草业学报 ›› 2024, Vol. 33 ›› Issue (5): 69-79.DOI: 10.11686/cyxb2023215
张盼(), 李霄霄, 严发能, 何远乐, 白朕卿, 吴佳文()
收稿日期:
2023-06-27
修回日期:
2023-09-11
出版日期:
2024-05-20
发布日期:
2024-02-03
通讯作者:
吴佳文
作者简介:
E-mail: wujiawende@126.com基金资助:
Pan ZHANG(), Xiao-xiao LI, Fa-neng YAN, Yuan-le HE, Zhen-qing BAI, Jia-wen WU()
Received:
2023-06-27
Revised:
2023-09-11
Online:
2024-05-20
Published:
2024-02-03
Contact:
Jia-wen WU
摘要:
甜高粱是重要的饲草作物,刈割能有效提高其生产潜力。为探究刈割后甜高粱的再生及体内碳水化合物的分配规律,在人工控制气候室中以水培法培养甜高粱42 d后株高约100 cm,留茬8 cm刈割,分析刈割前、刈割后7、21和35 d甜高粱株高、鲜重、叶片数、生长速率、光合作用、根系形态、结构性和非结构性碳水化合物含量变化。研究表明,刈割破坏的甜高粱株高、叶片数、茎和叶鲜重会快速恢复,在刈割后35 d已恢复至刈割前水平,甚至根系鲜重和总根长、根表面积和根尖数显著高于刈割前水平。刈割后7 d生长速率显著提高,但刈割后21和35 d又降低至刈割前的生长速率。刈割对叶片净光合速率(A)和胞间二氧化碳浓度(Ci)没有显著影响,但刈割后21 d蒸腾速率(E)和气孔导度(Gs)显著升高。甜高粱茎部蔗糖和葡萄糖含量及叶片蔗糖含量在刈割7 d后显著降低,而刈割21 d后上升。相反,叶片淀粉含量在刈割7 d后显著升高,而刈割21 d后显著降低。刈割35 d后甜高粱可溶性碳水化合物含量基本恢复至刈割前水平,甚至根部蔗糖和茎部淀粉含量更高。刈割没有显著改变甜高粱根、茎和叶中半纤维素、木质素含量,但刈割后7和21 d显著降低了根、茎和叶中纤维素含量,刈割35 d后茎和叶片纤维素含量恢复至刈割前水平。综上所述,甜高粱刈割后首先通过促进叶片淀粉积累,随后增加叶片和根系蔗糖积累以及降低纤维素含量等动态调节机制,激发刈割后植株生长速率保障地上部优先再生,其次恢复根系生长发育,协同促进甜高粱快速再生。
张盼, 李霄霄, 严发能, 何远乐, 白朕卿, 吴佳文. 甜高粱刈割后再生及碳水化合物的分配规律[J]. 草业学报, 2024, 33(5): 69-79.
Pan ZHANG, Xiao-xiao LI, Fa-neng YAN, Yuan-le HE, Zhen-qing BAI, Jia-wen WU. Regeneration and carbohydrate distribution in sweet sorghum after cutting[J]. Acta Prataculturae Sinica, 2024, 33(5): 69-79.
图1 甜高粱刈割后不同时间点株高、叶片数和生长速率的变化不同小写字母表示在P<0.05水平差异显著,下同。Different lowercase letters represent significant differences among different treatments at P<0.05, the same below.
Fig.1 Changes of plant height, number of leaves and growth rate of sweet sorghum at different time points after cutting
处理Treatment | 总根长Total root length (cm) | 根表面积Root surface area (cm2) | 根尖数Number of root tips |
---|---|---|---|
刈割前Before cutting | 4624±1304b | 5539±2960c | 1295±838b |
刈割后7 d 7 days after cutting | 5693±2293b | 10527±2504bc | 1598±1192ab |
刈割后21 d 21 days after cutting | 27509±24116a | 19212±12062b | 1812±539ab |
刈割后35 d 35 days after cutting | 36690±12929a | 48066±14558a | 2787±871a |
表1 甜高粱刈割后不同时间点根系形态的变化
Table 1 Changes of root morphology of sweet sorghum at different time points after cutting
处理Treatment | 总根长Total root length (cm) | 根表面积Root surface area (cm2) | 根尖数Number of root tips |
---|---|---|---|
刈割前Before cutting | 4624±1304b | 5539±2960c | 1295±838b |
刈割后7 d 7 days after cutting | 5693±2293b | 10527±2504bc | 1598±1192ab |
刈割后21 d 21 days after cutting | 27509±24116a | 19212±12062b | 1812±539ab |
刈割后35 d 35 days after cutting | 36690±12929a | 48066±14558a | 2787±871a |
图4 甜高粱刈割后不同时间点不同部位非结构性碳水化合物含量的变化
Fig.4 Changes of non-structural carbohydrate contents of sweet sorghum in different organs at different time points after cutting
图5 甜高粱刈割后不同时间点不同部位结构性碳水化合物含量变化
Fig.5 Changes of structural carbohydrate contents of sweet sorghum in different organs at different time points after cutting
1 | Luo W, Zhou W, Wang Z G, et al. Twenty-four sweet sorghum materials: comprehensive analysis of main agronomic traits and biological yield. Chinese Agricultural Science Bulletin, 2022, 38(30): 21-28. |
罗巍, 周伟, 王振国, 等. 24份甜高粱主要农艺性状与生物产量综合分析. 中国农学通报, 2022, 38(30): 21-28. | |
2 | Cai S D, Wang W X, Zhou F R, et al. Research progress on the feed value of sweet sorghum and its application in animal husbandry production. The Chinese Livestock and Poultry Breeding, 2023, 19(2): 72-75. |
蔡树东, 王万兴, 周斐然, 等. 甜高粱的饲用价值及其在畜牧生产中的应用研究进展. 中国畜禽种业, 2023, 19(2): 72-75. | |
3 | Zheng H W, Chen Y J, Li Y X, et al. Quality comparison experiment of forage sweet sorghum and silage corn. Yunnan Agricultural Science and Technology, 2023(3): 20-22. |
郑红武, 陈赟娟, 李亚迅, 等. 饲用型甜高粱与青贮玉米品质比较试验. 云南农业科技, 2023(3): 20-22. | |
4 | Liao W B, Nan Z B, Zhang M L. Effects of cutting on grass growth. Chinese Journal of Grassland, 2008, 30(5): 96-105. |
廖伟彪, 南志标, 张美玲. 刈割对禾草生长的影响. 中国草地学报, 2008, 30(5): 96-105. | |
5 | Tang T X, Wang Z H, Zhang Y P, et al. Effect of mowing frequency on yield and feeding value of forage sweet sorghum. Sugar Crops of China, 2018, 40(1): 35-37. |
唐桃霞, 王致和, 张亚萍, 等. 刈割频率对饲用甜高粱产量和饲用价值的影响. 中国糖料, 2018, 40(1): 35-37. | |
6 | Richardson A D, Carbone M S, Keenan T F, et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 2013, 197(3): 850-861. |
7 | Jing M L, Ma Y S, Li X, et al. Study on response of the growth and root characteristics of Poa pratensis L. “Qinghai” to cutting intensity. Heilongjiang Animal Science and Veterinary Medicine, 2023(2): 98-103. |
景美玲, 马玉寿, 李鑫, 等. 青海草地早熟禾生长和根系特征对刈割强度的响应研究. 黑龙江畜牧兽医, 2023(2): 98-103. | |
8 | Zhang L, Zhai X Y, Wu J Y, et al. Evaluation on the regeneration capacity of different oat varieties after cutting. Journal of Northern Agriculture, 2022, 50(4): 26-34. |
张璐, 翟晓宇, 武俊英, 等. 刈割后不同燕麦品种再生产力评价. 北方农业学报, 2022, 50(4): 26-34. | |
9 | Wang Q, Yang L Q, Lei J Y, et al. Regrowth and biomass allocation of dual-purpose winter wheat under two clipping heights. Pratacultural Science, 2017, 34(10): 2109-2116. |
王茜, 杨丽群, 雷家运, 等. 刈割高度对冬小麦再生及生物量分配的影响. 草业科学, 2017, 34(10): 2109-2116. | |
10 | Li M H, Xiao W F, Shi P W, et al. Nitrogen and carbon source-sink relationships in trees at the Himalayantreelines compared with lower elevations. Plant, Cell & Environment, 2008, 31(10): 1377-1387. |
11 | Pan Q M, Han X G, Bai Y F, et al. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany, 2002, 19(1): 30-38. |
潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展. 植物学通报, 2002, 19(1): 30-38. | |
12 | Zheng Y P, Wang H X, Lou X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 2014, 25(4): 1188-1196. |
郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 2014, 25(4): 1188-1196. | |
13 | Yin J J, Guo D L, He S Y, et al. Non-structural carbohydrate, N, and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519-527. |
印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局. 北京大学学报(自然科学版), 2009, 45(3): 519-527. | |
14 | Rong Y P, Han J G, Wang P, et al. Effects of cutting rate on carbohydrate reserves and nitrogen content of Russian wildryegrass (Psathyrostachys perennis Keng). Grassland of China, 2000(2): 28-34. |
戎郁萍, 韩建国, 王培, 等. 刈割强度对新麦草产草量和贮藏碳水化合物及含氮化合物影响的研究. 中国草地, 2000(2): 28-34. | |
15 | Bai Y F, Duan C Q, Eerdongdalai, et al. Effect of cutting on carbohydrate reserves of plants in the typical steppe. Journal of Inner Mongolia Institute of Agriculture & Animal Husbandry, 1994, 15(4): 48-53. |
白永飞, 段淳清, 额尔敦达来, 等. 刈割对牧草贮藏碳水化合物含量变化的影响. 内蒙古农牧学院学报, 1994, 15(4): 48-53. | |
16 | Xiao H, Yang H L, Rong Y P, et al. Effect of clipping on the regrowth and carbohydrate content of Leymus chinensis and Bromus inermis in meadow steppes. Pratacultural Science, 2018, 35(9): 2201-2209. |
肖红, 杨合龙, 戎郁萍, 等. 刈割对草甸草原羊草、无芒雀麦再生和碳水化合物含量的影响. 草业科学, 2018, 35(9): 2201-2209. | |
17 | Tian D J, Bai S C, Nie K H, et al. Effects of stubble height on sprouting ability and non-structural carbohydrates accumulation and distribution of Hippophae rhamnoides ssp. sinensis. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 627-634. |
田登娟, 白双成, 聂恺宏, 等. 平茬高度对中国沙棘萌枝能力及非结构性碳水化合物积累与分配的影响. 西北植物学报, 2021, 41(4): 627-634. | |
18 | Tian D J, Nie K H, Zhang Z Y, et al. Response of root suckering ability and non-structural carbohydrates accumulation of Chinese sea buckthorn to stubble height. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(9): 70-83. |
田登娟, 聂恺宏, 张增悦, 等. 中国沙棘根蘖能力及非结构性碳水化合物对平茬高度的响应. 西北农林科技大学学报(自然科学版), 2023, 51(9): 70-83. | |
19 | Zhang L, Ma W W, Tian Q, et al. The effects of different cutting intensities on the growth of vegetation in the fencing sandy land. Acta Agrestia Sinica, 2018, 26(4): 841-845. |
张亮, 马维伟, 田青, 等. 不同刈割强度对封育沙地植被生长状况的影响. 草地学报, 2018, 26(4): 841-845. | |
20 | Dovel R L. Cutting height effects on wetland meadow forage yield and quality. Journal of Range Management, 1996, 49(2): 151-156. |
21 | Cao K, Xu Z Z, Meng X, et al. Effects of mowing and fertilization on productivity of degraded reseeding grassland in semi-arid area of Xinjiang. Journal of Xinjiang Agricultural University, 2021, 44(1): 62-71. |
曹凯, 徐珍珍, 孟翔, 等. 刈割和施肥对新疆半干旱区退化补播草地生产力的影响. 新疆农业大学学报, 2021, 44(1): 62-71. | |
22 | Bao W Y, Zhao M L, An H B, et al. Effect of mowing on growth and yield of different alfalfa varieties. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(2): 65-71. |
包乌云, 赵萌莉, 安海波, 等. 刈割对不同苜蓿品种生长和产量的影响. 西北农林科技大学学报(自然科学版), 2015, 43(2): 65-71. | |
23 | Zhang X, Dong J G, Wang Y K, et al. Effect of cutting height on the root growth characteristics of forages. Acta Agrestia Sinica, 2016, 24(2): 416-424. |
张雪, 董建国, 汪有科, 等. 刈割对牧草根系生长特征的影响. 草地学报, 2016, 24(2): 416-424. | |
24 | Guo Z G, Liu H X, Wang Y R. Effect of cutting on root growth in lucerne. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(2): 215-220. |
郭正刚, 刘慧霞, 王彦荣. 刈割对紫花苜蓿根系生长影响的初步分析. 西北植物学报, 2004, 24(2): 215-220. | |
25 | Jiang L, Zheng Y, Wang P, et al. Effect of mowing on the root system distribution of alfalfa under apricot intercropping and lateral root distribution of apricot and soil physical and chemical properties in the apricot garden. Northern Horticulture, 2017(24): 123-128. |
姜黎, 郑银, 王平, 等. 刈割对杏树间作的紫花苜蓿根系和土壤理化性质的影响. 北方园艺, 2017(24): 123-128. | |
26 | Yang F, Wei B, Wang Y, et al. Response of yield, quality and root characteristics of alfalfa to cutting height. Acta Agrestia Sinica, 2022, 30(6): 1597-1602. |
杨帆, 韦宝, 王瑜, 等. 紫花苜蓿产量、品质和根系对刈割高度的响应. 草地学报, 2022, 30(6): 1597-1602. | |
27 | Wang L H, Fu X Q, Wang J N, et al. Compensatory growth and leaf N concentrations of Lolium perenne in response to defoliation and light environment. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 287-294. |
王丽华, 付秀琴, 王金牛, 等. 不同光环境下刈割对黑麦草补偿性生长及叶片氮含量的影响. 应用与环境生物学报, 2015, 21(2): 287-294. | |
28 | García I, Mendoza R. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil. Plant Biology, 2012, 14(6): 964-971. |
29 | Wang X, Yang T, Sun L P, et al. Effects of different stubble heights on photosynthetic characteristics and non-structural carbohydrates of rape leaves. Northern Horticulture, 2022, 508(13): 43-48. |
王祥, 杨涛, 孙鲁鹏, 等. 不同留茬高度对油菜叶片光合特性及非结构性碳水化合物的影响. 北方园艺, 2022, 508(13): 43-48. | |
30 | Dai H J, Xie Y Z, Hu Y L. Effects of different mowing intensities on growth and net photosynthesis and soluble sugar content of Medicago sativa Linn. Plant Physiology Communications, 2009, 45(11): 1061-1064. |
代红军, 谢应忠, 胡艳莉. 不同刈割程度对紫花苜蓿生长、净光合速率和可溶性糖含量的影响. 植物生理学通讯, 2009, 45(11): 1061-1064. | |
31 | Li B B, Zhang F H, Zhao Y G, et al. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus. Chinese Journal of Plant Ecology, 2023, 47(1): 101-113. |
李变变, 张凤华, 赵亚光, 等. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响. 植物生态学报, 2023, 47(1): 101-113. | |
32 | Li B Y, Nan L L, Wen S J, et al. Effects of different cutting intensities on main non-structural carbohydrate content of different root-type alfalfa. Agricultural Research in the Arid Areas, 2021, 39(2): 172-177. |
李冰月, 南丽丽, 温素军, 等. 刈割强度对不同根型苜蓿主要非结构性碳水化合物含量的影响. 干旱地区农业研究, 2021, 39(2): 172-177. | |
33 | Hartman M D, Rojas B E, Iglesias A A, et al. The involvement of allosteric effectors and post-translational modifications in the control of plant central carbon metabolism. The Plant Journal, 2023, 114(5): 1037-1058. |
34 | Wu J W, Mock H P, Giehl R F H, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. Journal of Hazardous Materials, 2019, 364: 581-590. |
35 | Som N, Reddy M. Cross-talk between phospholipid synthesis and peptidoglycan expansion by a cell wall hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(24): e2300784120. |
36 | Wang X P, Bai Y X, Yao X H, et al. Effect of mowing stubble height on forage and grain yield and forage quality characteristics of hulless barley. Journal of Triticeae Crops, 2023, 43(4): 513-523. |
王小萍, 白羿雄, 姚晓华, 等. 刈割留茬高度对青稞饲草与籽粒产量及饲用品质的影响. 麦类作物学报, 2023, 43(4): 513-523. | |
37 | Gulinigaer·Aiyisirehong, Zhang X Y, Wan J C, et al. Effects of growth years and cutting times on nutrient composition and digestibility of cultivated Glycyrrhiza uralensis. Pratacultural Science, 2022, 39(11): 2317-2325. |
古丽尼尕尔·艾依斯热洪, 张修业, 万江春, 等. 育龄及刈割频次对栽培甘草营养成分及消化率的影响. 草业科学, 2022, 39(11): 2317-2325. | |
38 | Wang T H, Pan C C, Wang Y, et al. Analysis on agronomic characters and nutritional quality of sweet sorghum after cutting in different stages. Journal of Tropical Biology, 2022, 13(5): 502-508. |
王太行, 潘成才, 王宇, 等. 不同刈割时期对甜高粱农艺性状及营养品质的影响. 热带生物学报, 2022, 13(5): 502-508. |
[1] | 李玉珠, 余江弟, 丁菲菲, 苗佳敏, 白小明, 师尚礼. 植物遗传转化中体细胞再生的分子机制及应用研究进展[J]. 草业学报, 2024, 33(2): 198-211. |
[2] | 杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国. 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究[J]. 草业学报, 2023, 32(9): 160-172. |
[3] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[4] | 梁佳, 胡朝阳, 谢志明, 马刘峰, 陈芸, 方志刚. 外源褪黑素缓解甜高粱幼苗干旱胁迫的生理效应[J]. 草业学报, 2023, 32(7): 206-215. |
[5] | 王腾飞, 王斌, 邓建强, 李满有, 倪旺, 冯琴, 妥昀昀, 兰剑. 宁夏干旱区滴灌条件下拉巴豆不同播种量与甜高粱混播饲草生产性能研究[J]. 草业学报, 2023, 32(3): 30-40. |
[6] | 王琪, 郑佳华, 赵萌莉, 张军. 刈割强度对大针茅草原植物群落特征和土壤理化性质的影响[J]. 草业学报, 2023, 32(2): 26-34. |
[7] | 许爱云, 张丽华, 王晓佳, 马冲, 李元景, 曹兵. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43. |
[8] | 李变变, 张凤华, 赵亚光. 刈割高度对油莎豆氮代谢及产量和品质的影响[J]. 草业学报, 2023, 32(2): 84-96. |
[9] | 周娟娟, 魏巍. 施肥和刈割协同对藏北高原禾草混播群落动态和超产的影响[J]. 草业学报, 2023, 32(10): 28-39. |
[10] | 马仁诗, 蒋丛泽, 高玮, 李中利, 沈禹颖, 杨宪龙. 不同水分条件下缓释氮肥对饲用甜高粱生长和水氮利用效率的影响[J]. 草业学报, 2023, 32(10): 71-81. |
[11] | 姜凯, 吴雪莉, 刘奕君, 马越, 宋洋, 卢文杰, 王增裕. 海滨雀稗以hpt与bar基因为筛选标记的转化体系比较研究[J]. 草业学报, 2023, 32(1): 165-177. |
[12] | 陈卫东, 张玉霞, 张庆昕, 刘庭玉, 王显国, 王东儒. 末次刈割时间对苜蓿根颈抗氧化系统及抗寒性的影响[J]. 草业学报, 2022, 31(9): 129-138. |
[13] | 齐昊昊, 庞晓攀, 周俗, 郭正刚. 高原鼠兔刈割对青海湖流域高寒草甸植物种间关联的影响[J]. 草业学报, 2022, 31(8): 61-71. |
[14] | 姚露花, 綦才, 杨建峰, 郭彦军. 种子引发对甜高粱角质层蜡质及其抗性的影响[J]. 草业学报, 2022, 31(7): 185-196. |
[15] | 李君风, 赵杰, 唐小月, 代童童, 董东, 宗成, 邵涛. 瘤胃纤维素降解菌系对灭菌水稻秸秆结构性碳水化合物降解的影响[J]. 草业学报, 2022, 31(7): 85-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||