草业学报 ›› 2022, Vol. 31 ›› Issue (12): 106-117.DOI: 10.11686/cyxb2021471
张国香(), 郭卫冷(), 毕铭钰, 张力爽, 王丹, 郭长虹()
收稿日期:
2021-12-14
修回日期:
2022-01-27
出版日期:
2022-12-20
发布日期:
2022-10-17
通讯作者:
郭长虹
作者简介:
E-mail: kaku3008@126.com基金资助:
Guo-xiang ZHANG(), Wei-leng GUO(), Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO()
Received:
2021-12-14
Revised:
2022-01-27
Online:
2022-12-20
Published:
2022-10-17
Contact:
Chang-hong GUO
摘要:
Ca2+/H+反向转运蛋白(CAX)是一类重要的跨膜转运蛋白,在调控植物Ca2+平衡、抵抗非生物胁迫和转运重金属离子等方面具有重要作用。利用生物信息学方法在全基因组水平对紫花苜蓿CAX基因家族进行了鉴定,并对其理化性质、结构特征、系统进化关系、顺式作用元件、染色体定位等进行了分析。结果表明,在紫花苜蓿全基因组中共筛选鉴定出15个MsCAX基因,分布于紫花苜蓿15条染色体上,发生22对基因片段重复事件,编码367~460个氨基酸,等电点为5.2~6.5,且均表现为疏水性蛋白。系统进化关系分析结果表明,MsCAXs分为2个亚家族,同一亚家族成员具有相似的基因结构、保守基序和跨膜结构域数量。MsCAXs启动子区域存在光响应性、激素反应性和胁迫响应元件。利用qRT-PCR分析了6个MsCAXs基因在非生物胁迫下的表达模式,结果表明,在干旱和低温胁迫下,6个MsCAX基因均显著下调表达,在盐和盐碱胁迫下,3个MsCAX基因上调表达。说明在不同的非生物胁迫下,MsCAXs基因表现出不同的表达模式。研究结果为进一步探索紫花苜蓿CAX基因家族的功能提供了参考。
张国香, 郭卫冷, 毕铭钰, 张力爽, 王丹, 郭长虹. 紫花苜蓿CAX基因家族鉴定及其对非生物胁迫的响应分析[J]. 草业学报, 2022, 31(12): 106-117.
Guo-xiang ZHANG, Wei-leng GUO, Ming-yu BI, Li-shuang ZHANG, Dan WANG, Chang-hong GUO. Identification of CAX gene family and expression profile analysis of response to abiotic stress in alfalfa[J]. Acta Prataculturae Sinica, 2022, 31(12): 106-117.
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAX1 | TTGTTGTTGATGGCTGTAATGG | CAAGTTCTTCCTCCTCGTCAG |
MsCAX2 | GTTGTTGATGGCTGTAATGGG | CCTCGTCAGAGTTTTCACTTGTA |
MsCAX3 | TTGGGAAGTCCGTCTTATCTC | GACAACACTGATACCCATACCG |
MsCAX11 | GACAGAAAACAGGCAGATGTAAAT | AATGTCATACCCACCAACCA |
MsCAX12 | ATGAGGCAGAAGAAGAGGCT | GCGAAAATGATTGCTCCTG |
MsCAX15 | ATGTGCTTCGCTTAGGGTC | CATTAAGAAGTCCTCCAACTGTAG |
MsGAPDH | ACGAGCGTTTCAGATG | ACCTCCGATCCAGACA |
表1 本试验所用引物
Table 1 Primers used in this study
基因Gene | 正向引物Forward primer (5′-3′) | 反向引物Reverse primer (5′-3′) |
---|---|---|
MsCAX1 | TTGTTGTTGATGGCTGTAATGG | CAAGTTCTTCCTCCTCGTCAG |
MsCAX2 | GTTGTTGATGGCTGTAATGGG | CCTCGTCAGAGTTTTCACTTGTA |
MsCAX3 | TTGGGAAGTCCGTCTTATCTC | GACAACACTGATACCCATACCG |
MsCAX11 | GACAGAAAACAGGCAGATGTAAAT | AATGTCATACCCACCAACCA |
MsCAX12 | ATGAGGCAGAAGAAGAGGCT | GCGAAAATGATTGCTCCTG |
MsCAX15 | ATGTGCTTCGCTTAGGGTC | CATTAAGAAGTCCTCCAACTGTAG |
MsGAPDH | ACGAGCGTTTCAGATG | ACCTCCGATCCAGACA |
基因登录号 Gene ID | 基因名 Gene name | 氨基酸长度 Amino acid length (aa) | 等电点 PI | 分子量 Molecular weight (kDa) | 不稳定指数 Instability index | 疏水性 指数 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构数目 No. of transmembrane domains |
---|---|---|---|---|---|---|---|---|
MS.gene99860 | MsCAX1 | 460 | 5.52 | 49.87385 | 44.42 | 0.516 | 104.72 | 11 |
MS.gene83511 | MsCAX2 | 446 | 5.41 | 48.36603 | 44.32 | 0.544 | 105.81 | 11 |
MS.gene067498 | MsCAX3 | 464 | 5.62 | 50.36244 | 44.47 | 0.511 | 104.44 | 11 |
MS.gene70485 | MsCAX4 | 407 | 5.20 | 44.38009 | 37.15 | 0.562 | 120.69 | 9 |
MS.gene044358 | MsCAX5 | 367 | 5.50 | 39.90768 | 34.51 | 0.483 | 120.84 | 8 |
MS.gene044315 | MsCAX6 | 442 | 5.21 | 48.20153 | 34.66 | 0.570 | 117.08 | 9 |
MS.gene057847 | MsCAX7 | 457 | 5.36 | 50.22957 | 29.72 | 0.524 | 116.56 | 10 |
MS.gene43800 | MsCAX8 | 434 | 6.50 | 47.51891 | 31.02 | 0.609 | 121.98 | 10 |
MS.gene44897 | MsCAX9 | 434 | 6.50 | 47.54693 | 30.85 | 0.608 | 121.98 | 10 |
MS.gene009878 | MsCAX10 | 434 | 6.50 | 47.50088 | 31.46 | 0.615 | 122.88 | 10 |
MS.gene88788 | MsCAX11 | 420 | 6.30 | 45.83903 | 28.84 | 0.656 | 126.98 | 10 |
MS.gene84200 | MsCAX12 | 455 | 5.74 | 49.23152 | 37.33 | 0.580 | 123.25 | 11 |
MS.gene77339 | MsCAX13 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene92638 | MsCAX14 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene78431 | MsCAX15 | 455 | 5.74 | 49.22955 | 36.91 | 0.586 | 123.47 | 11 |
表2 CAX家族的基本信息分析
Table 2 CAX genes information identified in the alfalfa genome
基因登录号 Gene ID | 基因名 Gene name | 氨基酸长度 Amino acid length (aa) | 等电点 PI | 分子量 Molecular weight (kDa) | 不稳定指数 Instability index | 疏水性 指数 GRAVY | 脂肪指数 Aliphatic index | 跨膜结构数目 No. of transmembrane domains |
---|---|---|---|---|---|---|---|---|
MS.gene99860 | MsCAX1 | 460 | 5.52 | 49.87385 | 44.42 | 0.516 | 104.72 | 11 |
MS.gene83511 | MsCAX2 | 446 | 5.41 | 48.36603 | 44.32 | 0.544 | 105.81 | 11 |
MS.gene067498 | MsCAX3 | 464 | 5.62 | 50.36244 | 44.47 | 0.511 | 104.44 | 11 |
MS.gene70485 | MsCAX4 | 407 | 5.20 | 44.38009 | 37.15 | 0.562 | 120.69 | 9 |
MS.gene044358 | MsCAX5 | 367 | 5.50 | 39.90768 | 34.51 | 0.483 | 120.84 | 8 |
MS.gene044315 | MsCAX6 | 442 | 5.21 | 48.20153 | 34.66 | 0.570 | 117.08 | 9 |
MS.gene057847 | MsCAX7 | 457 | 5.36 | 50.22957 | 29.72 | 0.524 | 116.56 | 10 |
MS.gene43800 | MsCAX8 | 434 | 6.50 | 47.51891 | 31.02 | 0.609 | 121.98 | 10 |
MS.gene44897 | MsCAX9 | 434 | 6.50 | 47.54693 | 30.85 | 0.608 | 121.98 | 10 |
MS.gene009878 | MsCAX10 | 434 | 6.50 | 47.50088 | 31.46 | 0.615 | 122.88 | 10 |
MS.gene88788 | MsCAX11 | 420 | 6.30 | 45.83903 | 28.84 | 0.656 | 126.98 | 10 |
MS.gene84200 | MsCAX12 | 455 | 5.74 | 49.23152 | 37.33 | 0.580 | 123.25 | 11 |
MS.gene77339 | MsCAX13 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene92638 | MsCAX14 | 455 | 5.74 | 49.23355 | 38.06 | 0.582 | 122.62 | 11 |
MS.gene78431 | MsCAX15 | 455 | 5.74 | 49.22955 | 36.91 | 0.586 | 123.47 | 11 |
蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand | 蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand |
---|---|---|---|---|---|---|---|---|---|
MsCAX1 | 50.43 | 2.61 | 33.48 | 13.48 | MsCAX9 | 52.30 | 2.53 | 29.95 | 15.21 |
MsCAX2 | 50.45 | 2.69 | 31.84 | 15.02 | MsCAX10 | 55.30 | 3.23 | 27.42 | 14.06 |
MsCAX3 | 48.71 | 2.59 | 33.84 | 14.87 | MsCAX11 | 52.29 | 3.57 | 27.39 | 14.76 |
MsCAX4 | 56.02 | 3.19 | 25.80 | 14.99 | MsCAX12 | 48.57 | 2.86 | 30.33 | 18.27 |
MsCAX5 | 53.13 | 2.72 | 28.34 | 15.80 | MsCAX13 | 52.53 | 2.20 | 30.99 | 14.29 |
MsCAX6 | 48.87 | 3.85 | 29.86 | 17.42 | MsCAX14 | 51.87 | 2.20 | 31.43 | 14.51 |
MsCAX7 | 48.36 | 3.06 | 29.54 | 19.04 | MsCAX15 | 49.45 | 3.08 | 31.21 | 16.26 |
MsCAX8 | 56.68 | 2.76 | 26.27 | 14.29 |
表3 紫花苜蓿CAX蛋白质二级结构
Table 3 The secondary structure of CAX protein in alfalfa (%)
蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand | 蛋白质 Protein | α-螺旋 α-helix | β-转角 β-turn | 无规则卷曲 Random coli | 延伸链 Extended strand |
---|---|---|---|---|---|---|---|---|---|
MsCAX1 | 50.43 | 2.61 | 33.48 | 13.48 | MsCAX9 | 52.30 | 2.53 | 29.95 | 15.21 |
MsCAX2 | 50.45 | 2.69 | 31.84 | 15.02 | MsCAX10 | 55.30 | 3.23 | 27.42 | 14.06 |
MsCAX3 | 48.71 | 2.59 | 33.84 | 14.87 | MsCAX11 | 52.29 | 3.57 | 27.39 | 14.76 |
MsCAX4 | 56.02 | 3.19 | 25.80 | 14.99 | MsCAX12 | 48.57 | 2.86 | 30.33 | 18.27 |
MsCAX5 | 53.13 | 2.72 | 28.34 | 15.80 | MsCAX13 | 52.53 | 2.20 | 30.99 | 14.29 |
MsCAX6 | 48.87 | 3.85 | 29.86 | 17.42 | MsCAX14 | 51.87 | 2.20 | 31.43 | 14.51 |
MsCAX7 | 48.36 | 3.06 | 29.54 | 19.04 | MsCAX15 | 49.45 | 3.08 | 31.21 | 16.26 |
MsCAX8 | 56.68 | 2.76 | 26.27 | 14.29 |
图7 紫花苜蓿CAX基因家族在非生物胁迫下的表达分析A: 对照Control; B: 0.1 mol?L-1 NaCl; C: 0.1 mol?L-1 NaHCO3 and Na2CO3; D: 0.15 mol?L-1 甘露醇Mannitol; E: 4 ℃; *: P<0.05; **: P<0.01.
Fig.7 Expression of CAX gene family under abiotic stress in alfalfa
1 | White P J, Broadley M R. Calcium in plants. Annals of Botany, 2003, 92(4): 487-511. |
2 | Ma X, Li Q H, Yu Y N, et al. The CBL-CIPK pathway in plant response to stress signals. International Journal of Molecular Sciences, 2020, 21(16): 5668-5695. |
3 | Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biology, 2016, 18(5): 741-749. |
4 | Shigaki T, Hirschi K D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biology, 2006, 8(4): 419-429. |
5 | Manohar M, Shigaki T, Hirschi K D. Plant cation/H+ exchangers (CAXs): Biological functions and genetic manipulations. Plant Biology, 2011, 13(4): 561-569. |
6 | Shigaki T, Rees I, Nakhleh L, et al. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. Journal of Molecular Evolution, 2006, 63(6): 815-825. |
7 | Cai X J, Lytton J. The cation/Ca2+ exchanger superfamily: Phylogenetic analysis and structural implications. Molecular Biology & Evolution, 2004, 21(9): 1692-1703. |
8 | Kamiya T, Maeshima M. Residues in internal repeats of the rice cation/Ca2+ exchanger are involved in the transport and selection of cations. Journal of Biological Chemistry, 2004, 279(1): 812-819. |
9 | Zhang Y X, Peng X J, Chai T Y, et al. Structure and function of tonoplast cation/H+ antiporters in plant: A review. Chinese Journal of Biotechnology, 2011, 27(4): 546-560. |
张玉秀, 彭晓静, 柴团耀, 等. 植物液泡膜阳离子/H+反向转运蛋白结构和功能研究进展. 生物工程学报, 2011, 27(4): 546-560. | |
10 | Hirschi K D. Expression of Arabidopsis CAX1 in tobacco: Altered calcium homeostasis and increased stress sensitivity. Plant Cell, 1999, 11(11): 2113-2122. |
11 | Munmyong C, Won C, Songchol C, et al. Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments. Journal of Biological Physics, 2018, 44(3): 1-16. |
12 | Qiao K, Wang F, Liang S, et al. Heterologous expression of TuCAX1a and TuCAX1b enhances Ca2+ and Zn2+ translocation in Arabidopsis. Plant Cell Reports, 2019, 38(5): 597-607. |
13 | Catalá R, Santos E, Alonso J M, et al. Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003, 15(12): 2940-2951. |
14 | Han N, Lan W J, He X, et al. Expression of a Suaeda salsa vacuolar H+/Ca2+ transporter gene in Arabidopsis contributes to physiological changes in salinity. Plant Molecular Biology Reporter, 2012, 30(2): 470-477. |
15 | Navarro-León E, Paradisone V, López-Moreno F J, et al. Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science, 2021, 311: 10. |
16 | Pittman J K, Edmond C, Sunderland P A, et al. A cation-regulated and proton gradient-dependent cation transporter from chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. Journal of Biological Chemistry, 2009, 284(1): 525-533. |
17 | Luo G Z, Wang H W, Huang J, et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Molecular Biology, 2005, 59(5): 809-820. |
18 | Wang X, Ma Y X, Li J. Nutritional constituents and main biological characteristics of alfalfa. Pratacultural Science, 2003(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003(10): 39-41. | |
19 | Yang Q C. Guide to alfalfa production and management. Beijing: China Forestry Publishing House, 2003: 8-68. |
杨青川. 苜蓿生产与管理指南. 北京: 中国林业出版社, 2003: 8-68. | |
20 | Shang X Y, Zhou L F, Shi X Y, et al. Cloning and transformation of ARR gene in Medicago sativa L. Genomics and Applied Biology, 2021: 1-13. |
尚骁尧, 周玲芳, 石欣玥, 等. 紫花苜蓿ARR基因克隆及转化. 基因组学与应用生物学, 2021: 1-13. | |
21 | Shigaki T, Pittman J K, Hirschi K D. Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. Journal of Biological Chemistry, 2003, 278(8): 6610-6617. |
22 | Korenkov V, Hirschi K, Crutchfield J D, et al. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta, 2007, 226(6): 1379-1387. |
23 | Bu Y, Fu W, Chen J, et al. Description of AtCAX4 in response to abiotic stress in Arabidopsis. International Journal of Molecular Sciences, 2021, 22(2): 856-868. |
24 | Zou W, Chen J, Meng L, et al. The rice cation/H+ exchanger family involved in Cd tolerance and transport. International Journal of Molecular Sciences, 2021, 22(15): 8186-8203. |
25 | Mao K, Yang J, Wang M, et al. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters. BMC Plant Biology, 2021, 21(1): 81-99. |
26 | Chen H, Zeng Y, Yang Y, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
27 | Li R C, Dou Y, Xia F. Acceleration technology of biological sequences search algorithm hmmsearch. Computer Engineering, 2010, 36(20): 265-267. |
李荣春, 窦勇, 夏飞. 生物序列搜索算法hmmsearch的加速技术. 计算机工程, 2010, 36(20): 265-267. | |
28 | Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
29 | Wang Y P, Ling L, Zhang W R, et al. Genome-wide identification and expression analysis of B-box gene family in wheat. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
王艳朋, 凌磊, 张文睿, 等. 小麦B-box基因家族全基因组鉴定与表达分析. 作物学报, 2021, 47(8): 1437-1449. | |
30 | Lura E, Simon W, Hirschi K D, et al. Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants. Frontiers in Plant Science, 2012, 3: 1-19. |
31 | Chen C, Zhang Y, Wang J X, et al. Identification and expression analysis of Ca2+/H+ exchanger antiporter (CAX) gene family in Salvia miltiorrhiza. Molecular Plant Breeding, 2020, 18(13): 4241-4252. |
陈尘, 张燕, 王锦霞, 等. 丹参Ca2+/H+反向转运蛋白(SmCAX)基因家族鉴定与表达分析. 分子植物育种, 2020,18(13): 4241-4252. | |
32 | Shigaki T, Mei H, Marshall J, et al. The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast. Plant Biology, 2010, 12(6): 935-939. |
33 | Mehak T, Shivi T, Shailesh S, et al. Ca2+/cation antiporters (CaCA): Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 2016, 7: 1775-1794. |
34 | Kong H, Landherr L L, Frohlich M W, et al. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: Evidence for multiple mechanisms of rapid gene birth. Plant Journal, 2010, 50(5): 873-885. |
35 | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4(1): 10-31. |
36 | Bickerton P D, Pittman J K. Role of cation/proton exchangers in abiotic stress signaling and stress tolerance in plants. Elucidation of Abiotic Stress Signaling in Plants, 2015, 1: 95-117. |
37 | Zhao J, Barkla B J, Marshall J, et al. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta, 2008, 227(3): 659-669. |
[1] | 许浩宇, 赵颖, 阮倩, 朱晓林, 王宝强, 魏小红. 不同混合盐碱下藜麦幼苗的抗性研究[J]. 草业学报, 2023, 32(1): 122-130. |
[2] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[3] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[4] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[5] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
[6] | 田骄阳, 王秋霞, 郑淑文, 刘文献. 全基因组水平蒺藜苜蓿CPP基因家族的鉴定及表达模式分析[J]. 草业学报, 2022, 31(7): 111-121. |
[7] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[8] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[9] | 王雪萌, 何欣, 张涵, 宋瑞, 毛培胜, 贾善刚. 基于多光谱成像技术快速无损检测紫花苜蓿人工老化种子[J]. 草业学报, 2022, 31(7): 197-208. |
[10] | 李满有, 李东宁, 王斌, 李小云, 沈笑天, 曹立娟, 倪旺, 王腾飞, 兰剑. 不同苜蓿品种混播和播种量对牧草产量及品质的影响[J]. 草业学报, 2022, 31(5): 61-75. |
[11] | 孙洪仁, 王显国, 卜耀军, 乔楠, 任波. 黄土高原紫花苜蓿土壤氮素丰缺指标和推荐施氮量初步研究[J]. 草业学报, 2022, 31(4): 32-42. |
[12] | 高丽敏, 陈春, 沈益新. 氮磷肥对季节性栽培紫花苜蓿生长及再生的影响[J]. 草业学报, 2022, 31(4): 43-52. |
[13] | 欧成明, 赵美琦, 孙铭, 毛培胜. 抗坏血酸和水杨酸丸衣对NaCl胁迫下紫花苜蓿种子发芽特性的影响[J]. 草业学报, 2022, 31(4): 93-101. |
[14] | 童长春, 刘晓静, 吴勇, 赵雅姣, 王静. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报, 2022, 31(3): 124-135. |
[15] | 赵利清, 郝志刚, 崔笑岩, 彭向永. 赤霉素及其抑制剂调控草地早熟禾生长及赤霉素相关基因表达的研究[J]. 草业学报, 2022, 31(3): 85-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||