA031053), CsMAPK3-4 (TEA017807), CsMAPK3-5 (TEA017811), CsMAPK1-1 (TEA031435), CsMAPK1-2 (TEA016315), CsMAPK15 (TEA012905), CsMAPK9-2 (TEA015676), CsMAPK4-4 (TEA007103), CsMAPK9-1 (TEA022268), CsMAPK20 (TEA004137), CsMAPK16-2 (TEA031053), CsMAPK16-1 (TEA025883); 烟草N. tabacum: NtMAPK4-1 (AB212070), NtMAPK13 (AB055515), NtMAPK6-2 (X83880), NtMAPK7 (JX076817), NtMAPK9-1 (JX076815), NtMAPK9-2 (JX076816), NtMAPK15 (JX076814), NtMAPK19-1 (JX076815), NtMAPK20 (JX076822), NtMAPK16 (JX076813); 莴苣L. sativa: LsMAPK4 (Lsat_1_v5_gn_3_138401), LsMAPK4-2 (Lsat_1_v5_gn_9_21161), LsMAPK4-3 (Lsat_1_v5_gn_8_76340), LsMAPK1-3 (Lsat_1_v5_gn_1_17080), LsMAPK7 (Lsat_1_v5_gn_3_77061), LsMAPK1 (Lsat_1_v5_gn_4_117181), LsMAPK1-2 (Lsat_1_v5_gn_5_26820), LsMAPK9 (Lsat_1_v5_gn_8_144901), LsMAPK9-2 (Lsat_1_v5_gn_2_19180), LsMAPK16-3 (Lsat_1_v5_gn_7_66400), LsMAPK16 (Lsat_1_v5_gn_7_64441), LsMAPK16-2 (Lsat_1_v5_gn_7_64461); 甜菜B. vulgaris: BvMAPK1 (BVRB_1g004190), BvMAPK3 (BVRB_5g100010), BvMAPK5 (BVRB_9g207310), BvMAPK4 (BVRB_3g058860), BvMAPK7 (BVRB_1g006940), BvMAPK2 (BVRB_5g111950), BvMAPK6 (BVRB_5g124150)。LsMAPK4*和LsMAPK4在同一染色体上基因序列相同但位点不同。LsMAPK4* and LsMAPK4 have identical gene sequences but different loci on the same chromosome.其他MAPKs的名称和登录号见表1。The name and accession number of other MAPKs are shown in Table 1.
Fig.1 Phylogenetic tree of the higher plant MAPKs
图2 MAPK级联响应非生物胁迫问号表示不确定或未知的元件。黑色的箭头表示直接的互作或激活;点状线表示MAPK级联通过一系列途径响应非生物胁迫。Question marks indicate uncertainties or unknown components. Black arrows indicate direct interaction/activation. The dotted lines indicate MAPK cascade of response to abiotic stresses through a series of pathways. P: 磷酸化Phosphorylation.
Fig.2 MAPK cascade response to abiotic stress
1 | Bai Y, Kissoudis C, Yan Z, et al. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. The Plant Journal, 2018, 93(4): 781-793. |
2 | Chen X X, Ding Y L, Yang Y Q, et al. Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology, 2021, 63(1): 53-78. |
3 | Molle V, Kremer L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Molecular Microbiology, 2010, 75(5): 1064-1077. |
4 | Zhang M M, Su J B, Zhang Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Current Opinion in Plant Biology, 2018, 45: 1-10. |
5 | Shao Y M, Yu X X, Xu X W, et al. The YDA-MKK4/MKK5-MPK3/MPK6 cascade functions downstream of the RGF1-RGI ligand-receptor pair in regulating mitotic activity in root apical meristem. Molecular Plant, 2020, 13(11): 1608-1623. |
6 | Bai F W, Matton D P. The Arabidopsis mitogen-activated protein kinase kinase kinase 20 (MKKK20) C-terminal domain interacts with MKK3 and harbors a typical DEF mammalian MAP kinase docking site. Plant Signaling & Behavior, 2018, 13(8): e1503498. |
7 | Zhang M M, Zhang S Q. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64(2): 301-341. |
8 | Xie C, Yang L, Gai Y P. MAPKKKs in plants: Multidimensional regulators of plant growth and stress responses. International Journal of Molecular Sciences, 2023, 24(4): 4117. |
9 | Stafstrom J P, Altschuler M, Anderson D H. Molecular cloning and expression of a MAP kinase homologue from pea. Plant Molecular Biology, 1993, 22(1): 83-90. |
10 | Ichimura K, Shinozaki K, Tena G, et al. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 2002, 7(7): 301-308. |
11 | Wang T Z, Liu M J, Wu Y, et al. Genome-wide identification and expression analysis of MAPK gene family in lettuce (Lactuca sativa L.) and functional analysis of LsMAPK4 in high- temperature-induced bolting. International Journal of Molecular Sciences, 2022, 23(19): 11129. |
12 | Xie K B, Chen J P, Wang Q, et al. Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. The Plant Cell, 2014, 26(7): 3077-3089. |
13 | Teige M, Scheikl E, Eulgem T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 2004, 15(1): 141-152. |
14 | Mao X X, Zhang J J, Liu W G, et al. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice, 2019, 12(1): 2. |
15 | Zhou H Y, Ren S Y, Han Y F, et al. Identification and analysis of mitogen-activated protein kinase (MAPK) cascades in Fragaria vesca. International Journal of Molecular Sciences, 2017, 18(8): 1766. |
16 | Zhang D, Jiang S, Pan J, et al. The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biology, 2014, 16(3): 558-570. |
17 | Pan J W, Zhang M Y, Kong X P, et al. ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 2012, 235(4): 661-676. |
18 | Long L L, Gao W, Xu L, et al. GbMPK3, a mitogen-activated protein kinase from cotton, enhances drought and oxidative stress tolerance in tobacco. Plant Cell, Tissue and Organ Culture, 2014, 116(2): 153-162. |
19 | Wang C, Lu W J, He X W, et al. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant and Cell Physiology, 2016, 57(8): 1629-1642. |
20 | Zhang J, Zou D, Li Y, et al. GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One, 2014, 9(4): e95642. |
21 | Liu X, Zhao M, Gu C, et al. Genome-wide identification of MAPK family genes and their response to abiotic stresses in tea plant (Camellia sinensi). Open Life Sciences, 2022, 17(1): 1064-1074. |
22 | Ergen N Z, Thimmapuram J, Bohnert H J, et al. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Functional & Integrative Genomics, 2009, 9(3): 377-396. |
23 | Liu X, Wei R, Tian M Y, et al. Combined transcriptome and metabolome profiling provide insights into cold responses in rapeseed (Brassica napus L.) genotypes with contrasting cold-stress sensitivity. International Journal of Molecular Sciences, 2022, 23(21): 13546. |
24 | Zhang X, Li Y P, Xing Q J, et al. Genome-wide identification of mitogen-activated protein kinase (MAPK) cascade and expression profiling of CmMAPKs in melon (Cucumis melo L.). PLoS One, 2020, 15(5): e0232756. |
25 | Wu J, Liang X Y, Lin M, et al. Comprehensive analysis of MAPK gene family in Populus trichocarpa and physiological characterization of PtMAPK3‐1 in response to MeJA induction. Physiologia Plantarum, 2023, 175(1): e13869. |
26 | Majeed Y, Zhu X, Zhang N, et al. Harnessing the role of mitogen-activated protein kinases against abiotic stresses in plants. Frontiers in Plant Science, 2023, 14: 932923. |
27 | Shang Y T, Luo X B, Zhang H, et al. Genome-wide identification and analysis of the MAPK and MAPKK gene families in potato (Solanum tuberosum L.). Agronomy, 2022, 13(1): 93. |
28 | Chatterjee A, Paul A, Unnati G M, et al. MAPK cascade gene family in Camellia sinensis: In-silico identification, expression profiles and regulatory network analysis. BMC Genomics, 2020, 21(1): 613. |
29 | Jiao J. Bioinformatics analysis of pear MAPKs family and functional study of PbrMAPK15. Nanjing: Nanjing Agricultural University, 2017. |
焦瑾. 梨MAPK家族基因生物信息分析及PbrMAPK15的功能验证. 南京: 南京农业大学, 2017. | |
30 | Li X C. Identification and expression profile analysis of MAPK and MKK gene family in Arabidopsis pumila. Shihezi: Shihezi University, 2020. |
李晓翠. 新疆小拟南芥MAPK和MKK基因家族的鉴定及表达特征分析. 石河子: 石河子大学, 2020. | |
31 | Sachdev S, Ansari S A, Ansari M I, et al. Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 2021, 10(2): 277. |
32 | Sies H, Belousov V V, Chandel N S, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 2022, 23(7): 499-515. |
33 | Duan H, Ma Y C, Liu R, et al. Effect of combined waterlogging and salinity stresses on euhalophyte Suaeda glauca. Plant Physiology and Biochemistry, 2018, 127: 231-237. |
34 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
35 | Jalmi S K, Sinha A K. ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. Frontiers in Plant Science, 2015, 6: 769. |
36 | Liu Y K, Liu L X, Qi J P, et al. Cadmium activates ZmMPK3-1 and ZmMPK6-1 via induction of reactive oxygen species in maize roots. Biochemical and Biophysical Research Communications, 2019, 516(3): 747-752. |
37 | Moon H, Lee B, Choi G, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 2003, 100(1): 358-363. |
38 | Samuel M A, Miles G P, Ellis B E. Ozone treatment rapidly activates MAP kinase signalling in plants. The Plant Journal, 2000, 22(4): 367-376. |
39 | Shi B, Ni L, Liu Y P, et al. OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signalling in rice: OsDMI3 and OsMPK1 in ABA signaling. Plant, Cell & Environment, 2014, 37(2): 341-352. |
40 | Xie G S, Sasaki K, Imai R, et al. A redox-sensitive cysteine residue regulates the kinase activities of OsMPK3 and OsMPK6 in vitro. Plant Science, 2014, 227: 69-75. |
41 | Zhang T, Zhu M M, Song W Y, et al. Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. Biochimicaet Biophysica Acta-Proteins and Proteomics, 2015, 1854(2): 156-165. |
42 | Wang J X, Ding H D, Zhang A, et al. A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. Journal of Integrative Plant Biology, 2010, 52(5): 442-452. |
43 | Zhou J, Xia X J, Zhou Y H, et al. RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 2014, 65(2): 595-607. |
44 | Rezayian M, Niknam V, Ebrahimzadeh H. Oxidative damage and antioxidative system in algae. Toxicology Reports, 2019, 6: 1309-1313. |
45 | Bot P, Mun B G, Imran Q M, et al. Differential expression of AtWAKL10 in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. PeerJ, 2019, 7: e7383. |
46 | Nabi R B S, Tayade R, Hussain A, et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 2019, 161: 120-133. |
47 | Shi H T, Ye T T, Zhu J K, et al. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany, 2014, 65(15): 4119-4131. |
48 | Hasanuzzaman M, Oku H, Nahar K, et al. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnology Reports, 2018, 12(2): 77-92. |
49 | Fancy N N, Bahlmann A K, Loake G J. Nitric oxide function in plant abiotic stress. Plant, Cell & Environment, 2017, 40(4): 462-472. |
50 | Xiong J, Fu G F, Tao L X, et al. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archives of Biochemistry and Biophysics, 2010, 497(1/2): 13-20. |
51 | Soares C, Carvalho M E A, Azevedo R A, et al. Plants facing oxidative challenges-a little help from the antioxidant networks. Environmental and Experimental Botany, 2019, 161: 4-25. |
52 | Shahzad B, Tanveer M, Che Z, et al. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicology and Environmental Safety, 2018, 147: 935-944. |
53 | Thao N P, Khan M I R, Thu N B A, et al. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiology, 2015, 169(1): 73-84. |
54 | Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death: NO and MPK6 regulate Cd2+-induced PCD. Plant, Cell & Environment, 2013, 36(1): 1-15. |
55 | Lv X Z, Ge S B, Jalal A G, et al. Crosstalk between nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato. Plant and Cell Physiology, 2017, 58(11): 1963-1975. |
56 | He H Y, He L F. Crosstalk between melatonin and nitric oxide in plant development and stress responses. Physiologia Plantarum, 2020, 170(2): 218-226. |
57 | Zhang A, Jiang M Y, Zhang J H, et al. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytologist, 2007, 175(1): 36-50. |
58 | Wei L J, Zhang J, Wei S H, et al. Nitric oxide alleviates salt stress through protein S-nitrosylation and transcriptional regulation in tomato seedlings. Planta, 2022, 256(6): 101. |
59 | Hong Y B, Wang H, Gao Y Z, et al. ERF transcription factor OsBIERF3 positively contributes to immunity against fungal and bacterial diseases but negatively regulates cold tolerance in rice. International Journal of Molecular Sciences, 2022, 23(2): 606. |
60 | Lin L, Wu J, Jiang M Y, et al. Plant mitogen-activated protein kinase cascades in environmental stresses. International Journal of Molecular Sciences, 2021, 22(4): 1543. |
61 | Chen J, Wang L, Yuan M. Update on the roles of rice MAPK cascades. International Journal of Molecular Sciences, 2021, 22(4): 1679. |
62 | Sun T J, Zhang Y L. MAP kinase cascades in plant development and immune signaling. EMBO Reports, 2022, 23(2): e53817. |
63 | Novikova G V, Moshkov I E, Smith A R, et al. The effect of ethylene on MAP kinase-like activity in Arabidopsis thaliana. FEBS Letters, 2000, 474(1): 29-32. |
64 | Shu P, Li Y J, Li Z Y, et al. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environmental and Experimental Botany, 2022, 193: 104698. |
65 | Liao L, Li S C, Li Y J, et al. Pre- or post-harvest treatment with MeJA improves post-harvest storage of lemon fruit by stimulating the antioxidant system and alleviating chilling injury. Plants, 2022, 11(21): 2840. |
66 | Ali A, Chu N, Ma P P, et al. Genome-wide analysis of mitogen-activated protein (MAP) kinase gene family expression in response to biotic and abiotic stresses in sugarcane. Physiologia Plantarum, 2021, 171(1): 86-107. |
67 | Xie Y F, Ding M L, Yin X C, et al. MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza. Phytochemistry, 2022, 199: 113177. |
68 | Wang K, He J J, Gao Y, et al. Exogenous melatonin improved the growth and development of naked oat seedlings under cadmium stress. Environmental Science and Pollution Research, 2022, 58(29): 88109-88118. |
69 | Zhang T G, Shi Z F, Zhang X H, et al. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 2020, 262: 109070. |
70 | Sun T T, Zhang J K, Zhang Q, et al. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. Tree Physiology, 2022, 42(9): 1827-1840. |
71 | Yang X F, Kim M Y, Ha J M, et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants. Frontiers in Plant Science, 2019, 10: 1036. |
72 | Tolosa L N, Zhang Z B. The role of major transcription factors in solanaceous food crops under different stress conditions: Current and future perspectives. Plants, 2020, 9(1): 56. |
73 | Baillo E H, Kimotho R N, Zhang Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771. |
74 | Khan S A, Li M Z, Wang S M, et al. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 2018, 19(6): 1634. |
75 | Schmidt R, Mieulet D, Hubberten H M, et al. Salt-responsive erf1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. The Plant Cell, 2013, 25(6): 2115-2131. |
76 | Cai J J, Liu T, Li Y Q, et al. A C-terminal fragment of Arabidopsis oxidative stress 2 can play a positive role in salt tolerance. Biochemical and Biophysical Research Communications, 2021, 556: 23-30. |
77 | Verma D, Jalmi S K, Bhagat P K, et al. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. The FEBS Journal, 2020, 287(12): 2560-2576. |
78 | Li H, Ding Y L, Shi Y T, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis. Developmental Cell, 2017, 43(5): 630-642. |
79 | Wang P C, Du Y Y, Zhao X L, et al. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC Box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiology, 2013, 161(3): 1392-1408. |
80 | Wang N N, Zhao L L, Lu R, et al. Cotton mitogen-activated protein kinase4 (GhMPK4) confers the transgenic Arabidopsis hypersensitivity to salt and osmotic stresses. Plant Cell, Tissue and Organ Culture, 2015, 123(3): 619-632. |
81 | Li F J, Li M Y, Wang P, et al. Regulation of cotton (Gossypium hirsutum) drought responses by mitogen‐activated protein (MAP) kinase cascade-mediated phosphorylation of GhWRKY59. New Phytologist, 2017, 215(4): 1462-1475. |
82 | Chen L, Zhang B, Xia L J, et al. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. Journal of Advanced Research, 2022, 11: 2. |
83 | Zhao L I, Yan J W, Xiang Y, et al. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology, 2021, 10(9): 893. |
84 | Li D Y, Sun Q R, Zhang G F, et al. MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock. Journal of Experimental Botany, 2021, 72(5): 1919-1932. |
85 | Ichimaru K, Yamaguchi K, Harada K, et al. Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity. Nature Communications, 2022, 13(1): 2397. |
86 | Prakash V, Singh V P, Tripathi D K, et al. Nitric oxide (NO) and salicylic acid (SA): A framework for their relationship in plant development under abiotic stress. Plant Biology, 2021, 23(S1): 39-49. |
87 | Ahmad I, Zhu G L, Zhou G S, et al. Pivotal role of phytohormones and their responsive genes in plant growth and their signaling and transduction pathway under salt stress in cotton. International Journal of Molecular Sciences, 2022, 23(13): 7339. |
88 | Abulfaraj A A. Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum). Biotechnology & Biotechnological Equipment, 2020, 34(1): 860-872. |
89 | Sun Y P, Ma C, Kang X, et al. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber. Plant Physiology and Biochemistry, 2021, 167: 101-112. |
90 | Shen L K, Zhuang B C, Wu Q, et al. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Science, 2019, 287: 110190. |
91 | Sun S Y, Wang Y P, Wang J W, et al. Transcriptome responses to salt stress in roots and leaves of Lilium pumilum. Scientia Horticulturae, 2023, 309: 111622. |
92 | Yan Z W, Wang J X, Wang F X, et al. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Reports, 2021, 22(10): e52457. |
93 | Zhou H P, Xiao F, Zheng Y, et al. Pamp-induced secreted peptide 3 modulates salt tolerance through receptor-like kinase 7 in plants. The Plant Cell, 2022, 34(2): 927-944. |
94 | Liu J, Wang X M, Yang L, et al. Involvement of active MKK9-MAPK3/MAPK6 in increasing respiration in salt-treated Arabidopsis callus. Protoplasma, 2020, 257(3): 965-977. |
95 | Jia M, Luo N, Meng X B, et al. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice. Journal of Genetics and Genomics, 2022, 49(8): 766-775. |
96 | Na Y J, Choi H K, Park M Y, et al. OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signaling & Behavior, 2019, 14(3): e1578633. |
97 | Zhu Z G, Zhang Q T, Li X J, et al. Cloning, subcellular localization, and expression analysis of MAPK genes from Vitis yeshanesis. Journal of Agricultural Biotechnology, 2020, 28(3): 429-440. |
朱自果, 张庆田, 李秀杰, 等. 燕山葡萄MAPK基因的克隆、亚细胞定位及表达分析. 农业生物技术学报, 2020, 28(3): 429-440. | |
98 | Liang D, Zhang C X, Wang M, et al. Cloning and expression analysis of a mitogen-activated protein kinase 13 gene in peanut. Journal of Peanut Science, 2019, 48(2): 10-18. |
梁丹, 张朝昕, 王冕, 等. 花生MAPK13基因的克隆及表达分析研究. 花生学报, 2019, 48(2): 10-18. | |
99 | Sharma D, Verma N, Pandey C, et al. MAP kinase as regulators for stress responses in plants: An overview//Pandey G K.. Protein kinases and stress signaling in plants. New Jersey: Wiley-Blackwell, 2020: 369-392. |
100 | Chen L, Sun H, Wang F J, et al. Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14-GhMKK11-GhMPK31 pathway is involved in the drought response in cotton. Plant Molecular Biology, 2020, 103(1/2): 211-223. |
101 | Sadau S B, Ahmad A, Tajo S M, et al. Overexpression of GhMPK3 from cotton enhances cold, drought, and salt stress in Arabidopsis. Agronomy, 2021, 11(6): 1049. |
102 | Kumar K, Raina S K, Sultan S M. Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4): 700-714. |
103 | Shan D Q, Wang C, Song H D, et al. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. The Plant Journal, 2021, 108(3): 814-828. |
104 | Ma J J, Lan J P, Zhang T, et al. Overexpression of OsMPK17 protein enhances drought tolerance of rice. Acta Agronomica Sinica, 2020, 46(1): 20-30. |
马金姣, 兰金苹, 张彤, 等. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性. 作物学报, 2020, 46(1): 20-30. | |
105 | Zhu X, Zhang N, Liu X, et al. Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Reports, 2021, 40(3): 491-506. |
106 | Zhou M, Zhao B B, Li H S, et al. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics, 2022, 114(2): 110311. |
107 | Zhu D, Chang Y, Pei T, et al. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. The Plant Journal, 2020, 102(4): 747-760. |
108 | Wei X S, Liu S, Sun C, et al. Convergence and divergence: Signal perception and transduction mechanisms of cold stress in Arabidopsis and rice. Plants, 2021, 10(9): 1864. |
109 | Chen L, Song H Y, Xin J, et al. Comprehensive genome-wide identification and functional characterization of MAPK cascade gene families in Nelumbo. International Journal of Biological Macromolecules, 2023, 233: 123543. |
110 | Ding Y L, Lv J, Shi Y T, et al. EGR 2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis. The EMBO Journal, 2019, 38(1): e99819. |
111 | Ponce-Pineda I G, Carmona-Salazar L, Saucedo-García M, et al. MPK6 kinase regulates plasma membrane H+-ATPase activity in cold acclimation. International Journal of Molecular Sciences, 2021, 22(12): 6338. |
112 | Xia C X, Gong Y S, Chong K, et al. Phosphatase OSPP2C27 directly dephosphorylates OSMAPK3 and OSBHLH002 to negatively regulate cold tolerance in rice. Plant, Cell & Environment, 2021, 44(2): 491-505. |
113 | Tak H, Negi S, Rajpurohit Y S, et al. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant Physiology and Biochemistry, 2020, 146: 112-123. |
114 | Yin Z J, Zhu W P, Zhang X G, et al. Molecular characterization, expression and interaction of MAPK, MAPKK and MAPKKK genes in upland cotton. Genomics, 2021, 113(1): 1071-1086. |
115 | Du X Z, Jin Z P, Liu Z Q, et al. H2S persulfidated and increased kinase activity of MPK4 to response cold stress in Arabidopsis. Frontiers in Molecular Biosciences, 2021, 8: 635470. |
116 | Song A P, Hu Y C, Ding L, et al. Comprehensive analysis of mitogen-activated protein kinase cascades in Chrysanthemum. PeerJ, 2018, 6: e5037. |
117 | Majeed Y, Zhu X, Zhang N, et al. Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress. Molecular Breeding, 2022, 42(6): 31. |
118 | Wang Z, Yan S, Ren W C, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families in Fagopyrum tataricum and analysis of their expression patterns under abiotic stress. Frontiers in Genetics, 2022, 13: 894048. |
119 | He X W, Wang C Z, Wang H B, et al. The function of MAPK cascades in response to various stresses in horticultural plants. Frontiers in Plant Science, 2020, 11: 952. |
120 | Kumar R R, Arora K, Goswami S, et al. MAPK enzymes: A ROS activated signaling sensors involved in modulating heat stress response, tolerance and grain stability of wheat under heat stress. Biotech, 2020, 10(9): 380. |
121 | Opdenakker K, Remans T, Keunen E, et al. Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environmental and Experimental Botany, 2012, 83: 53-61. |
122 | Liu J X, Wang J X, Lee S C, et al. Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. PLoS One, 2018, 13(9): e0203612. |
123 | Mumtaz M A, Hao Y, Mehmood S, et al. Physiological and transcriptomic analysis provide molecular insight into 24-epibrassinolide mediated Cr (Ⅵ)-toxicity tolerance in pepper plants. Environmental Pollution, 2022, 306: 119375. |
124 | Guo Z H, Zeng P, Xiao X Y, et al. Physiological, anatomical, and transcriptional responses of mulberry (Morus alba L.) to Cd stress in contaminated soil. Environmental Pollution, 2021, 284: 117387. |
125 | Zhou L Y, Lv C G, Kang C Z, et al. Mitogen-activated protein kinase genes of Artemisia annua and their expression analysis under cadmium stress. China Journal of Chinese Materia Medica, 2016, 41(6): 1016-1020. |
周良云, 吕朝耕, 康传志, 等. 黄花蒿促分裂原活化蛋白激酶基因及其在重金属镉胁迫下表达分析. 中国中药杂志, 2016, 41(6): 1016-1020. | |
126 | Su T T, Fu L B, Kuang L H, et al. Transcriptome-wide m6A methylation profile reveals regulatory networks in roots of barley under cadmium stress. Journal of Hazardous Materials, 2022, 423: 127140. |
127 | Zhao F Y, Hu F, Zhang S Y, et al. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environmental Science and Pollution Research, 2013, 20(8): 5449-5460. |
128 | Xu Z G, Dong M, Peng X Y, et al. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicology and Environmental Safety, 2019, 171: 301-312. |
129 | Zhang W W, Song J F, Yue S Q, et al. MhMAPK4 from Malus hupehensis Rehd. decreases cell death in tobacco roots by controlling Cd2+ uptake. Ecotoxicology and Environmental Safety, 2019, 168: 230-240. |
130 | Muhammad T, Zhang J, Ma Y, et al. Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules, 2019, 24(3): 556. |
131 | Jin C W, Mao Q Q, Luo B F, et al. Mutation of mpk6 enhances cadmium tolerance in Arabidopsis plants by alleviating oxidative stress. Plant and Soil, 2013, 371(1/2): 387-396. |
132 | Huang T L, Huang L Y, Fu S F, et al. Genomic profiling of rice roots with short- and long-term chromium stress. Plant Molecular Biology, 2014, 86(1/2): 157-170. |
133 | Pandey C, Banerjee G, Sinha A K. Differential expression of mitogen activated protein kinase (MAPK) and stress-related genes in rice overexpressing MPK3 and MPK6 under abiotic stress. International Journal of Plant and Environment, 2020, 6(4): 264-269. |
[1] | 史先飞, 高宇, 黄旭升, 周雅莉, 蔡桂萍, 李昕儒, 李润植, 薛金爱. 油莎豆CeWRKY转录因子响应非生物胁迫的功能表征[J]. 草业学报, 2023, 32(8): 186-201. |
[2] | 张洁, 程凯, 王迎春. 长叶红砂钙依赖蛋白激酶RtCDPK16的非生物胁迫应答分析[J]. 草业学报, 2023, 32(2): 97-109. |
[3] | 田骄阳, 王秋霞, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析[J]. 草业学报, 2022, 31(7): 111-121. |
[4] | 张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117. |
[5] | 张家驹, 于洁, 李明娜, 康俊梅, 杨青川, 龙瑞才. 蒺藜苜蓿lncRNA167及其剪切产物miR167c的鉴定和功能分析[J]. 草业学报, 2022, 31(1): 164-180. |
[6] | 侯洁茹, 段晓玥, 李州, 彭燕. 白三叶TrSAMDC1克隆及表达分析[J]. 草业学报, 2020, 29(8): 170-178. |
[7] | 黄沁梅, 杨伊如, 陈丽飞, 尹航, 刘贺, 刘颖婕, 周蕴薇, 何淼. 转露地菊CgDREB22基因的烟草抗逆性分析[J]. 草业学报, 2020, 29(10): 109-118. |
[8] | 杨柳慧, 尹航, 黄沁梅, 张彦妮, 何淼, 周蕴薇. 细叶百合LpWRKY20基因对非生物胁迫的响应及抗旱性分析[J]. 草业学报, 2020, 29(1): 193-202. |
[9] | 高慧娟, 吕昕培, 王润娟, 任伟, 程济南, 汪永平, 邵坤仲, 张金林. 转录组测序在林草植物抗逆性研究中的应用[J]. 草业学报, 2019, 28(12): 184-196. |
[10] | 谢志坚, 周春火, 贺亚琴, 宋涛, 于洋, 吴佳. 21世纪我国稻区种植紫云英的研究现状及展望[J]. 草业学报, 2018, 27(8): 185-196. |
[11] | 索雅飞,杜超,李宁宁,王燕,王迎春. 珍稀泌盐植物长叶红砂RtSOD基因的克隆及功能分析[J]. 草业学报, 2018, 27(4): 98-110. |
[12] | 武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展[J]. 草业学报, 2018, 27(1): 204-214. |
[13] | 晁朝霞, 任燕萍, 钱进, 姚正培, 许磊, 张桦. 新牧1号苜蓿两种抗逆相关启动子的功能分析[J]. 草业学报, 2017, 26(1): 131-141. |
[14] | 沈迎芳, 马超, 吴小培, 张业猛, 王海庆. 扁蓿豆SK2型脱水素基因MrDHN3的异源表达提高大肠杆菌对盐和高温胁迫的抗性[J]. 草业学报, 2016, 25(8): 118-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||